(完整word版)FANUC焊接机器人控制系统介绍、应用故障分析及处理
FANUC数控机床常见电气故障诊断及维修word精品文档6页

FANUC数控机床常见电气故障诊断及维修1.FANUC数控机床常见故障数控机床一般由数控系统,包含伺服电动机和检测反馈装置的伺服系统、强电控制柜、机床本体和各类辅助装置组成,是集机、电、液、气、光高度一体化的现代技术设备。
数控机床维修技术不仅是保障数控机床正常运行的前提,对数控机床的发展和完善也起到了巨大的推动作用。
数控机床出现的故障多种多样,机械磨损、机械锈蚀、机械失效、加工误差大、工件表面粗糙度大、插件接触不良、电子元器件老化、电流电压波动、温度变化、干扰、滚珠丝杠副有噪声、软件丢失或本身有隐患、灰尘、操作失误等都可导致数控机床出故障。
一般情况下,软故障由调整、参数设置或操作不当引起。
硬故障由数控机床(控制、检测、驱动、液气、机械装置)的硬件失效引起。
2.FANUC数控机床常见故障维修数控机床故障的产生是多种多样的。
维修时需要根据现象分析、排除,最后达到维修的目的。
切勿盲目的乱动,否则可能会导致故障更加的严重。
处理故障时,如果出现危及人身安全或机床设备的紧急情况,要立即切断机床电源。
一般情况下,不用马上关掉电源,应保持故障现场不变。
首先从机床外观、CRT显示的内容、主板或驱动装置报警灯等方面进行检查。
可按系统复位键,观察系统的变化,报警是否消失。
如消失,说明是随机性故障或是由操作错误引起的。
如不能消失,把可能引起该故障的原因罗列出来,进行综合分析、判断,必要时进行一些检测或试验达到确诊故障的目的。
3.控系统常见故障维修实例3.1 FANUC 0-M数控铣床3.1.1 FANUC 0-M数控铣床主轴或其它轴运动时出现摆动现象,主要表现在手轮状态下移动主轴,移动一段约20mm距离,主轴出现颤动。
原因是数控系统的参数设置与实际的伺服装置不相匹配。
解决方法:查阅参数设置说明书与伺服装置说明书,将其相应的参数设置进行修改使之匹配。
此类故障往往是由于数控系统的参数受到干扰引起参数变化而导致的故障。
3.1.2 FANUC 0-M数控铣床,主轴拉刀时出现报警故障现象:手动状态下,主轴拉刀时,有时出现报警。
FANUC系统常见故障诊断与处理方法

FANUC系统常见故障诊断与处理方法摘要:介绍日本日立精机、牧野精机、森精机等公司产数控系统,包括了FANUC 16i、18i、21i、18T、21T等系列的故障:如电网闪断停机、内置脉冲编码器通信异常、伺服放大器误差、外围器件损坏等进行了分析逐步查找及处理。
关键词:FANUC系统故障诊断维修一、电网闪断和断电停机后出现的故障1.一台森精机产SH403加工中心,采用FANUC 18iMA系统。
电网闪断恢复后重新开机,显示“EX0557 OIL&AIR LUBRICANTPRESSURE DOWN”(主轴的油气润滑系统压力低下)报警。
检查发现中间继电器未接通,润滑泵无100V电压供给。
检查该中间继电器OK。
利用系统的自诊断功能,检查PMC信号,发现开机时,油气润滑的供油信号输出接点Y6.4接通,但该中间继电器线圈却不得电,于是,怀疑接点所在的I/0模块UNIT1-2的基板有问题。
将该印刷电路板对比调试后,未发现有任何问题,而该模块的其他输出接点均正常,据此判定是该输出接点烧坏。
替代,故障排除。
2.一台牧野产V55立式加工中心,采用FANUC 16 Mi系统。
设备断电停机几小时后再开机时,显示“306 APC ALARM: AXISBATTERY VOLTAGE 0(X);306 APC ALARM:AXIS BATTERYVOLTAGE 0(Y);306 APC ALARM:AXIS BATTERY VOLTAGE 0(Z);“300 APC ALARM: AXIS NEED ZRN (X);300 APC ALARMAXIS NEED ZRN (Y);300 APC ALARM: AXIS NEE D ZRN (Z)”。
这时切勿关断设备电源,将NC后备电池(4节)更换后,按“RESET”键即可消除306报警,然后选定“原点回归”方式,对各轴执行原点回归操作。
各轴回参考点后再按“RESET”键即可消除300报警。
发那科fanuc数控系统常见问题及解决方法

发那科fanuc数控系统常见问题及解决方法发那科fanuc数控系统常见问题及解决方法学习2010-06-13 09:04:52 阅读106 评论0 字号:大中小订阅1、要编辑FS10/11格式程序,必须将设定画面的:FS15 TAPE FORMATE=1?(FANUC 0i-TB) 请问FS10/11格式程序什么含义?它有什么特点?如何进行参数设定? 我想了解的详细一点,非常感谢您的回信!操作书中所讲,让我看的满头汗水。
答:18 使用FS10/11 纸带格式的存储器运行概述通过设定参数(No.0001 #1),可执行FS10/11 纸带格式的程序。
说明Oi 系列和10/11 系列的刀具半径补偿,子程序调用和固定循环的数据格式是不同的。
10/11 系列数据格式可用于存储器运行。
其它数据格式必须遵从Oi 系列。
当指定的数据值超出Oi 系列的规定范围时,出现报警。
对于Oi 系列无效的功能不能存储也不能运行。
详细参见B-63844C/01 编程18.使用FS10/11 纸带格式的存储器运行2、关于梯形图(0i-A)梯形图传下来后如何用LADDER--3打开,详细步骤是怎样的答:打开LADDER III, 新建一个文件,PMC类型要和你的实际类型一致,然后再进入"文件"--"导入"(import), 选择"Memory card file" 再选择需要导入的文件名(传下来的梯形图),确定,就可以了。
3、还是老问题(FANUC-0i)专家同志:你好我按您的方法去操作了.在A轴显示正常的那台台中精机上用手动操作A轴,超过360度时,会报警A超程,而在A轴显示不正常的台中精机上手动操作时,即使超过360度,也不会报警,不停的往一个方向摇时,其显示值会累加,当然,反方向摇时会累减.我好困惑.是哪个参数设错了呢?还得请您指导.谢谢4、参数不可改写(BJ-FANUC Oi-MB)最近不知道是怎么回事,我们所用的加工中心,在设置中的参数可写入不能置1了。
(完整word版)FANUC焊接机器人控制系统介绍、应用故障分析及处理

FANUC焊接机器人控制系统介绍、应用故障分析及处理FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,其控制系统采用32位CPU 控制,采用64位数字伺服驱动单元,同步控制6轴运动;支持离线编程技术;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。
焊接是工业生产中非常重要的加工方式,同时由于焊接烟尘、弧光和金属飞溅的存在,焊接的工作环境非常恶劣,随着人工成本的逐步提升,以及人们对焊接质量的精益求精,焊接机器人得到了越来越广泛的应用。
机器人在焊装生产线中运用的特点焊接机器人在高质、高效的焊接生产中发挥了极其重要的作用,其主要特点如下:1.性能稳定、焊接质量稳定,保证其均一性焊接参数如焊接电流、电压、焊接速度及焊接干伸长度等对焊接结果起决定性作用。
人工焊接时,焊接速度、干伸长等都是变化的,很难做到质量的均一性;采用机器人焊接,每条焊缝的焊接参数都是恒定的,焊缝质量受人为因素影响较小,降低了对工人操作技术的要求,焊接质量非常稳定。
2.改善了工人的劳动条件采用机器人焊接后,工人只需要装卸工件,远离了焊接弧光、烟雾和飞溅等;点焊时,工人不再需要搬运笨重的手工焊钳,从大强度的体力劳动中解脱出来。
3.提高劳动生产率机器人可一天24h连续生产,随着高速、高效焊接技术的应用,使用机器人焊接,效率提高地更加明显。
4.产品周期明确,容易控制产品产量机器人的生产节拍是固定的,因此安排生产计划非常明确。
5.可缩短产品改型换代的周期,降低相应的设备投资可实现小批量产品的焊接自动化。
机器人与专机的最大区别就是它可以通过修改程序以适应不同工件的生产。
FANUC机器人控制系统1.概述FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,是奇瑞公司最早引进的焊接机器人,也是最先用到具有附加轴的焊接机器人。
其控制系统采用32位CPU控制,以提高机器人运动插补运算和坐标变换的运算速度;采用64位数字伺服驱动单元,同步控制6轴运动,运动精度大大提高,最多可控制21轴,进一步改善了机器人动态特性;支持离线编程技术,技术人员可通过离线编程软件设置参数,优化机器人运动程序;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。
发那科机器人控制装置维修说明书

发那科机器人控制装置维修说明书发那科机器人控制装置维修说明书一、产品概述发那科机器人控制装置是一种高精度、高效率的自动化控制设备。
它由计算机控制系统、运动控制系统和机器人执行系统三部分组成,能够实现多轴运动的协调控制,使机器人在工业生产中具有高速度、高精度和稳定性等优点。
二、故障排除1. 无法启动(1)检查电源是否接通,并确认电源线是否正常连接。
(2)检查电源开关是否打开。
(3)检查主板上的指示灯是否亮起,如果不亮,则可能是主板故障。
2. 无法连接网络(1)检查网络线是否插紧,并确认网络线是否正常连接。
(2)检查网络设置是否正确,包括IP地址、子网掩码和网关等信息。
(3)如果以上两项均正常,则可能是网络接口卡故障。
3. 运动系统异常(1)检查电机驱动器是否损坏或未正确连接,如有问题需更换或重新连接。
(2)检查传感器信号是否正常,如有问题需更换或重新安装传感器。
(3)如果以上两项均正常,则可能是运动控制卡故障。
4. 机器人执行系统异常(1)检查机器人执行系统是否损坏或未正确连接,如有问题需更换或重新连接。
(2)检查机器人执行系统的传感器信号是否正常,如有问题需更换或重新安装传感器。
(3)如果以上两项均正常,则可能是机器人控制卡故障。
三、维护保养1. 定期清洁为了保持发那科机器人控制装置的稳定性和可靠性,需要定期对设备进行清洁。
清洁时,应先关闭电源并拔掉电源线,然后用干净的抹布擦拭设备表面和内部部件,避免使用水或化学物品进行清洁。
2. 定期检查为了确保发那科机器人控制装置的正常运行,需要定期对设备进行检查。
检查内容包括电源线、网络线、运动控制卡、机器人控制卡等部件是否正常连接,并对运动系统和执行系统进行测试以确保其正常工作。
3. 定期更换零部件为了延长发那科机器人控制装置的使用寿命,需要定期更换一些易损零部件。
例如:电源线、网络线、传感器等。
在更换零部件时,应注意选择与原件相同的型号和规格,并按照说明书进行安装。
发那科机器人常见故障代码和故障处理方法.docx

常用故障代码和故障排除方法伺服-001 操作面板紧急停止SRVO-001 Operator panel E-stop[现象]按下了操作箱/操作面板的紧急停止按扭。
SYST-067 面板 HSSB 断线报警同时发生,或者配电盘上的 LED(绿色)熄灭时,主板( JRS11)-配电盘( JRS11)之间的通信有异常,可能是因为电缆不良、配电盘不良、或主板不良。
( 注释 )[对策 1]解除操作箱/操作面板的紧急停止按扭。
[对策 2]确认面板开关板( CRM51 )和紧急停止按扭之间的电缆是否断线,如果断线,则更换电缆。
[对策 3]如果在紧急停止解除状态下触点没有接好,则是紧急停止按扭的故障。
逐一更换开关单元或操作面板。
[对策 4]更换配电盘。
[对策 5]更换连接配电盘(JRS11)和主板( JRS11)的电缆。
在采取对策 6 之前,完成控制单元的所有程序和设定内容的备份。
[对策 6]更换配电盘。
(注释) SYST-067 面板 HSSB 断线报警同时发生,或 RDY LED熄灭时,有时会导致下面的报警等同时发生。
(参阅示教操作盘的报警历史画面)伺服 -001操作面板紧急停止伺服 -004栅栏打开サーボ -007外部紧急停止伺服 -204外部( SVEMG 异常)紧急停止伺服 -213保险丝熔断(面板 PCB)伺服 -280SVOFF 输入伺服-002 示教操作盘紧急停止SRVO-002 Teach pendant E-stop[现象]按下了示教操作盘的紧急停止按扭。
[对策 1]解除示教操作盘的紧急停止按扭。
[对策 2]更换示教操作盘。
伺服-003 紧急时自动停机开关SRVO-003 Deadman switch released[现象]在示教操作盘有效的状态下,尚未按下紧急时自动停机开关。
[对策 1]按下紧急时自动停机开关并使机器人操作。
[对策 2]更换示教操作盘。
伺服-021 SRDY 断开(组: i 轴: j )SRVO-021 SRDY off (Group:i Axis:j)[现象]当 HRDY 断开时,虽然没有其他发生报警的原因, SRDY 处在断开状态。
FANUC机器人常见故障及处理措施探讨

农机化研究37Agriculture Mechanization Research王 民(新疆石河子职业技术学院,新疆 石河子 832000)摘 要:FANUC 机器人种类多、性能优良,在汽车和电子等行业得到了广泛的应用,有效提升了企业的生产效率,降低了生产成本。
在企业生产过程中,一旦机器人出现故障,就会影响整条产线生产的连续性,对企业造成一定的经济损失。
文章对FANUC 机器人常见的故障进行了分析,并提出了相应的处理措施,以期为提高FANUC 机器人工作的可靠性创造有利条件。
关键词:FANUC 机器人;故障;处理措施中图分类号:TP242 文献标志码:A 文章编号:1672-3872(2020)12-0037-01——————————————作者简介: 王民(1981—),男,新疆石河子人,本科,讲师,研究方向:机电一体化技术。
FANUC 是世界上唯一一家能由机器人来做机器人的公司,其机器人的科研、设计和制造水平居世界首位,机器人种类多,在装配、搬运、焊接、铸造、喷涂、码垛等领域得到了广泛的应用,能满足不同用户的多样化需求。
机器人在工业生产领域的应用有效促进了我国工业水平的提升,为了确保机器人能长期可靠地运行,需要加强日常维护和保养。
在机器人运行过程中会因为各种因素的影响而出现故障,产线停工会直接影响到企业的经济效益。
所以企业应该加强对FANUC 机器人的故障维修处理,通过对常见故障的分析,总结引发故障的原因,然后制定有效的防范措施和维修处理方案,尽量减少FANUC 机器人故障,保证企业生产的连续性。
1 伺服系统与机械传动装置响应时间不匹配工业机器人融合了计算机、传感器、人工智能、控制、电子、机械等多项技术,是一种较为高端的智能设备,面向工业领如果没有及时解决,对伺服系统噪声过大的现象,通过分析发现,主要是因为伺服系统的反应速度过快,而控制机械扭矩的系统反应时间跟不上伺服系统的速度,所以传动装置就会发出噪声。
FANUC_数控系统维修调整资料fanuc发那科维修说明书 故障分析解决

FANUC_数控系统维修调整资料fanuc发那科维修说明书故障分析解决FANUC 数控系统维修调整资料(WIA日照工厂)2007-2-19说明本资料是根据网络收集的部分资料以及韩国工程技术人员来WIA培训的部分笔记整理而成,主要针对平时工作中能遇到几率高的问题,时间仓促,加上本人的笔记可能不全面,错误在所难免,如果大家发现有错误或遗漏,请及时补正修改,以方便大家工作。
WIA日照工厂所用的数控系统主要是FANUC系列中的0系列、0i系列、POWER MATE 系列和110M,本资料试图将这几个系列的系统的数据备份、恢复、原点调整、ALARM信息以及相关的参数做详细说明,并附录了0系列故障诊断与处理的部分,希望能对大家的工作有所帮助。
FANUC 0TT 原点设置方法WIA日照工厂内WA30-10T采用的就是本类型.下面以两轴系统(X轴Z轴)为例,说明原点调整的方法。
1( MODE选择为HANDLE,将X轴Z轴手动调整好原点(参照系统的原点标志,使之对齐)。
2( MODE选择为MDI ,按DNGOS,直至出现PARAMETER画面,用?下找PWE参数,将其修改为“1”。
3( 按NO.,输入22,按INPUT,屏幕(CRT)显示参数号为21。
的参数,将参数“21”的值全部修改为“0”。
4( 关闭NC电源,5秒后打开,按“运行准备”。
5( 按DNGOS,直至出现PARAMETER画面,按NO.,输入22,按INPUT,屏幕(CRT)显示参数号为21。
的参数,将参数“21”的后3位修改为“101”。
( 修改PWE参数为“0”。
6( 出现ALARM100 ALARM000,关闭NC电源,5秒后再开,系统显7示X轴Z轴坐标为“0.000”,原点调整完毕。
参数说明:FANUC 0MC 原点设置方法此处以3轴系统为例,说明此系统恢复原点的方法。
修改相应参数的方法以及相关参数的含义参照0TT 的修改步骤。
1) 将PWE“0”改为“1”,更改参数NO.76.1=1,NO.22改为00000000,(此时CRT显示“300”报警即X、Y、Z轴必须手动返回参考点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FANUC焊接机器人控制系统介绍、应用故障分析
及处理
FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,其控制系统采用32位CPU 控制,采用64位数字伺服驱动单元,同步控制6轴运动;支持离线编程技术;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。
焊接是工业生产中非常重要的加工方式,同时由于焊接烟尘、弧光和金属飞溅的存在,焊接的工作环境非常恶劣,随着人工成本的逐步提升,以及人们对焊接质量的精益求精,焊接机器人得到了越来越广泛的应用。
机器人在焊装生产线中运用的特点
焊接机器人在高质、高效的焊接生产中发挥了极其重要的作用,其主要特点如下:
1.性能稳定、焊接质量稳定,保证其均一性
焊接参数如焊接电流、电压、焊接速度及焊接干伸长度等对焊接结果起决定性作用。
人工焊接时,焊接速度、干伸长等都是变化的,很难做到质量的均一性;采用机器人焊接,每条焊缝的焊接参数都是恒定的,焊缝质量受人为因素影响较小,降低了对工人操作技术的要求,焊接质量非常稳定。
2.改善了工人的劳动条件
采用机器人焊接后,工人只需要装卸工件,远离了焊接弧光、烟雾和飞溅等;点焊时,工人不再需要搬运笨重的手工焊钳,从大强度的体力劳动中解脱出来。
3.提高劳动生产率
机器人可一天24h连续生产,随着高速、高效焊接技术的应用,使用机器人焊接,效率提高地更加明显。
4.产品周期明确,容易控制产品产量
机器人的生产节拍是固定的,因此安排生产计划非常明确。
5.可缩短产品改型换代的周期,降低相应的设备投资
可实现小批量产品的焊接自动化。
机器人与专机的最大区别就是它可以通过修改程序以适应不同工件的生产。
FANUC机器人控制系统
1.概述
FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,是奇瑞公司最早引进的焊接机器人,也是最先用到具有附加轴的焊接机器人。
其控制系统采用32位CPU控制,以提高机器人运动插补运算和坐标变换的运算速度;采用64位数字伺服驱动单元,同步控制6轴运动,运动精度大大提高,最多可控制21轴,进一步改善了机器人动态特性;支持离线编程技术,技术人员可通过离线编程软件设置参数,优化机器人运动程序;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。
其控制原理如图1所示。
2.内部结构分析
控制器是机器人的核心部分,实现对机器人的动作操作、信号通信和状态监控等功能。
下面以FANUC F-200iB为例,对其控制系统内部结构(见图2)和各部分的功能进行分析:
(1)电源供给单元变压器向电源分配单元输入230V交流电,通过该单元的系统电源分配功能对控制箱内部各工作板卡输出210V交流电及±15V、+24V直流电。
(2)安全保护回路由变压器直接向急停单元供电,并接入内部各控制板卡形成保护回路,对整个系统进行电路保护。
(3)伺服放大器不仅提供伺服电机驱动和抱闸电源,并且与绝对值编码器实现实时数据转换,与主控机间采用光纤传输数据,进行实时信号循环反馈。
(4)输入/输出模块标配为ModuleA/B,另外也可通过在扩展槽安装Profibus板、过程控制板与PLC及外围设备进行通信。
(5)主控单元整个控制系统的中枢部分,包括主板、CPU、FROM/SRAM组件及伺服卡,负责控制器内部及外围设备的信号处理和交换。
(6)急停电路板用来对紧急停止系统、伺服放大器的电磁接触器以及预备充电进行控制。
(7)示教器包括机器人编程在内的所有操作都能由该设备完成,控制器状态和数据都显示在示教盒的显示器上。
故障案例分析
FANUC机器人控制器断电检修后,对控制器送电,机器人报伺服故障,故障代码为SERVO-062。
对此故障进行复位:按MENUS→SYSTEM→F1,[TYPE]→找master/cal→F3,RES_PCA →F4,YES 后,机器人仍然报伺服故障。
1.故障分析和检查
故障代码SERVO-062的解释为SERVO2 BZAL alarm(Group: %d Axis:%d),故障可能原因分析如下:
(1)机器人编码器上数据存储的电池无电或者已经损坏拆卸编码器脉冲数据存储的电池安装盒,电池盒内装有4节普通1.5V的1号干电池,对每节电池的电压进行测量,均在1.4V以下,电池电压明显偏低,于是更换新电池,再次对故障进行复位,机器人仍然报SERVO-062故障。
(2)控制器内伺服放大器控制板坏检查伺服放大器LED“D7”上方的2个DC链路电压检测螺丝,确认DC链路电压。
如果检测到的DC链路电压高于50V,就可判断伺服放大器控制板处于异常状态。
实际检测发现DC链路电压低于50V,所以初步判断伺服放大器控制板处于正常状态。
进一步对伺服放大器控制板上P5V、P3.3V、SVEMG和OPEN的LED颜色进行观察,确认电源电压输出正常,没有外部紧急停止信号输入,与机器人主板通信也正常,排除伺服放大器控制板损坏。
(3)线路损坏对机器人控制器与机器人本体的外部电缆连线RM1、RP1进行检查,RM1为机器人伺服电机电源、抱闸控制线,RP1为机器人伺服电机编码器信号以及控制电源线路、末端执行器线路和编码器上数据存储的电池线路等线路。
拔掉插头RP1,对端子5、6和18 用万用表测量+5V、+24V 控制电源均正常。
接下来对编码器上数据存储的电池线路进行检查。
机器人每个轴的伺服电机脉冲编码器控制端由1~10个端子组成,端子8、9和10为+5V电源,端子4、7为数据保持电池电源,端
子5、6为反馈信号,端子3为接地,端子1、2空。
拔掉M1电机的脉冲控制插头M1P,万用表测量端子4、7,电压为0,同样的方法检查M2~M7电机全部为0,由此可以判断编码器上数据存储的电池线路损坏。
顺着线路,发现正负电源双绞线的一端插头长期埋在积水中,线路已腐蚀严重。
2.故障处理
更换线路后复位,对机器人进行全轴零点复归“ZERO POSITION MASTER”,导入备份程序后恢复正常,故障排除。
结语
FANUC作为日系机器人的主要品牌之一,其在控制原理上与其他品牌机器人大致相同,但其控制部分组成结构有着自己的风格,体现了亚洲人的使用习惯,比较适合国内使用。
我国焊接机器人技术的研究应用虽然较晚,但借鉴了国外的成熟技术,发展非常迅速。
2009年我公司与哈尔滨工业大学合作开发的奇哈机器人诞生,我们看到了企业与科研单位合作的力量,认为应用型企业参与设备的研究是个很好决策。
当然,焊接机器人是个机电一体化的高技术产品,单靠企业的自身能力是不够的,需要政府为机器人生产企业及使用国产机器人系统的企业提供一定的政策和资金支持,加速我国国产机器人的发展。
FANUC,是全球最多样化的FA(工厂自动化)、机器人和智能机械的制造商。
自1956年成立以来,公司始终是全球计算机数控设备发展的先驱,在自动化领域贡献突出。
上世纪70年代,FANUC成为世界上最大的专业数控系统生产厂家,占据了全球70%的市场份额。
2008年FANUC成为世界上最大的机器人生产厂商,在全球第一个突破20万台机器人。
目前已突破25万台,市场份额稳居第一。