方差分析中多重比较标记字母法的实现_潘沈元
多重比较字母标记法例题讲解

多重比较字母标记法例题讲解
多重比较字母标记法是一种在统计学中常用的方法,用于比较多个样本的平均数差异。
这种方法使用不同的字母来表示各组之间的差异,以简化比较过程。
以下是一个多重比较字母标记法的例题讲解:
题目:比较四组实验数据的平均数差异。
数据如下:
组别数据1 数据2 数据3 数据4
A 10 15 20 25
B 8 12 16 22
C 6 9 12 18
D 4 6 8 14
首先,我们需要对每组数据进行排序,以便进行比较。
排序后的数据如下:
组别数据1 数据2 数据3 数据4
A 10 15 20 25
B 8 12 16 22
C 6 9 12 18
D 4 6 8 14
接下来,我们使用多重比较字母标记法对各组数据进行比较。
根据排序后的数据,我们可以得出以下结论:
组A的平均数高于组B、C和D。
组B的平均数高于组C和D。
组C的平均数高于组D。
根据上述结论,我们可以使用字母来表示各组之间的差异。
由于组A的平均数最高,所以用字母A表示,然后依次为B、C和D。
因此,这四组数据按照平均数大小排列的顺序为:A、B、C、D。
方差分析中的多重比较

XD XC
XB XE XA
67 69.5 71.5 74 74.5
XC 2.5 XB 4.5 2.0 XE 7.0* 4.5 XA 7.5* 5.0
2 .5 3.0 0.5
等级排列为:
1、2、3、4、5
(2)根 据 比 较 等 级 r, 自 由 度 df w ,
在
附
表
中
查
相
应
的
q
0
或
.05
q
的
0.01
值
。
比 较 等 级 r ri -rj 1, 如 :
X
与
B
X
比
C
较,
r
2-1
1;
X
A
与
X
比
D
较
,
r
5
3
1
3;
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
由 上 述 结 果 ,可 以 作 出 统 计 结 论
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
6
Psychology Statistics
2、N-K法(q检验)
步骤:
(1)把要比较的各个平均数从小到大作等级排列;
如5个平均数从小到大顺序是XB,XC,XA,XE,XD, 则
27.3 29.6 26.4 31.5
[应用心理学专业必修课 心理统计学 淮北煤师院教育学院 李怀龙] Email:lihlong@
第六章多重比较、第二节单因素方差分析

第六章,第三、四次课 多重比较和第二节单因素方差分析在试验中所考虑的因素只有一个时,称为单因素实验。
单因素方差分析是最简单的一种,它适用于只研究一个试验因素的资料,目的在于正确判断该试验因素各处理的相对效果(各水平的优劣).组内观测次数相等的方差分析:是指在k 组处理中,每一处理皆含有n 个观测值,其方差分析方法前面已做介绍,这里以方差分析表的形式给出有关计算公式:组内观测次数相等的方差分析例:测定东北、内蒙古、河北、安徽、贵州5个地区黄鼬冬季针毛的长度,每个地区随机抽取4个样本,测定的结果如表,试比较各地区黄鼬针毛长度s e 2k(n-1) SS e 误差或处理内nk-1SS T总和s t2 k-1 SS t处理间 F 均方 自由度 平方和 变异来源 F = s t 2 s e21)分解平方和和自由度=186.7-173.71=12.99作方差分析F 测验 查F 值表,得F0.05 (4,15) =3.06, F0.01 (4,15) =4.89,故F >F0.01 ,P < 0.01,说明5个地区黄鼬冬季针毛长度差异极显著。
不同地区黄鼬冬季针毛长度方差分析表为了确定各个地区之间的差异是否显著,需要进行多重比较。
这里用最小显著差数法(LSD )进行检验。
查t 值表,当dfe =15时,t0.05 =2.131,t0.01 =2.947,于是有:LSD0.05 = 2.131 ×0.658 =1.402 LSD0.01 = 2.947 ×0.658 =1.939本例中各组内观测数相等,而且组内方差均为0.866,故任何两组的比较均可用LSD0.05 及LSD0.01。
在进行LSD0.05 及LSD0.01比较时各组间差数 > LSD0.01,说明两地间差异极显著,标以不同的大写字母;LSD0.01 >各组间差数>LSD0.05 ,说明两地间差异显著,标以不同的小写字母;51.14071455.53022=⨯==nk T C 7.18651.1407121.142582=-=-=∑C x SS T C T n SS i t -=∑2171.17351.14071)4.916.1094.126(41222=-+++⨯= t T e SS SS SS -=43.43471.1732===tt t df SS s 866.01599.122===e e e df SS s 15.50866.043.4322===e t s s F平均数多重比较表结果表明,东北与其它地区,内蒙古与安徽、贵州,河北与贵州黄鼬冬季针毛长度差异均达到极显著水平,安徽与贵州差异达到显著水平,而内蒙古与河北、河北与安徽差异不显著。
大学试验统计复习题

第一章复习1.解释以下概念:总体、个体、样本、样本容量、变量、参数?1.总体是具有相同性质的个体所组成的集合,是指研究对象的全体。
2.个体是组成总体的根本单元。
3.样本是从总体中抽出的假设干个个体所构成的集合。
4.样本容量是指样本个体的数目。
5.变量是相同性质的事物间表现差异性的某种特征。
6.参数是描述总体特征的数量。
7.统计数是描述样本特征的数量。
8.因素是指试验中所研究的影响试验指标的原因或原因组合。
2.统计数、因素、水平、处理、重复、效应、互作、试验误差?1.水平是指每个试验因素的不同状态(处理的某种特定状态或数量上的差异)。
2.处理是指对受试对象给予的某种外部干预(或措施)。
3.重复是指在试验中,将一个处理实施在两个或两个以上的试验单位上。
4.效应是由处理因素作用于受试对象而引起试验差异的作用。
5.互作是指两个或两个以上处理因素间的相互作用产生的效应。
6.试验误差是指试验中不可控因素所引起的观测值偏离真值的差异,可以分为随机误差和系统误差。
3.随机误差与系统误差有何区别?随机误差也称为抽样误差或偶然误差,它是由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间的差异,是不可防止的。
随机误差可以通过试验设计和精心管理设法减小,但不能完全消除。
系统误差也称为片面误差,是由于试验处理以外的其他条件明显不一致所产生的带有倾向性的或定向性的偏差。
系统误差主要由一些相对固定的因素引起,在某种程度上是可控制的,在试验过程中是可以防止的。
4.准确性与精确性有何区别?准确性也称为准确度,是指在调查或试验中某一试验指标或性状的观测值与真值接近的程度。
精确性也称为精确度,是指调查或试验中同一试验指标或性状的重复观测值彼此的接近程度的大小。
准确性是说明测定值对真值符合程度的大小,用统计数接近参数真值的程度来衡量。
精确性是反映屡次测定值的变异程度,用样本中的各个变量问的变异程度的大小来衡量。
填空1.变量按其性质可以分为〔连续〕变量和〔非连续(离散型)〕变量。
基于R语言的多重比较方法

基于R语言的七种多重比较方法一花视界百家号10-1403:18多重比较的方法很多,根据试验设计的目的不同有不同的应用。
若试验设计之初,便明确要比较某几个组均数间是否有差异,称为事前比较。
常用的事前比较方法有LSD、Bonferroni和Dunnett法。
若研究目的是方差分析有统计学差异后,想知道哪些组间的均数有差异,便是事后比较。
事后比较的常用方法有SNK、Turkey、Scheffe 和Bonferroni法。
本文仅介绍7种方法及R语言函数,可解决绝大部分多重比较问题。
1.LSD法LSD法即最小显著差法;该法一般用于计划好的多重比较。
它其实只是t检验的一个简单变形,并未对检验水准做出任何校正,只是为所有组的均数统一估计了一个更为稳健的标准误。
LSD法比较效果较为灵敏,在R语言中可利用agricolae包中的LSD.test函数实现,其调用格式为:LSD.test(y, trt, DFerror, MSerror, alpha = 0.05, p.adj=c("none","holm","hommel","hochberg", "bonferroni", "BH", "BY", "fdr"), …)其中y为方差分析对象,trt为要进行多重比较的分组变量,p.adj可以选定P值矫正方法。
当p.adj=”none”时,为LSD法,p.adj="bonferroni"时为Bonferroni法。
R代码:library(agricolae)# sweetpotato为agricolae自带数据集data(sweetpotato)#进行方差分析,分组变量为virusmodel#进行多重比较,不矫正P值out <- lsd.test(model,"virus",="" p.adj="none" )#结果显示:标记字母法out$group#可视化plot(out)程序运行结果:从运行结果看,四个处理,oo和ff处理无差异,与cc和fc彼此差异显著。
方差分析及多重比较

第六章 方差分析第五章所介绍的t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在生产和科学研究中经常会遇到比较多个处理优劣的问题,即需进行多个平均数间的差异显著性检验。
这时,若仍采用t 检验法就不适宜了。
这是因为:1、检验过程烦琐 例如,一试验包含5个处理,采用t 检验法要进行25C =10次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。
2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。
若用t 检验法作两两比较,由于每次比较需计算一个21x x S ,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。
例如,试验有5个处理,每个处理重复6次,共有30个观测值。
进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。
可见,在用t 检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的I 型错误率大 即使利用资料所提供的全部信息估计了试验误差,若用t 检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I 型错误的概率,降低推断的可靠性。
由于上述原因,多个平均数的差异显著性检验不宜用t 检验,须采用方差分析法。
方差分析(analysis of variance)是由英国统计学家,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。
多重比较的字母标记法

1)将全部平均数从大到小顺序排
列,然后在最大的平均数上标上 字母a; 2)将该平均数依次和其以下各平 均数相比,凡差异不显著的都标 字母a,直至某一个与之相差显著 的平均数则标以字母b。
3)再以该标有b的平均数为标准,与
上方各个比它大的平均数比,凡不显 著的也一律标以字母b; 4)再以标有b的最大平均数为标准, 与以下各未标记的平均数比,凡不显 著的继续标以字母b,直至某一个与之 相差显著的平均数则标以字母c;
5)……如此重复下去,直至最小的一
个平均数有了标记字母为止。 这样各平均数间,凡有一个标记相同 字母的即为差异不显著,凡具不同标 记字母的即为差异显著。在实际应用 时,一般以大写字母 A.B.C…… 表示 α=0.01显著水平,以小写字母a.b.c…… 表示α=0.05显著水平。
50
40 稻纵卷叶螟幼虫数量
在完成方差分析得知某因素对观测结果的影
响显著时,仅表明该因素的各水平下的均数 之间的差别总体上是显著的,并不知道任何 2个均数之间的差别是否显著(此时,即使 在多数场合下,可认为均数的最大值与最小 值之间的差别显著,但却不知p值的大小)。 当实际工作者希望进一步知道更为详细的情 况时,就需要在多个均数之间进行多重比较。 然而,根据所控制误差的类型和大小不同, 便产生了许许多多的多重比较法。
30
20
10
0 1 2 3 水稻品种 4 5
1 4 3
2 5
a a
b
b c c d
d
60
稻纵卷叶螟幼虫数量
40
a
cd
ab d
20
0 1 2 3 4 5
水稻品种
各植物抗氧化酶活性对甲醛气体胁迫的响应
多重比较的字母标记法

在处理数据中遇到多重比较字母标记的问题,搜索过后,各个说法不一,难以判断。
因此查阅资料后,向大家分享。
查阅生物统计书明确,多重比较的标记字母法
2015年2月3日
1、此法首先将各个处理平均数由大到小,自上而下的排列。
2、当显著水平为0.05时,在最大平均数后标记小写拉丁字母a,直到某一个与其差异显著的平均数标记字母b 为止。
3、再以标有字母b的平均数,与上方比它大的各个平均数比较,凡与其差异不显著着,一律再加标字母b,直到差异显著不加标字母b为止。
4、再以标记有字母b的最大平均数,与其下面各个未标记字母的平均数相比较,凡与其差异不显著者,继续标记字母b,直到某一个与其差异显著的平均数标记为c为止。
·························
如此重复下去,直到最小的平均数被标记、比较完毕。
这样,各个平均数间凡有一个相同字母的,为差异不显著;凡无相同字母的,为差异显著。
当显著水平为0.01时,则用大写拉丁字母A、B、C等表示多重比较结果。