网络中数据传输过程的分析

合集下载

网络中数据传输过程的分析

网络中数据传输过程的分析

网络中数据传输过程的分析随着互联网的普及和发展,数据的传输在我们日常生活中越来越重要。

无论是发送一封电子邮件、浏览网页还是下载文件,数据传输都扮演着重要的角色。

本文将从数据的传输方式、协议以及传输过程中的安全性等方面,对网络中数据传输过程进行详细分析。

一. 数据传输的方式在网络中,数据可以通过多种方式进行传输,包括电缆、Wi-Fi、光纤等。

其中,电缆传输是最常见的一种方式。

通过电缆传输数据可以分为同轴电缆和双绞线两种方式。

同轴电缆常用于有线电视、有线网络等领域,双绞线则是常见的网线,用于局域网和广域网的连接。

除了电缆传输,Wi-Fi也是一种常见的数据传输方式,通过无线信号将数据从发送端传输到接收端。

此外,光纤也是一种高速传输数据的方式,采用光信号传输数据,可以达到很高的传输速度。

二. 数据传输的协议在网络中,数据的传输依赖于一些基本的协议。

最基础的协议是TCP/IP协议,它是互联网传输控制协议/网际协议的缩写。

TCP/IP协议是因特网的核心协议,它负责将数据分割为数据包,并在网络中传输和重新组装。

TCP/IP协议的特点是可靠性和完整性,能够确保数据传输的质量。

另外,还有HTTP、FTP、SMTP等众多应用层协议,用于在应用程序之间传输数据。

三. 数据传输的过程分析数据传输的过程通常分为发送端和接收端两个阶段。

在发送端,数据首先被分割为数据包,每个数据包都包含有关数据传输的相关信息,如源IP地址、目的IP地址、端口号等。

然后,通过物理介质传输,比如通过电缆或Wi-Fi信号将数据包发送到网络中。

在传输过程中,数据包经过多个中间节点,如路由器、交换机等,根据IP地址和端口号找到下一跳的路径。

最终,数据包到达接收端,通过重新组装,将数据还原为原始数据。

数据传输的过程中,需要注意的是数据的安全性。

由于互联网的开放性,数据在传输过程中存在被窃听和篡改的风险。

为了保证数据的安全性,可以采用加密技术来加密数据传输。

通信网络中的数据传输机制分析与优化

通信网络中的数据传输机制分析与优化

通信网络中的数据传输机制分析与优化随着现代化科技的快速发展,通信网络已成为人们生活中不可或缺的重要组成部分,尤其是在信息时代的今天,通信网络的重要性更是得到了充分的体现。

然而,在数字化时代,大量的数据信息需要穿梭于网络之间,并且保证传输的速度、稳定性和安全性,这也成为了网络传输的挑战。

本文将对通信网络中的数据传输机制进行深入分析,并对其进行优化,以达到更好的传输效果。

一、通信网络中的数据传输机制通信网络中的数据传输机制是指利用特定的协议和技术将数据信息传输到目标终端的过程。

传输的过程包括数据的打包、压缩、加密和发送等过程,同时需要考虑到网络质量、传输距离、协议类型等多方面的因素。

通信网络中的数据传输机制主要由以下几个关键要素构成:1.传输协议:传输协议是指数据传输时采用的通用规则和标准。

TCP/IP、UDP、HTTP等常见的传输协议是网络中常用的协议。

2.传输介质:传输介质是指数据传输所使用的物理媒介,如光纤、电缆、无线电波等。

不同的传输介质对于网络传输的速度和质量都有着重要的影响。

3.传输速度:传输速度是指在单位时间内可以传输的数据量。

对于大数据的高速传输,需要考虑传输速度是否符合预期要求。

4.传输安全:传输安全是指数据传输过程中保证数据安全不被未授权访问的机制。

数据加密和SSL协议是传输安全的两个重要要素。

5.传输稳定性:传输稳定性是指数据在传输过程中是否能够保证不出错,数据的完整性。

重要数据的传输往往需要采取冗余传输机制保证数据传输的稳定性。

二、现有的数据传输机制存在的问题虽然传输协议、传输介质等关键要素对于网络传输的效果有着重要的影响,但现有的数据传输机制还存在一些问题,主要包括以下几个方面:1.传输速度较慢:当前网络上数据传输速度不能满足传输大量数据的需求,尤其在跨区域传输中,数据传输速度更是被限制在一定速度之内。

2.传输安全性不够:由于网络技术的发展,很多黑客攻击手段已经变得非常高效,“劫持数据”和“中间人攻击”这些攻击方式已经十分常见,针对这类问题的解决方案也亟待优化。

手机与手机之间的信息传输流程过程分析

手机与手机之间的信息传输流程过程分析

手机与手机之间的信息传输流程过程分析下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!手机间信息传输流程的深度解析在数字化时代,手机已经成为了我们日常生活中的重要工具,而手机间的无线信息传输更是频繁且不可或缺。

计算机网络中的数据传输与路由

计算机网络中的数据传输与路由

计算机网络中的数据传输与路由在计算机网络中,数据传输和路由是至关重要的概念。

数据传输是指将数据从一个节点发送到另一个节点的过程,而路由则是决定数据在网络中的传输路径。

本文将探讨计算机网络中的数据传输和路由的基本原理和技术。

一、数据传输数据传输是计算机网络中的核心操作之一。

在网络中,数据以数据包的形式进行传输。

数据包是一种将数据划分成固定大小的块,并包含有关传输的控制信息的结构。

数据传输的过程可以分为以下几个步骤:1. 数据封装:在发送端,数据被封装成包括数据部分和控制信息部分的数据包。

控制信息包括源和目的地址等。

2. 数据传输:数据包通过网络传输。

在传输过程中,数据包经过多个网络设备,如路由器和交换机。

3. 数据接收:数据包到达目的地后,被解封,提取数据并进行处理。

在数据传输过程中,需要考虑网络传输的可靠性和效率。

传输可靠性是指数据在传输过程中能够被正确接收的能力。

为了实现传输可靠性,常用的技术包括错误检测和纠错编码。

传输效率是指在给定带宽和延迟条件下,网络能够传输的数据量。

为了提高传输效率,可以采用流控制和拥塞控制等技术。

二、路由路由是决定数据在网络中传输路径的过程。

在计算机网络中,数据可以通过多条路径传输,路由的目标是选择一条最佳路径。

路由的过程可以分为以下几个步骤:1. 路由发现:当一台主机发送数据时,需要确定数据包的目的地。

路由发现是指在网络中寻找目标主机或目标网络的过程。

常用的路由发现协议有静态路由和动态路由。

2. 路由选择:一旦找到目的地,就需要选择最佳的路径进行数据传输。

路由选择是根据一定的算法和指标,如距离、负载和速度等,从所有可能的路径中选择一条最佳路径。

3. 路由转发:一旦选择了最佳路径,数据将被发送到下一个节点。

在路由传输过程中,每个节点都会根据路由表进行转发决策。

实现有效的路由有助于提高网络的可靠性和性能。

常见的路由算法包括距离矢量路由算法和链路状态路由算法。

此外,网络中还存在多种路由协议,如RIP、OSPF和BGP等。

数据在网络7层中的传输过程

数据在网络7层中的传输过程

数据在⽹络7层中的传输过程1. OSI⽹络分层參考模型 ⽹络协议设计者不应当设计⼀个单⼀、巨⼤的协议来为全部形式的通信规定完整的细节。

⽽应把通信问题划分成多个⼩问题。

然后为每⼀个⼩问题设计⼀个单独的协议。

这样做使得每⼀个协议的设计、分析、时限和測试⽐較easy。

协议划分的⼀个主要原则是确保⽬标系统有效且效率⾼。

为了提⾼效率。

每⼀个协议仅仅应该注意没有被其他协议处理过的那部分通信问题;为了主协议的实现更加有效,协议之间应该可以共享特定的数据结构;同⼀时候这些协议的组合应该能处理全部可能的硬件错误以及其他异常情况。

为了保证这些协议⼯作的协同性,应当将协议设计和开发成完整的、协作的协议系列(即协议族),⽽不是孤⽴地开发每⼀个协议。

在⽹络历史的早期。

国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)共同出版了开放系统互联的七层參考模型。

⼀台计算机操作系统中的⽹络过程包含从应⽤请求(在协议栈的顶部)到⽹络介质(底部) ,OSI參考模型把功能分成七个分⽴的层次。

图2.1表⽰了OSI分层模型。

OSI七层參考模型 OSI模型的七层分别进⾏下⾯的操作: 第⼀层:物理层 负责最后将信息编码成电流脉冲或其他信号⽤于⽹上传输。

它由计算机和⽹络介质之间的实际界⾯组成,可定义电⽓信号、符号、线的状态和时钟要求、数据编码和传输数据⽤的连接器。

如最经常使⽤的RS-232规范、10BASE-T的曼彻斯特编码以及RJ-45就属于第⼀层。

全部⽐物理层⾼的层都通过事先定义好的接⼝⽽与它通话。

如以太⽹的附属单元接⼝(AUI),⼀个DB-15连接器可被⽤来连接层⼀和层⼆。

第⼆层:数据链路层 通过物理⽹络链路提供可靠的传输数据。

不同的数据链路层定义了不同的⽹络和协议特征,当中包含物理编址、⽹络拓扑结构、错误校验、帧序列以及流控。

物理编址(相相应的是⽹络编址)定义了设备在数据链路层的编址⽅式;⽹络拓扑结构定义了设备的物理连接⽅式。

计算机网络中的数据传输效率分析与优化

计算机网络中的数据传输效率分析与优化

计算机网络中的数据传输效率分析与优化在当今数字化时代,计算机网络已经成为人们生活中不可或缺的一部分。

我们每天都会通过计算机网络进行信息的互通,而数据传输效率的高低直接影响着我们网络使用的体验。

因此,对计算机网络中的数据传输效率进行分析与优化,对于提升网络性能和用户体验具有重要意义。

一、数据传输效率的定义与影响因素数据传输效率可以理解为在一定时间内,网络中可以传输的有效数据量。

它受到多方面因素的影响,主要包括以下几个方面:1. 带宽:带宽是指在单位时间内网络传输的数据量,通常用Mbps(兆比特每秒)来表示。

带宽越大,网络传输的数据量越多,因此带宽是决定数据传输效率的重要因素之一。

2. 延迟:延迟是指从数据发出到被接收的总时间,通常以毫秒为单位。

延迟可以分为传输延迟、处理延迟和排队延迟等不同阶段的延迟。

较大的延迟会导致数据传输效率下降,从而影响用户体验。

3. 丢包率:丢包率是指在传输过程中丢失的数据包数量占总数据包数量的比例。

网络中的丢包率过高会导致数据需要重新传输,进而影响传输效率和网络性能。

4. 数据压缩与加密:压缩和加密技术可以在一定程度上减小数据的传输量,提高传输效率。

但是,压缩和加密也会带来额外的处理时间和计算开销,因此需要权衡利弊。

二、数据传输效率优化策略为了提高计算机网络中的数据传输效率,可以采取以下一些优化策略:1. 提高带宽:通过增加网络带宽来提高数据传输效率。

可以采用升级网络设备、扩展带宽容量等措施来实现。

2. 减少延迟:通过使用更快的硬件设备、优化网络拓扑结构和配置、减少网络设备之间的跳数等方式来降低网络延迟。

3. 优化丢包率:采用流量控制、拥塞控制等策略来减少网络中的丢包现象,确保数据的有效传输。

4. 数据压缩与加密优化:选择合适的数据压缩和加密算法,尽量降低处理时间和计算开销,提高数据传输效率。

5. 运行时数据优化:对网络数据进行合理的优化处理,可以使用数据分段、合并小数据包、启用缓存等策略,提高数据传输效率。

计算机网络中的数据包的传输过程

计算机网络中的数据包的传输过程

计算机网络中的数据包的传输过程在计算机网络中,数据包传输过程是实现数据通信的核心环节之一。

数据包是由源节点发送到目标节点的数据单元,通过一系列的传输步骤和协议来完成传输。

本文将逐步介绍计算机网络中数据包传输的过程。

一、数据包的生成数据包的生成是数据传输的起始阶段。

当源节点发送数据时,操作系统将数据转化为数据包。

数据包一般包括一个报头和数据字段。

报头包含了目标地址、源地址、数据包序号、校验和等信息,用于标识和验证数据包。

二、数据包的封装在数据包生成后,需要将数据包进一步封装,以适合在网络中进行传输。

封装的过程通常包括添加物理地址、链路层地址和目标网络地址。

这些信息是数据包在网络中传输和路由的依据。

三、数据包的分组为了在网络中进行高效传输,数据包往往被分组。

分组的过程将数据包按照一定的规则和长度划分为多个片段,每个片段都打上报头,以便在目标节点重新组装。

分组可以提高数据在网络中的传输效率,减少传输延迟。

四、数据包的路由一旦数据包完成了分组,它将进入数据网络并开始通过路由器进行传输。

路由器是计算机网络中的关键设备,负责将数据包从源节点传输到目标节点。

路由器根据数据包的目标地址和路由表中的信息,选择合适的路径和下一跳路由器,以实现数据包的传输。

五、数据包的传输在数据包到达路由器后,路由器将根据目标地址和路由表的信息,将数据包发送给下一跳路由器。

这个过程是逐跳进行的,直到数据包抵达目标节点。

中间的路由器通过转发数据包实现了源节点到目标节点的连接。

六、数据包的接收和解封当数据包到达目标节点后,目标节点的操作系统将接收到数据包。

然后,目标节点将对数据包进行解封和还原操作,恢复数据原始状态。

解封的过程包括校验和验证、报头解析和数据字段还原。

七、数据包的处理接收节点的操作系统将对收到的数据包进行处理,根据需要进行相应的操作。

处理的方法可以是存储数据,进行数据处理和计算,或者调用相应的应用程序。

八、数据包的应答在数据包的传输过程中,源节点通常希望得到目标节点的应答,以确认数据传输的成功。

网络中数据传输过程的分析

网络中数据传输过程的分析

网络中数据传输过程的分析网络中的数据传输过程可以分为多个步骤,包括数据的拆包与封包、分片与重组、传输协议的选择与建立、数据的传输与接收等。

本文将对这些步骤进行详细分析。

首先,数据传输的第一步是拆包与封包。

在网络中,数据通常被切分成较小的数据包进行传输。

发送方首先将原始数据划分为适当的大小,并给每个数据包添加自己的标识符。

然后,这些数据包被封装到传输层的协议中,以便在网络中传输。

第二步是数据的分片与重组。

当数据包的大小超过网络传输的最大限制时,会将其分成更小的分片。

这些分片在传输过程中独立发送,然后在接收方重新组装成完整的数据包。

这样做是为了适应不同网络环境下的传输要求,确保数据能够成功传输。

接下来是选择和建立传输协议。

在网络中,有多种传输协议可供选择,如TCP、UDP等。

TCP(Transmission Control Protocol)是一种可靠的传输协议,在传输过程中能够保证数据的可靠性和有序性。

UDP(User Datagram Protocol)是一种不可靠的传输协议,它能够提供更快速的传输速度,但无法保证数据的完整性和有序性。

根据实际需求,选择合适的传输协议。

然后是数据的传输与接收。

在数据传输过程中,发送方将数据包通过物理介质发送到接收方。

接收方通过物理介质接收数据包,并根据协议解析数据包,将其传递到应用层进行处理。

如果传输过程中出现错误或丢失,接收方会向发送方发送相应的控制信息,以便重新传输丢失或错误的数据包。

在数据传输过程中,还需要考虑网络的拥塞控制。

网络中的流量有时会超过网络的容量,导致网络拥塞。

为了解决这个问题,网络中会采用一些拥塞控制的算法,如TCP中的拥塞控制算法,来减缓数据的发送速度以避免网络拥塞。

此外,网络中的数据传输还需要进行差错检测和纠正。

在数据传输过程中,由于各种原因,数据包可能会产生错误。

为了解决这个问题,通常会在数据包中添加校验码,接收方在接收到数据包后会对校验码进行检验,以判断数据包是否出现了错误,并进行相应的纠正操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络中数据传输过程的分析我们每天都在使用互联网,我们电脑上的数据是怎么样通过互联网传输到到另外的一台电脑上的呢?把自己的理解写一下,可能有很多细节还没有能的很清楚!希望在以后可以使之更加的完善!有不对的地方还请指正.我们知道现在的互联网中使用的TCP/IP协议是基于,OSI(开放系统互联)的七层参考模型的,(虽然不是完全符合)从上到下分别为应用层表示层会话层传输层网络层数据链路层和物理层。

其中数据链路层又可是分为两个子层分别为逻辑链路控制层(Logic Link Control,LLC )和介质访问控制层((Media Access Control,MAC )也就是平常说的MAC层。

LLC对两个节点中的链路进行初始化,防止连接中断,保持可靠的通信。

MAC层用来检验包含在每个桢中的地址信息。

在下面会分析到。

还要明白一点路由器是在网路层的,而网卡在数据链路层。

我们知道,ARP(Address Resolution Protocol,地址转换协议)被当作底层协议,用于IP地址到物理地址的转换。

在以太网中,所有对IP的访问最终都转化为对网卡MAC地址的访问。

如果主机A的ARP列表中,到主机B的IP地址与MAC地址对应不正确,由A发往B数据包就会发向错误的MAC地址,当然无法顺利到达B,结果是A与B根本不能进行通信。

首先我们分析一下在同一个网段的情况。

假设有两台电脑分别命名为A和B,A需要相B发送数据的话,A主机首先把目标设备B的IP地址与自己的子网掩码进行“与”操作,以判断目标设备与自己是否位于同一网段内。

如果目标设备在同一网段内,并且A没有获得与目标设备B的IP地址相对应的MAC地址信息,则源设备(A)以第二层广播的形式(目标MAC地址为全1)发送ARP请求报文,在ARP请求报文中包含了源设备(A)与目标设备(B)的IP地址。

同一网段中的所有其他设备都可以收到并分析这个ARP请求报文,如果某设备发现报文中的目标IP地址与自己的IP地址相同,则它向源设备发回ARP响应报文,通过该报文使源设备获得目标设备的MAC地址信息。

为了减少广播量,网络设备通过ARP表在缓存中保存IP与MAC地址的映射信息。

在一次ARP 的请求与响应过程中,通信双方都把对方的MAC地址与IP地址的对应关系保存在各自的ARP表中,以在后续的通信中使用。

ARP表使用老化机制,删除在一段时间内没有使用过的IP与MAC地址的映射关系。

一个最基本的网络拓扑结构:如果中间要经过交换机的话,根据交换机的原理,它是直接将数据发送到相应端口,那么就必须保有一个数据库,包含所有端口所连网卡的MAC地址。

它通过分析Ethernet包的包头信息(其中包含不原MAC地址,目标MAC地址,信息的长度等信息),取得目标B的MAC地址后,查找交换机中存储的地址对照表,(MAC地址对应的端口),确认具有此MAC地址的网卡连接在哪个端口上,然后将数据包发送到这个对应的端口,也就相应的发送到目标主机B上。

这样一来,即使某台主机盗用了这个IP地址,但由于他没有这个MAC地址,因此也不会收到数据包。

现在我们讨论两台不在同一个网段中的主机,假设网络中要从主机PC-A发送数据包PAC到PC-C主机中,如下图所示:路由器A ===================路由器B| INTERNET || |交换机A 交换机B| | | || | | |PC-A PC-B PC-C PC-DPC-A并不需要获取远程主机(PC-C)的MAC地址,而是把IP分组发向缺省网关,由网关IP分组的完成转发过程。

如果源主机(PC-A)没有缺省网关MAC地址的缓存记录,则它会通过ARP协议获取网关的MAC地址,因此在A 的ARP表中只观察到网关的MAC地址记录,而观察不到远程主机的MAC地址。

在以太网(Ethernet)中,一个网络设备要和另一个网络设备进行直接通信,除了知道目标设备的网络层逻辑地址(如IP地址)外,还要知道目标设备的第二层物理地址(MAC地址)。

ARP协议的基本功能就是通过目标设备的IP地址,查询目标设备的MAC地址,以保证通信的顺利进行。

数据包在网络中的发送是一个及其复杂的过程,上图只是一种很简单的情况,中间没有过多的中间节点,其实现实中只会比这个更复杂,但是大致的原理是一致的。

(1)PC-A要发送数据包到PC-C的话,如果PC-A没有PC-C的IP地址,则PC-A首先要发出一个dns的请求,路由器A或者dns解析服务器会给PC-A回应PC-C的ip地址,这样PC-A关于数据包第三层的IP地址信息就全了:源IP 地址:PC-A,目的ip地址:PC-C。

(2)接下来PC-A要知道如何到达PC-C,然后,PC-A会发送一个arp的地址解析请求,发送这个地址解析请求,不是为了获得目标主机PC-C的MAC地址,而是把请求发送到了路由器A中,然后路由器A中的MAC地址会发送给源主机PC-A,这样PC-A的数据包的第二层信息也全了,源MAC地址:PC-A的MAC 地址,目的MAC地址:路由器A的MAC地址,(3)然后数据会到达交换机A,交换机A看到数据包的第二层目的MAC地址,是去往路由器A的,就把数据包发送到路由器A,路由器A收到数据包,首先查看数据包的第三层ip目的地址,如果在自己的路由表中有去往PC-C的路由,说明这是一个可路由的数据包。

(4)然后路由器进行IP重组和分组的过程。

首先更换此数据包的第二层包头信息,路由器PC-A到达PC—C要经过一个广域网,在这里会封装很多广域网相关的协议。

其作用也是为了找下一阶段的信息。

同时对第二层和第三层的数据包重校验。

把数据经过Internet发送出去。

最后经过很多的节点发送到目标主机PC_C中。

现在我们想一个问题,PC-A和PC-C的MAC地址如果是相同的话,会不会影响正常的通讯呢!答案是不会影响的,因为这两个主机所处的局域网被广域网分隔开了,通过对发包过程的分析可以看出来,不会有任何的问题。

而如果在同一个局域网中的话,那么就会产生通讯的混乱。

当数据发送到交换机是,这是的端口信息会有两个相同的MAC地址,而这时数据会发送到两个主机上,这样信息就会混乱。

因此这也是保证MAC地址唯一性的一个理由。

知识补充:(1)网关的含义:是说这样一种设备:如果主机要发包,就往这个设备发送。

也就是说此设备要有路由功能或有去往外部网路的路径。

在实际网络里,网关一般由路由器或server充当。

(2)ARP(Address Resolution Protocol)是地址解析协议,ARP是一种将IP地址转化成物理地址的协议。

从IP地址到物理地址的映射有两种方式:表格方式和非表格方式。

ARP 具体说来就是将网络层(IP层,也就是相当于OSI的第三层)地址解析为数据连接层(MAC层,也就是相当于OSI的第二层)的MAC 地址。

ARP协议是通过IP地址来获得MAC地址的。

(3)网络中需要唯一的MAC地址的理由:(a)IP地址的分配是根据网络的拓朴结构,而不是根据谁制造了网络设置。

若将高效的路由选择方案建立在设备制造商的基础上而不是网络所处的拓朴位置基础上,这种方案是不可行的。

(b)当存在一个附加层的地址寻址时,设备更易于移动和维修。

例如,如果一个以太网卡坏了,可以被更换,而无须取得一个新的IP地址。

如果一个IP主机从一个网络移到另一个网络,可以给它一个新的IP地址,而无须换一个新的网卡。

(c)无论是局域网,还是广域网中的计算机之间的通信,最终都表现为将数据包从某种形式的链路上的初始节点出发,从一个节点传递到另一个节点,最终传送到目的节点。

数据包在这些节点之间的移动都是由ARP,负责将IP地址映射到MAC 地址上来完成的。

(4)标识网络中的一台计算机,一般至少有三种方法,最常用的是域名地址、IP 地址和MAC地址,分别对应应用层、网络层、物理层。

网络管理一般就是在网络层针对IP地址进行管理,但由于一台计算机的IP地址可以由用户自行设定,管理起来相对困难,MAC地址一般不可更改,所以把IP地址同MAC地址组合到一起管理就成为常见的管理方式。

交换机和路由器的主要区别:(1)、二者的工作层次不同最初的的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。

由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。

(2)、二者的据转发所依据的对象不同交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。

而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。

IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。

MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。

而IP地址则通常由网络管理员或系统自动分配。

(3)、传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。

连接到路由器上的网段会被分配成不同的广播域,广播数据不会穿过路由器。

虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。

(4)路由器提供了防火墙的服务,而交换机则没有路由器仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。

MAC地址的安全问题:我们为了防止IP地址被盗用,就通过简单的交换机端口绑定(端口的MAC表使用静态表项),可以在每个交换机端口只连接一台主机的情况下防止修改MAC 地址的盗用,如果是三层设备还可以提供:交换机端口/IP/MAC 三者的绑定,防止修改MAC的IP盗用。

一般绑定MAC地址都是在交换机和路由器上配置的。

相关文档
最新文档