高中化学论文:原电池电极反应方程式的书写
原电池电极反应式的书写

离子方程式的书写也可借鉴这一方法。
【 责任编辑 张桂英 】
l 到 du a i a t n s ac 一 E c t n Pr a d Re e h o I ac i ce r / I
盈
丑 翌
式右边的 O 呲 时应写成 H 。故正极反应写作: H , 0
0 2+4 H +4 一= H= e 2 O
恒——显然方程式左边有 4 个过剩的负电荷 ( 包括两个 电子所带的两个负电荷) 为了使方程式两边的净电荷守 。
恒通常的做法有两种 : 一是在方程式的左边补充 H离子 , +
此时的总反应也应写作 :C 3H 3 220+H0 2HO +0=C 2 2 4
三、 查
相对应的在右边补充 H0 Z是在方程式的右边补充 O 一 2; . H 离子 , 相对应的在左边补充 H0 2。到底选择哪一种方案应
充分考虑电解质溶液的环境 , 因为电解质溶液显酸性 , 所
电极反应式书写的是否正确应仔细进行检查, 检查时
需充分考虑书写过程的各项注意事项。
总之 ,书写电极反应式共有以下几个步骤 :一找 、 二
正极 :g +e 2 g A 2 2一 A 0 =
【 示例3负极:HO 一e C 3 】 C H 6 = 0- 一 z
正极 :2 10 4-4 H 0+ { + e 0 一 22 =
有时, 燃料电池还可使用强酸性电解质溶液。此时电
极反应式的书写会因电解质的不同而发生改变。 具体书写
如下 :
写、 三查。“ 是整个过程的基础;写” 找” “ 是整个过程的关
以选择第一种方案在方程式的左边补充 4 H离子 , 个 + 而 相应的在方程式 的右边补充 2 H0分子。故正极反应 个 :
高中化学之原电池电极反应式的书写

高中化学之原电池电极反应式的书写一、首先判断原电池的正负极(1)负极:一般来说,较活泼的金属失去电子,为原电池的负极,这时负极材料本身被氧化,其电极反应式有两种情况:①负极金属失去电子后生成的金属阳离子不与电解质溶液的成分反应,此时的电极反应式可表示为:M-ne-=Mn+;②负极金属失去电子后生成的金属阳离子与电解质溶液的成分反应,此时的电极反应要将金属失去电子后的反应、金属阳离子与电解质溶液的反应叠加在一起,如铅蓄电池的负极反应为:Pb + SO42--2e-=PbSO4。
还有一种情况是负极材料本身不反应,如燃料电池,在书写负极反应式时,要将燃料失电子的反应极其产物与电解质溶液中的反应叠加在一起书写,如:H2-O2(KOH溶液)电池的负极反应为:H2 + 2OH--2e-=2H2O。
(2)正极:先判断在正极发生反应的物质,其电极反应式有两种情况:①当负极材料与电解质溶液能发生自发的化学反应时,在正极上发生电极反应的物质是电解质溶液中的某种微粒;②当负极材料与电解质溶液不能发生自发的化学反应时,在正极上发生电极反应的物质是溶解在电解质溶液中的O2。
后再根据具体情况写出正极反应式,在书写时也要考虑正极反应产物是否与电解质溶液反应的问题,若反应也要书写叠加后的反应式。
二、根据原电池反应书写电极反应式(1)找出发生氧化反应和还原反应的物质,确定正负极产物。
(2)利用电荷守恒分别写出电极反应式。
(3)验证:两个电极反应式相加所得式子和原化学方程式相同,则书写正确。
三、需要注意的问题(1)在正极上,若是电解质溶液中的某种离子被还原,无论该离子是强电解质提供的,还是弱电解质提供的,一律写成离子符号;而在原电池反应式中,要遵循离子方程式的书写规则,只有易溶的强电解质才用离子符号来表示。
(2)根据金属的活泼性判断原电池的正负极不是绝对的,还要看电解质溶液,如镁片和铝片插入氢氧化钠溶液中组成的原电池虽然镁比铝活泼,但由于铝和氢氧化钠溶液反应失去电子被氧化,因而铝是负极,此时的电极反应为:负极:2Al-6e-=== 2Al 3+正极:6H2O +6e-=== 6OH-+3H2↑或2Al3+ +2H2O +6e-+ 2OH-=== 2AlO2-+ 3H2↑再如,将铜片和铝片同时插入浓硝酸中组成原电池时,由于铝在浓硝酸中发生了钝化,铜却失去电子是原电池的负极被氧化,此时的电极反应为:负极:Cu-2e-=== Cu2+正极:2NO3-+ 4H+ +2e-=== 2NO2↑+2H2O(3)要注意电解质溶液的酸碱性在正负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。
原电池电极反应式的书写

另外
还有许多新型燃料电池是在非水溶剂中进行 的,这一类反应的还原产物的阴离子通常和 电解质在熔融状态下电离出来的阴离子相同, 电极反应式两端原子个数或电荷不等,一般 用阴离子来配平。
例如:
1998年希腊亚里士多德大学的Marnellos和 Stoukides采用高质子导电性的SCY陶瓷(能 传导H+),实现了高温常压下高转化率的电 化学合成氨。其装置如图。其正极的电极反应 式为:
原电池电极反应式的书写
原电池反应所依托的化学反应 原理是氧化还原反应,负极反 应是氧化反应,正极反应是还 原。
方法归纳如下:
(1原反应 (3)氧化反应在负极发生,还原 反应 在正极发生。
注意电解质(介质) 参与的反应。 电极反应也遵循质量守恒、电 子守恒、及正负 两极得失电 子相等的规律。
燃料电池电极反应式的书写
2、利用电荷守恒、原子守恒
写出燃料电池负极的电极反应 式。
如给定了总反应式用总反应式减 正极反应式得负极反应式。
例1 写出氢氧燃料电池的电极反应 式和总反应式(电解质为KOH溶液) 正极(碳):
O2+2H2
-= O+4e
4OH
负极(碳):
2H2+4OH-+4e- = 4H2O
燃料电池电极反应式的书写
一般的燃料电池大多是可燃物与 氧气及电解质溶液共同组成的原 电池。
燃料电池电极反应式的书写
1、可燃物在电池负极发生反应,O2 在原电池正极发生反应。 即正极总是O2得电子发生还原反应
正极反应式为:
电解质为碱性或中性时
O2+ 4e- + 2H2O = 4OH-
电解质为酸性时: 2+ 4e- +4H+=4H2O O
原电池电极反应式的书写技巧(精)

原电池电极反应式的书写技巧对于原电池的初学者,电极反应式的书写是一大难点,如何较轻松的解决这一难点,关键是掌握书写电极反应式的书写技巧。
根据原电池原理可得:负极:失电子 M M n+ + ne-)正极:得电子 N + me- N m-)要把电极反应式准确写出,最关键的是把握准总反应,我们可以通过总反应进一步写出电极反应式,即通总反应判断出发生氧化和还原的物质(原电池的条件之一就是自发的发生氧化还原反应),将氧化与还原反应分开,结合反应环境,便可得到两极反应。
一、原电池电极反应式书写技巧1、凡有金属参与的原电池反应一般较活泼金属做负极:如:⑴Mg 、Al 在酸性(非氧化性酸)环境中构成原电池活泼金属做负极解析:在酸性环境中Mg 比 Al活泼,其反应实质为Mg 的析氢蚀:∴负极:Mg → Mg+2e正极:2H +2e → H2↑总反应式:Mg+2H=Mg+H2↑铜锌原电池就是这样的原理。
(2)较活泼金属不一定做负极,要看哪种金属自发发生反应:如:Mg 、Al 在碱性环境中构成的原电池,相对不活泼的Al 做负极解析:在碱性环境中Al 比 Mg活泼,其反实质为Al 与碱溶液的反应:2Al+2OH+6H2O=2AlO2+3H2↑+4H2O∴负极:2Al + 8OH→2[Al(OH )4] +6e-正极:6H 2O+6e→ 3H2↑+6OH-3+3+-注意:Al-3e =Al,此时Al 在碱性环境不能稳定存在,会与OH (过量)结合转化-为[Al(OH )4]。
再如:Fe 、Cu 常温下在浓H 2SO 4、HNO 3溶液中构成的原电池也是如此。
2、燃料电池:(1)关键是负极的电极反应式书写,因为我们知道,一般的燃料电池大多是可燃性物质与氧气及电解质溶液共同组成的原电池,虽然可燃性物质与氧气在不同的电极反应,但其总反应方程式应该是可燃物在氧气中燃烧。
当然由于涉及电解质溶液,所以燃烧产物可能还要与电解质溶液反应,再写出燃烧产物与电解质溶液反应的方程式,从而得到总反应方程式。
高中常见原电池电极反应式的书写

高中常见的原电池电极反应式的书写(十年高考)书写过程归纳:列物质,标得失(列出电极上的物质变化,根据价态变化标明电子得失)。
选离子,配电荷(根据介质选择合适的离子,配平电荷,使符合电荷守)。
巧用水,配个数(通常介质为水溶液,可选用水配平质量守恒)一次电池1、伏打电池:(负极—Zn、正极—Cu、电解液—H2SO4)负极:Zn–2e-==Zn2+(氧化反应) 正极:2H++2e-==H2↑ (还原反应)离子方程式Zn + 2H+ == Zn2+ +H2↑2、铁碳电池:(负极—Fe、正极—C、电解液H2CO3 弱酸性)负极:Fe–2e-==Fe2+(氧化反应) 正极:2H+ +2e- ==H2↑ (还原反应)离子方程式Fe +2H+== Fe2+ + H2↑(析氢腐蚀)3、铁碳电池:(负极—Fe、正极—C、电解液中性或碱性)负极:2Fe–4e-==2Fe2+(氧化反应) 正极:O2 + 4e- +2H2O ==4-OH(还原反应)化学方程式2Fe+O2+2H2O==2Fe(OH)2 (吸氧腐蚀) 4Fe(OH)2+O2+2H2O==4Fe(OH)3 2Fe(OH)3==Fe2O3 +3 H2O (铁锈的生成过程)4.铝镍电池:(负极—Al、正极—Ni 电解液NaCl溶液、O2)负极:4Al–12e-==4Al3+ (氧化反应) 正极:3O2+12e- +6H2O==12-OH(还原反应)化学方程式4Al+3O2+6H2O==4Al(OH)3 (海洋灯标电池)5、普通锌锰干电池:(负极—Zn、正极—C 、电解液NH4Cl、MnO2的糊状物)负极:Zn–2e-==Zn2+ (氧化反应) 正极:2NH4++2e- +2MnO2==2NH3+Mn2O3+H2O (还原反应) 化学方程式Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3↑+H2O6、碱性锌锰干电池:(负极—Zn、正极—C、电解液KOH 、MnO2的糊状物)负极:Zn–2e- + 2OH-== Zn(OH)2(氧化反应)正极:2MnO2 + 2e- + 2H2O ==2MnOOH + 2OH-(还原反应)化学方程式Zn +2MnO2 +2H2O == Zn(OH)2+ 2MnOOH7、银锌电池:(负极—Zn、正极--Ag2O、电解液NaOH )负极:Zn–2e- +2OH–== Zn(OH)2 (氧化反应)正极:Ag2O + 2e- + H2O == 2Ag + 2OH-(还原反应)化学方程式Zn + Ag2O + H2O == Zn(OH)2 + 2Ag8、铝–空气–海水(负极--铝、正极--石墨、铂网等惰性材料、电解液--海水)负极:4Al-12e-==4Al3+ (氧化反应)正极:3O2 + 12e-+ 6H2O==12OH-(还原反应)总反应式为:4Al+3O2+6H2O===4Al(OH)3(铂网增大与氧气的接触面)9、镁---铝电池(负极--Al、正极--Mg 电解液KOH)负极(Al):2Al- 6e- + 8OH–=2AlO2–+ 4H2O (氧化反应)正极(Mg):6H2O + 6e- =3H2↑+ 6OH–(还原反应)化学方程式:2Al + 2OH–+ 2H2O =2AlO2–+ 3H2↑10、锂电池一型:(负极--金属锂、正极--石墨、电解液LiAlCl4 -SOCl2)负极:8Li-8e-=8 Li + (氧化反应)正极:3SOCl2+8e-=SO32-+2S+6Cl-(还原反应)化学方程式8Li+3SOCl2 === Li2SO3 +6LiCl +2S二次电池(又叫蓄电池或充电电池)1、铅蓄电池:(负极—Pb 正极—PbO2 电解液—浓硫酸)放电时负极:Pb-2e-+SO42-=PbSO4(氧化反应)正极:PbO2+2e-+SO42-+4H+=PbSO4+2H2O (还原反应) 充电时阴极:PbSO4 + 2e-== Pb+ SO42-(还原反应)阳极:PbSO4-2e- + 2H2O == PbO2 + SO42-+ 4H+(氧化反应)放电2PbSO4+2H2O总化学方程式Pb+PbO2 + 2H2SO4充电2、铁--镍电池:(负极-- Fe 、正极—NiO 2、电解质溶液为KOH溶液)放电时负极:Fe-2e—+ 2OH– == Fe (OH)2 (氧化反应)正极:NiO2+ 2e—+ 2H2O == Ni(OH)2 + 2OH–(还原反应) 充电时阴极:Fe (OH)2 + 2e—== Fe + 2OH–(还原反应)阳极:Ni(OH)2-2e—+ 2OH– == NiO 2 + 2H2O (氧化反应) 总化学方程式Fe + NiO 2+ 2H2O放电Fe (OH)2 + Ni(OH)23、LiFePO4电池(正极—LiFePO4,负极—石墨,含Li+导电固体为电解质)放电时负极:Li -e— ==Li +(氧化反应)正极:FePO4 + e—+ Li+ == LiFePO4 (还原反应)充电时:阴极:Li+ + e—== Li (还原反应)阳极:LiFePO4-e—== FePO4 + Li+(氧化反应)总化学方程式FePO4 + Li 放电LiFePO44、镍--镉电池(负极--Cd、正极—NiOOH、电解质溶液为KOH溶液)放电时负极:Cd-2e—+ 2OH– == Cd(OH)2 (氧化反应) Ni(OH)2+Cd(OH)2正极:2NiOOH + 2e—+ 2H2O == 2Ni(OH)2+ 2OH–(还原反应)充电时阴极:Cd(OH)2 + 2e—== Cd + 2OH–(还原反应)阳极:2Ni(OH)2-2e—+ 2OH– == 2NiOOH + 2H2O (氧化反应) 总化学方程式Cd + 2NiOOH + 2H2O放电Cd(OH)2 + 2Ni(OH)25、氢--镍电池:(负极-LaNi5储氢合金、正极—NiOOH、电解质KOH+LiOH)放电时负极:LaNi5H 6-6e—+ 6OH–== LaNi5 + 6H2O (氧化反应)正极:6NiOOH +6e—+ 6H2O ==6 Ni(OH)2 + 6OH–(还原反应) 充电时阴极:LaNi5 +6e—+ 6H2O== LaNi5H 6+ 6OH–(还原反应)阳极: 6 Ni(OH)2 -6e—+ 6OH–== 6NiOOH + 6H2O (氧化反应) 总化学方程式LaNi5H 6 + 6NiOOH 放电LaNi5 + 6Ni(OH)26、高铁电池:(负极—Zn、正极---石墨、电解质为浸湿固态碱性物质)放电时负极:3Zn -6e- + 6OH–== 3Zn(OH)2 (氧化反应)正极:2FeO42—+6e-+ 8H2O == 2Fe (OH)3 + 10OH–(还原反应)充电时阴极:3Zn(OH)2 + 6e- == 3Zn + 6OH–(还原反应)阳极:2Fe(OH)3-6e-+ 10OH–== 2FeO42—+ 8H2O (氧化反应)总化学方程式3Zn + 2K2FeO4 + 8H2O 放电3Zn(OH)2 + 2Fe(OH)3 + 4KOH7、锂电池二型(负极LiC6、正极含锂的二氧化钴LiCoO2、充电时LiCoO2中Li被氧化,Li+还原以Li原子形式嵌入电池负极材料碳C6中,以LiC6表示)放电时负极: LiC6 –xe- =Li(1-x)C6 + x Li+ (氧化反应)正极:Li(1-x)CoO2 + xe- + x Li+ == LiCoO2(还原反应)充电时阴极:Li(1-x)C6+ xe-+ x Li+ =LiC6(还原反应)阳极:LiCoO2 –xe-=Li(1-x)CoO2 + x Li+(氧化反应)总反应方程式Li(1-x)CoO2 + LiC6 放电LiCoO2 + Li(1-x)C6注意:可充电电池充电时与电源的连接可充电电池用完后充电时,原电池的负极与外电源的负极相连,原电池的正极与外电源的正极相连。
原电池电极反应方程式的书写

[ 解析 ]
电解质为稀 H2SO4 时, Mg 和 Al 都能与稀
H2SO4 反应,但 Mg 比 Al 活泼,所以, Mg 作负极, Al 作正
极,电极反应式为 负极:Mg-2e-===Mg2+, 正极:2H++2e-===H2↑。 电解质为浓NaOH溶液时,Mg不能与浓NaOH溶液反
应,而 Al 为两性金属,能与浓 NaOH 溶液反应,所以 Al 为
负极,Mg为正极。 负极反应式为Al+4OH--3e-===AlO2-+2H2O, 正极反应式为2H2O+2e-===H2↑+2OH-。
练习、将铜片和铝片用导线相连,分别同时插入稀H2SO4和浓HNO3
中,写出两池的电极反应式。 解析:在稀H2SO4作电解质溶液的原电池中,较活泼的铝被 氧化作负极,铜作正极。其电极反应为:
例3
1991年,我国首创以 Al、空气、海水为原料组成的新型
电池,用作航海标志灯。这种海水电池的能量比干电池高 20 ~ 50 倍,试写出该电池的电极反应式。 [ 解析 ] 此电池是在海水中性环境中通过 Al 吸氧而建立起来
的。其负极反应式为Al-3e-===Al3+,
正极反应式为2H2O+O2+4e-===4OH-。
Ag2O+H2O+2e-===2Ag+2OH-。
②在酸性溶液中加H+(2H++O2-===H2O) 例如:铅蓄电池在放电时的总反应式为 Pb+PbO2+2H2SO4===2PbSO4+2H2O, 其正极反应式为 PbO2+SO42-+4H++2e-===PbSO4+2H2O。
3)、中性吸氧反应生碱原则
例如:铅蓄电池以H2SO4为电解质溶液,其充电时,总反应式
为2PbSO4+2H2O===Pb+PbO2+2H2SO4, 其阳极反应式PbSO4+2H2O-2e-===PbO2+SO42-+4H+。
【高中化学】原电池电极反应式书写!

【高中化学】原电池电极反应式书写!对于原电池而言,有负极正极之分。
正极:得到电子的极,发生得电子的反应;负极:失去电子的极,发生失电子的反应。
1.铝?镍电池(负极?al,正极?ni,电解液?nacl溶液、o2)负极:4al-12e-===4al3+;正极:3o2+6h2o+12e-===12oh-;总反应式:4al+3o2+6h2o===4al(oh)3。
2.镁?铝电池(负极?al,正极?mg,电解液?koh溶液)负极:2al+8oh--6e-===2alo2-+4h2o;正极:6h2o+6e-===3h2↑+6oh-;总反应离子方程式:2al+2oh-+2h2o===2alo+3h2↑。
3.锂电池一型(负极?li,正极?石墨,电解液?lialcl4?socl2)未知电池总反应式:4li+2socl2===so2↑+4licl+s。
试写出正、负极反应式:负极:4li-4e-===4li+;正极:2socl2+4e-===so2↑+s+4cl-。
4.铁?镍电池(负极?fe,负极?nio2,电解液?koh溶液)已知fe+nio2+2h2o放电充电fe(oh)2+ni(oh)2,则:负极:fe-2e-+2oh-===fe(oh)2;正极:nio2+2h2o+2e-===ni(oh)2+2oh-。
阴极:fe(oh)2+2e-===fe+2oh-;阳极:ni(oh)2-2e-+2oh-===nio2+2h2o。
5.lifepo4电池(负极?lifepo4,负极?li,含li+导电液态为电解质)已知fepo4+li放电充电lifepo4,则负极:li-e-===li+;正极:fepo4+li++e-===lifepo4。
阴极:li++e-===li;阳极:lifepo4-e-===fepo4+li+。
6.高铁电池(负极?zn,负极?石墨,电解质为淋湿的固态碱性物质)已知:3zn+2k2feo4+8h2o放电充电3zn(oh)2+2fe(oh)3+4koh,则:负极:3zn-6e-+6oh-===3zn(oh)2;正极:2feo42-+6e-+8h2o===2fe(oh)3+10oh-。
高中常见的原电池电极反应式的书写

⾼中常见的原电池电极反应式的书写⾼中常见的原电池电极反应式的书写书写过程归纳:列物质,标得失(列出电极上的物质变化,根据价态变化标明电⼦得失)。
选离⼦,配电荷(根据介质选择合适的离⼦,配平电荷,使符合电荷守)。
巧⽤⽔,配个数(通常介质为⽔溶液,可选⽤⽔配平质量守恒)书写电极反应式应注意以下⼏点1.电极反应是⼀种离⼦反应,遵循书写离⼦反应的所有规则(如“拆”、“平”);2.将两极反应的电⼦得失数配平后,相加得到总反应,总反应减去⼀极反应即得到另⼀极反应;3.负极失电⼦所得氧化产物和正极得电⼦所得还原产物,与溶液的酸碱性有关(如+4价的C在酸性溶液中以CO2形式存在,在碱性溶液中以CO32–形式存在);4.溶液中不存在O2–:在酸性溶液中它与H+结合成H2O、在碱性或中性溶液中它与⽔结合成OH–。
⼀次电池1、伏打电池:(负极—Zn、正极—Cu、电解液—H2SO4)总离⼦⽅程式负极:正极:2、铁碳电池:(负极—Fe、正极—C、电解液H2CO3 弱酸性) (析氢腐蚀)总离⼦⽅程式负极:正极:3、铁碳电池:(负极—Fe、正极—C、电解液中性或碱性) (吸氧腐蚀)总化学⽅程式:负极:正极:4.铝镍电池:(负极—Al、正极—Ni 电解液NaCl溶液、O2)总化学⽅程式:负极:正极:5、普通锌锰⼲电池:(负极—Zn、正极—C 、电解液NH4Cl、MnO2的糊状物)总化学⽅程式:Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3↑+H2O负极:正极:6、碱性锌锰⼲电池:(负极—Zn、正极—C、电解液KOH 、MnO2的糊状物)总化学⽅程式:Zn +2MnO2 +2H2O == Zn(OH)2+2 MnOOH负极:正极:7、银锌电池:(负极—Zn、正极--Ag2O、电解液NaOH )总化学⽅程式:负极:正极:8、铝–空⽓–海⽔(负极--铝、正极--⽯墨、铂⽹等能导电的惰性材料、电解液--海⽔)总反应式为:9、镁---铝电池(负极--Al、正极--Mg 电解液KOH)化学⽅程式:负极:正极:10、锂电池⼀型:(负极--⾦属锂、正极--⽯墨、电解液LiAlCl4 -SOCl2)化学⽅程式8Li+3SOCl2 === Li2SO3 +6LiCl +2S负极:正极:⼆次电池(⼜叫蓄电池或充电电池)1、铅蓄电池:(负极—Pb 正极—PbO 2 电解液— 浓硫酸)总化学⽅程式放电时负极:正极:2、铁--镍电池:(负极-- Fe 、正极—NiO 2、电解质溶液为KOH 溶液)总化学⽅程式 Fe + NiO 2+ 2H 2O放电 Fe (OH)2 + Ni(OH)2 放电时负极:正极:3、LiFePO 4电池(正极—LiFePO 4,负极—⽯墨,含Li +导电固体为电解质)总化学⽅程式 FePO 4 + Li 充电放电LiFePO 4放电时负极:正极:4、镍--镉电池(负极--Cd 、正极—NiOOH 、电解质溶液为KOH 溶液)总化学⽅程式 Cd + 2NiOOH + 2H 2O 放电Cd(OH)2 + 2Ni(OH)2放电时正极:5、氢--镍电池:(负极-LaNi 5储氢合⾦、正极—NiOOH 、电解质KOH+LiOH )总化学⽅程式 LaNi 5H 6 + 6NiOOH 放电LaNi 5 + 6Ni(OH)2放电时正极:6、⾼铁电池:(负极—Zn 、正极---⽯墨、电解质为浸湿固态碱性物质)总化学⽅程式 3Zn + 2K 2FeO 4 + 8H 2O 充电放电3Zn(OH)2 + 2Fe(OH)3 + 4KOH放电时正极:燃料电池解决此类问题必须抓住⼀点:燃料电池反应实际上等同于燃料的燃烧反应,但要特别注意介质对产物的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原电池电极反应方程式的书写
原电池与其他的能源相比有许多的优点,如能量转换率高,供能稳定可靠;可制成各种形状大小,不同容量、电压的电池及电池组;使用方便、易于维护,是现代生产、生活、国防中大量使用的一种能源。
正是由于这些原因,高考关于原电池的考题频频出现,电极反应方程式的书写更是考查的重点。
分析近年的高考试题,电极反应方程式的书写主要有两大类型:一是根据题给电池反应方程式书写;二是根据题意文字叙述书写。
下面就结合2020年高考试题分别说明这两种情况下电极反应方程式的书写。
一、根据题给电池反应方程式书写
例1(07天津卷13)天津是我国研发和生产锂离子电池的重要基地。
锂离子电池正极材料是含锂的二氧化钴(LiCoO2),充电时,LiCoO2中Li被氧化,Li+迁移并以原子形式嵌入电池负极材料碳(C6)中,以LiC6表示。
电池反应为放电LiCoO2+C6,下列说法正确的是()
CoO2+LiC6
充电
A.充电时,电池的负极反应为LiC6-e-=Li++C6
B.放电时,电池的正极反应为CoO2+Li++e-=LiCoO2
C.羧酸、醇等含活泼氢的有机物可用作锂离子电池的电解质
D.锂离子电池的比能量(单位质量释放的能量)低
解析:可充电电池放电时发生原电池反应,两个电极称为正、负极;充电时发生电解反应,两个电极称阴、阳极。
该充电电池放电时:CoO2+LiC6=LiCoO2+C6 ,B选项就是考查原电池电极反应方程式的书写。
首先分析元素化合价的变化(如果化合价确定较难,就要充分利用题给信息)根据题意:充电时,LiCoO2中Li被氧化,Li+迁移并以原子形式嵌入电池负极材料碳(C6)中,以LiC6表示。
可知放电时CoO2中+4价的Co变为LiCoO2中+3价的Co,LiC6中0价的Li变为LiCoO2中+1价的Li
然后根据原电池负极发生氧化反应,正极发生还原反应的规律,写出两个电极的物质变化,但要注意物质的存在形式。
如负极物质变化可表示如下:LiC6=Li+
分析化合价的变化,此过程中要失去一个电子,可表示如下:LiC6-e-=Li+其次检查方程式左右两边电荷是否相等。
上式中左右两边各带一个单位的正电荷。
若不相等,就要选择合适的离子配平电荷,但这时要特别注意介质的影响。
如酸性介质时,常选H+;而碱性介质时,常选OH-.
最后,还要检查是否符合质量守恒。
所以,负极的电极反应方程式就表示为:负极LiC6-e-=Li++ C6
将以上书写电极反应方程式的过程可归纳如下:
列物质,标得失(列出电极上的物质变化,根据价态变化标明电子得失)
选离子,配电荷(根据介质选择合适的离子,配平电荷,使符合电荷守恒)
巧用水,配个数(通常介质为水溶液,可选用水配平质量守恒)
根据以上的方法,就可写出该电池的正极反应式:
正极Li++ CoO2 +e-= LiCoO2
当然,也可由电池反应减去负极反应而得到正极反应。
此时必须保证电池反应转移的电子数等于电极反应转移的电子数。
二、根据题意叙述书写
此类问题常见于燃料电池,由于燃料电池的优点较多,成为了近年高考的方向。
解决此类问题必须抓住一点:燃料电池反应实际上等同于燃料的燃烧反应,但要特别注意介质对产物的影响。
例2、(08山东卷29(2))以丙烷为燃料制作新型燃料电池,电池的正极通入O2和CO2,负极通入丙烷,电解质是熔融碳酸盐。
电池反应方程式为;负极反应为;放电时,CO32-移向电池的(填“正极”或“负极”)
解析:燃料电池反应等同于燃料的燃烧反应。
此题中,电解质为熔融碳酸盐,不会与C3H8的燃烧产物CO2和H2O发生反应,所以电池反应即为:C3H8+5O2=3CO2+4H2O 根据例1归纳的步骤可分步写出负极反应:
(1)C3H8-20 e-=3CO2+4H2O (C3H8中H为+1价,3个C表现-8价)
(2)10 CO32-+ C3H8-20 e-=3CO2+4H2O (电解质为熔融碳酸盐,选CO32-配平电荷)(3)10 CO32-+ C3H8-20 e-=13CO2+4H2O (质量守恒)
所以,负极10 CO32-+ C3H8-20 e-=13CO2+4H2O
同理,正极5O2+20 e-+10 CO2=10 CO32-(也可由电池反应减去负极反应)结合上述分析,可归纳出如下规律:燃料电池中,燃料始终在负极,发生氧化反应;O2在正极发生还原反应。
若为有机燃料生成物一般为CO2和H2O,介质为碱性时CO2会反应生成CO32-;化合价的变化主要分析C的变化。
根据原电池中阴离子移向负极,阳离子移向正极的规律,可知CO32-移向负极。
电极反应方程式的书写,除了按照步骤,分别保证电子守恒、电荷守恒、质量守恒外,还应符合离子方程式的书写要求,即难溶、难电离、气体等物质要以化学式表示。