广义相对论样卷答案-USTC
清华大学《大学物理》题库及答案___相对论(PDF)

一、选择题1.4351:宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t (C) (D)[ ]2.4352一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速)(A) (B) (C) (D)[ ]3.8015:有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
若问其中哪些说法是正确的,答案是(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的 [ ]4.4164:在狭义相对论中,下列说法中哪些是正确的?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些(A) (1),(3),(4) (B) (1),(2),(4) (C) (1),(2),(3) (D) (2),(3),(4) [ ]5.4169在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c (B) (3/5) c (C) (2/5) c (D) (1/5) c [ ]6.4356:一宇航员要到离地球为5光年的星球去旅行。
高中物理:第5章《相对论》单元测试2粤教版选修3-4

粤教版选修3-4第5章《相对论》单元同步测试2一、选择题(此题有7 个小题。
每题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确)1.以下属于广义相对论结论的是()A.尺缩效应B.时间变慢C.光芒在引力场中曲折D.物体运动时的质量比静止时大2.以下属于狭义相对论结论的是()A.尺缩效应B.时间变慢C.光芒在引力场中曲折D.水星近期点的进动3.假如宇航员驾驶一艘宇宙飞船,以靠近光速的速度朝某一星球飞翔,他能否能够依据以下变化感觉到自己在运动()A.身体质量在减小B.心脏跳动变慢C.身体质量在增添D.永久不行能由自己的变化知道他能否在运动4.(2008 年江苏高考 ) 惯性系S中有一边长为l 的正方形(如图A所示),从相对 S系沿 x方向以接近光速匀速飞翔的飞翔器上测得该正方形的图象是()y y y yl l l lO l x O l x O l x O l xA B C D5.( 江苏省盐城中学2009 届高三物理复习选修3-4 模块测试 ) 1905 年爱因斯坦提出了狭义相对论,狭义相对论的出发点是以两条基本假定为前提的,这两条基本假定是()A、同时的绝对性与同时的相对性B、运动的时钟变慢与运动的尺子缩短C、时间间隔的绝对性与空间距离的绝对性D、相对性原理与光速不变原理6.( 渭南市2009 年高三教课质量检测Ⅱ) 为了直接考证爱因斯坦狭义相对论中有名的质能方2程, E=mc 科学家用中子轰击硫原子,分别测出原子捕捉中子前后质量的变化以及核反响过程放出的能量,而后进行比较,精准考证了质能方程的正确性。
设捕捉中子前的原子质量为m1,捕捉中子后的原子质量为m2,被捕捉的中子质量为m3,核反响过程放出的能量为E,则这一实验需考证的关系式是()A.E=(m1- m2- m3)c 2B.E=(m1+m3- m2)c 2专心爱心专心C.E=( m2- m1- m3)c 2D.E=( m 2- m1+m3)c 27、 ( 天津市2009 届高三六校联考 ) 如下图,依据狭义相对论的看法,火箭 B是“追赶”光的;火箭 A 是“迎着”光飞翔的,若火箭相对地面A B 的速度为 v ,则两火箭上的察看者测出的光速分别为()光A.c v ,c vB.c ,cC.c v ,c vD.没法确立二、填空题8.依据相对论和基本力学规律能够推导出物体质量与能量之间的关系为________ ,这就是著名的 ________。
2019-2020年粤教版物理选修3-4第04节 广义相对论习题精选第一篇

2019-2020年粤教版物理选修3-4第04节广义相对论习题精选第一篇第1题【单选题】下列说法中正确的是( )A、声源向静止的观察者运动,观察者接收到的频率小于声源的频率B、麦克斯韦预言了电磁波的存在;楞次用实验证实了电磁波的存在C、由电磁振荡产生电磁波,当波源的振荡停止时,空间中的电磁波立即消失D、宇宙飞船以接近光速的速度经过地球时,地球上的人观察到飞船上的时钟变慢【答案】:【解析】:第2题【单选题】已知电子的静止能量为0.511 MeV,若电子的动能为0.25 MeV,则它所增加的质量Δm与静止质量m0的比值近似为( )A、0.1B、0.2C、0.5D、0.9【答案】:【解析】:第3题【单选题】下列说法中正确的是( )A、振动的物体通过平衡位置时,其合外力一定为零B、电磁波、超声波均可在真空中传播C、可见光在同一玻璃砖中传播时,波长越长、波速越小D、以0.75c的速度靠近地球的火箭向地球发出的光,在地球上测得其速度为c【答案】:【解析】:第4题【单选题】在一高速列车通过洞口为圆形的隧道,列车上的司机对隧道的观察结果为( )A、洞口为椭圆形,长度变短B、洞口为圆形、长度不变C、洞口为椭圆形、长度不变D、洞口为圆形,长度变短【答案】:【解析】:第5题【单选题】惯性系s中有一边长为l的正方形,从相对s系沿x方向以接近光速匀速飞行的飞行器上测得该正方形的图象是图中的( )A、B、C、D、【答案】:【解析】:第6题【多选题】以下说法中,错误的是( )A、矮星表面的引力很强B、在引力场弱的地方比引力场强的地方,时钟走得快些C、在引力场越弱的地方,物体长度越长D、在引力场强的地方,光谱线向绿端偏移【答案】:【解析】:第7题【多选题】在狭义相对论中,下列说法正确的是( )A、所有惯性系中基本规律都是等价的B、在真空中,光的速度与光的频率、光源的运动状态无关C、在不同惯性系中,光在真空中沿不同方向传播速度不相同D、质量、长度、时间的测量结果不随物体与观察者的相对状态的改变而改变【答案】:【解析】:第8题【填空题】甲、乙两人站在地面上时身高都是L0 ,甲、乙分别乘坐速度为0.6C和0.8C(C为光速)的飞船同向运动,如图所示。
广义相对论题目

广义相对论题目
广义相对论是爱因斯坦于1915年提出的一种物理学理论,它描述了引力的本质和规律。
以下是一些关于广义相对论的题目:
1. 广义相对论的两条基本原理是什么?
2. 广义相对性原理和等效原理的区别和联系是什么?
3. 爱因斯坦提出的三大预言分别是什么?
4. 光线在引力场中的偏折是如何解释的?
5. 什么是引力红移现象?
6. 广义相对论如何解释水星轨道近日点的进动?
7. 什么是黑洞?广义相对论如何描述黑洞?
8. 广义相对论如何解释宇宙的膨胀?
9. 广义相对论与量子力学的矛盾在哪里?如何解决这一矛
盾?
10. 广义相对论在现代物理学和天文学中的应用有哪些?
以上题目涵盖了广义相对论的基本原理、重要预言、经典应用和最新发展等方面。
解答这些问题可以帮助我们更好地理解和掌握广义相对论。
广义相对论

广义相对论广义相对论目录百科名片广义相对论(General Relativity),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。
目录概况广义相对论是阿尔伯特●爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。
广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立的。
在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相关系,其关系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。
从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。
广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。
不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。
爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。
有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。
光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。
广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台(LIGO)这样的引力波观测计划的目标。
此外,广义相对论还是现代宇宙学膨胀宇宙论的理论基础。
广义相对论题目

广义相对论题目
摘要:
1.广义相对论的背景与意义
2.广义相对论的基本原理
3.广义相对论的实验验证
4.广义相对论的应用领域
正文:
广义相对论是爱因斯坦在20 世纪初提出的一种描述引力现象的理论,它具有重要的物理学意义和深远的影响。
广义相对论的基本原理是等效原理和测地线原理,这两个原理构成了广义相对论的基石。
广义相对论的基本原理之一是等效原理,它认为在局部区域,无法通过实验区分引力和加速度产生的效果。
另一个原理是测地线原理,它指出在弯曲的时空中,物体的运动轨迹是测地线。
基于这两个原理,爱因斯坦提出了广义相对论的引力理论,用度量张量来描述时空的弯曲程度,从而解释了引力现象。
广义相对论的实验验证主要依赖于观测和实验。
例如,广义相对论预测了引力弯光现象,这一预测在1919 年的日食期间得到了实验验证。
此外,广义相对论还预测了引力红移现象,这一预测在实验室和天文观测中得到了验证。
这些实验验证为广义相对论的正确性提供了有力的证据。
广义相对论在多个应用领域发挥着重要作用。
例如,在导航系统中,广义相对论的修正是必不可少的,因为地球的引力场并非均匀,需要考虑引力场的弯曲效应。
此外,广义相对论还为黑洞、宇宙学等领域的研究提供了理论基
础。
总之,广义相对论是一种描述引力现象的理论,它基于等效原理和测地线原理,通过度量张量描述时空的弯曲程度。
广义相对论复习题(1)

广义相对论复习题一、 填空1、(1分)用来说明某一观测者在他的局域参考系中所测到的物理量与张量性物理理论中所得出的物理量之间的关系的理论就是观测量的理论。
2、(1分)一个局域参考系就是指一个按确定方式在时空中运动的观测者所携带的局域钢架和时钟。
3、(2分)时间和空间投影算符分别定义为νμμνπu u -=、νμμνμνu u g h +=。
4、(1分)物理的坐标系意指一个物理的观测者可以相对这坐标系局域静止。
5、(1分)0=μu 、0ˆˆ=Ωba ,这样的参考系叫费米平动参考系。
6、(1分)四轴系作为观测者的局域参考系,它的基矢的变率是否为零正是这局域参考系是否为惯性系的标志。
7、(1分)在广义相对论中,通常不能建立全局性的统一时间,但如果度规有性质00≡i g ,那么坐标时不仅可以对准而且已经对准了。
8、(1分)在广义相对论中,空间距离的概念对相邻点有确切的定义,对有限间距点通常没有确切的定义。
0这时有限曲线的长度可由积分得到确定值。
9、(2分)正交归一条件和完备性条件是四轴系的最基本的性质。
10、(2分)n 维仿射空间坐标变换的变换矩阵与逆变换矩阵有关系μννααμδ=∂∂∂∂x x x x ~ 、αββμμαδ=∂∂∂∂x x x x ~~。
11、(4分)仿射空间的张量分为逆变张量、协变张量、混合张量。
一个数组是否构成张量在于它们在坐标变换下的行为。
12、(1分)n 维仿射空间中,曲线上任意相邻两点的切矢量都相互平行的曲线,叫测地线。
13、(1分)自由粒子在引力场中的运动就是沿着测地线运动。
14、(2分)曲率与挠率一起,构成了刻画空间弯曲情况的基本张量。
如果在空间某区域V 内,曲率张量和挠率张量都恒等于零,则V 内的测地线是直线,称V 内的空间是平坦的。
15、(2分)在仿射空间中引入度规场和空间相邻两点的不变距离,就构成了黎曼空间。
黎曼空间相邻两点(坐标差为μdx )的距离为ds ,则=2ds νμμνdx dx g 。
精选2019-2020年粤教版物理选修3-4第04节 广义相对论课后辅导练习八十一

精选2019-2020年粤教版物理选修3-4第04节广义相对论课后辅导练习八十一第1题【单选题】通常我们把地球和相对地面静止或匀速运动的物体参考系看成惯性系,若以下列系统为参考系,则其中属于非惯性系的有( )A、停在地面上的汽车B、绕地球做匀速圆周运动的飞船C、在大海上匀速直线航行的轮船D、以较大速度匀速运动的磁悬浮列车【答案】:【解析】:第2题【单选题】有兄弟两人,哥哥乘坐宇宙飞船以接近光速的速度离开地球去遨游太空,经过一段时间返回地球,哥哥惊奇地发现弟弟比自己要苍老许多,该现象的科学解释是( )A、哥哥在太空中发生了基因突变,停止生长了B、弟弟思念哥哥而加速生长了C、由相对论可知,物体速度越大,物体上的时间进程越慢,生理进程也越慢D、这是神话,科学无法解释【答案】:【解析】:第3题【单选题】据报导,欧洲大型强子对撞机开足马力可以把粒子加速到光速的99.9%,单束粒子能量可达到7万亿电子伏特。
下列说法正确的是( )A、如果继续对粒子加速,粒子速度可以达到光速B、如果继续对粒子加速,粒子速度可能超过光速C、粒子高速运动时质量大于静止时的质量D、粒子高速运动时质量小于静止时的质量【答案】:【解析】:第4题【单选题】假设一辆由超强力电池供电的摩托车和一辆普通有轨电车,若都被加速到接近光速;在我们的静止参考系中进行测量,哪辆车的质量将增大( )A、摩托车B、有轨电车C、两者都增加D、都不增加【答案】:【解析】:第5题【多选题】如果牛顿运动定律在参考系A中成立,而参考系B相对于A做匀速直线运动,则在参考系B中( )A、牛顿运动定律也同样成立B、牛顿运动定律不能成立C、A和B两个参考系中,一切物理定律都是相同的D、参考系B也是惯性参考系【答案】:【解析】:第6题【多选题】有两辆较长的火车A和B,火车A静止不动,中央有一个光源,在某时刻发出一个闪光。
火车B以一较大的速度在平行于火车A的轨道上匀速运动,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义相对论样卷答案中国科大近代物理系尤一宁2017年6月11日1问答题1.1数学准备部分1.什么是张量积?若r重线性映射f:X1×···×X r→Z同构于线性映射g:W→Z,则W为X1×···×X r 的张量积.2.什么是张量?多重线性映射/多重线性函数.3.简述拓扑对于集合的意义拓扑可在集合中引入邻域、连续性、连通性等概念.4.什么是流形?X是一个Hausdorff拓扑空间,且对X上∀一点p,都∃一个邻域N(p)同胚于R n中的一个开集,则称X为一个流形.简言之,流形是局部同胚于R n中的开集的Hausdorff拓扑空间.5.微分结构和拓扑结构的区别拓扑结构赋予集合连续、邻域的概念,使得流形可以定义,拓扑结构产生拓扑群(连续11问答题2群);微分结构赋予流形上坐标卡之间映射的可微性,形成坐标卡集的等价类,和拓扑结构配适的微分结构产生李群.6.什么是切空间?流形上函数f在p点的方向导数v p(f)称为切矢量,流形上p点所有切矢量的集合是切空间.7.名词解释:李导数切矢量场u沿着切矢量场v的积分曲线的变化率L v u|p=limt→0(Φ−t)∗uΦt(p)−u pt称为切矢量场u沿着切矢量场v在p点的李导数.其中v在p点的邻域N(p)生成的局部单参数变换Φt所定义的推前映射将Φt(p)点的切矢量推到p点.8.微分同胚变换与坐标变换的关系微分同胚变换ΦX→X可以等价于X上的坐标变换;主动观点看,X上的点发生变化,张量场τ在微分同胚变换下变成X上的另外一个张量Φ∗τ;被动观点看,点不变,而微分同胚变换对张量的分量做了一个坐标变换,变换后的分量等于主动观点下Φ∗τ的分量.9.在流形上引入联络的目的是什么?产生光滑流形上两点的切空间之间的同构,以建立平行移动的概念.简言之,平行移动要求切矢量沿所走曲线方向不变,而联络赋予了流形上不同点之间切矢量的比较.10.解释什么是平行移动,什么是测地线?若v(t)沿曲线c的切矢量u的协变导数∇u v=0,则称v(t)沿曲线c平行移动;若一曲线c的切矢量u沿u本身的协变导数∇u u=0,则称曲线c是测地线.11.简述两个协变导数算子之间的关系导数算子∇和 ∇之间相差了一个(1,2)型张量场C c ab,有( ∇a−∇a)u c=−C c ab u b,( ∇a−∇a)ωb=C c abωc.12.简述流形上普通导数算子的特殊性1.由于(∂a∂b−∂b∂a)τa1···r b1···b r=0,普通导数算子对应的挠率和曲率都为0;2.普通导数算子依赖坐标卡的选取,只能在局部定义,且它与一般导数算子的差别Γc ab也依赖坐标卡的选取.13.简述度规和(无挠)联络之间的关系物理上要求度规和联络相容∇a g bc,则在流形(X,g ab)上给定挠率张量,则和度规相容的协变导数唯一;无挠情况下,取 ∇a=∂a,则和度规相容的联络与之相差Christoffel符号Γc ab=12g cd(∂a gbd+∂b g da−∂d g ab).1问答题314.简述曲率张量的几何意义曲率张量反应了一个切矢量沿曲线c平行移动一圈回到原点时的改变量的二阶近似.15.简述Killing矢量场和一般切矢量场的关系一般切矢量场都可诱导出流形之间的微分同胚,但Killing矢量场多了一个要求,即它在(X,g ab),(Y,h ab)之间诱导的微分同胚需满足等距性:φ∗h ab=g ab.16.描述一个类时线汇需要哪些几何量?分别写出这些几何量,说明它们的意义∇a u b=−u a a b+ωab+σab+1θh ab3转动张量ωab是被测粒子O相对于粒子O的瞬时转动速度,扩张标量θ是粒子O相对于粒子O的径向速率,剪切张量σab是粒子O相对于粒子O的无穷小距离发生的剪切形变(从球面变成等体积椭球面的趋势).1.2广义相对论部分1.广义相对论中什么是时空?时空是一个二元组(M,g ab),其中M是一个4-维的微分流形(Hausdorff、连通),而g ab 是时空上的度规,号差为(−1,1,1,1);简言之,广义相对论中的时空是一个4-维的Lorentz 流形.2.简述相对论性时空和经典时空的区别时空是一个流形,经典和相对论时空的区别在于度规的构造:经典时空中时间和空间先验地存在且被分别对待,需引入时间度规和空间度规,而相对论性时空只引入一个度规,不先验地区分时间和空间.3.相对论性的时空中什么是观测者?什么是参考系?观测者是一条类时世界线和观测者决定的固有坐标系;参考系是一个光滑的切矢量场,这个切矢量场的每一条积分曲线都是观测者的世界线,简言之,参考系是观测者的集合.4.相对论性时空中参考系和坐标系的区别和联系参考系是类时线汇,即观测者的集合;坐标系是一条类时世界线上观测者选取的坐标架.对于一个参考系,可以由它构造出一个适配的坐标系,但不是所有的坐标系都可与参考系适配.5.简述相对论中“相对”的理解等效原理是狭义相对论的基础,因此参考系之间有Lorentz变换;但广义相对论的基础,潮汐力实验证实不包含等效原理(1912),因此广义相对论的基础只有一个流形及其度规,没有参考系之间相对性的概念.1问答题46.简述物质场的能动量张量需满足的条件狭义相对论的能动量张量T ab 满足(i)T ab 是一个对称张量,对于时空上任意p 点处未来指向的单位类时矢量u a ,P a =−T a b u b 是4-动量密度(ii)若T ab 在R n 的某个开集为0当且仅当在这个开集上物质场为0;(iii)对称张量满足方程∇a T ab =0,其中∇a 与度规ηab 相容;广义相对论的能动量张量要求相同,只是度规为g ab .7.简述狭义相对论中的Einstein-Poincare 同时性观测者O (τ)在其固有时τ1向O ′(τ′)发出光线,经O ′(τ′)镜面反射回,观测者O (τ)在其固有时τ2收到返回的信号;若O ′(τ′)接收到信号的时间τ′=12(τ1+τ2),则称两个观测者的时钟是对准的.8.画出闵氏时空中惯性系和匀加速观测者的世界线惯性观测者世界线为直线,可洛伦兹变换为x =const.,t =τ,即垂直于x 轴的直线;匀加速观测者世界线为双曲线g −1=√−t 2+(x 1)2,加速度g 越大越弯曲靠近原点.1问答题59.简述测地偏离方程的物理含义测地线汇(a a=0)的测地偏离方程A a=−R cbd a u c z b u d体现了两个邻近的、“自由运动”的粒子的相对加速度正比于曲率张量.这是广义相对论中的潮汐力,描述了时空的弯曲程度与粒子运动的关系,因此潮汐力能够体现“引力”.10.简述费米沃克移动的含义一个矢量场v沿粒子世界线(切矢量为u)的运动若满足D F Wv a=u b∇b v a+(a a u b−dτu a a b)v b=0,则矢量场v a在基底{(e i)a}上的分量的变化率完全由基底的转动产生,换言之,v a沿着世界线不发生转动.11.什么是惯性观测者若观测者(类时世界线)的加速度a a=0,则称观测者为惯性(测地)观测者.12.简述费米法坐标系和黎曼法坐标系的区别和联系黎曼法坐标系:世界线上p点切矢量的正交基底,被指数映射到黎曼坐标系;引入一条测地线来定标,则其黎曼法坐标正比于p点基底下的分量.费米法坐标系:直接引入过p点的类空测地线来定标,且其切矢量与p点世界线切矢量正交,则在p点足够小邻域内可定义唯一的一条测地线的费米法坐标,其x0为观测者在p点的固有时.黎曼法坐标系的建立只用到指数映射和观测者的正交基底的选取,因此黎曼法坐标系上的Christoffel符号只能在世界线上的一点为0;但费米法坐标系可在世界线整体或一段上为0,只要观测者的4-加速度和自转为0.13.简述何谓惯性参考系、刚性参考系、超曲正交参考系对矢量场u a定义的参考系,若a a=0,则为惯性参考系;若ωab=0,则为超曲正交参考系;若θab=0,ωab=0,则为刚性参考系.1问答题614.简述等效原理弯曲时空上任意一点处的局部Lorentz系或测地无自转观测者的固有Lorentz系中的物理规律和狭义相对论中整体Lorentz系中的物理规律一样.15.爱因斯坦场方程及其含义时空的几何和物质场的能动量张量是联系在一起的:G ab=8πGT ab,其中G ab=R ab−12Rg ab是爱因斯坦张量,G是牛顿常数.16.Weyl张量的物理意义Weyl张量描述了时空弯曲程度中不是由物质场的能动量张量局部确定的“整体的”部分.17.简述什么是稳态时空、静态时空、稳态轴对称时空存在一个类时的Killing矢量场的时空,是稳态时空;存在一个类时的超曲面正交的Killing 矢量场的时空,是静态时空;存在一个类时Killing矢量场t a,和一个具有闭合轨道的类空Killing矢量场φa,且满足[t a,φa]=0,此时空是稳态轴对称时空.18.简述光线在太阳附近的偏折太阳这样巨大的星体,施瓦西半径2m很小,因此可以用围绕法求解光子轨道方程d2µdφ2+µ=3mµ2,可以得到若光子从φ=φ0的无穷远入射,则到无穷远出射时φ=π+φ0+4GmLc2,也就是说光线绕太阳行进时发生角度为4GmLc2的偏折.19.简述水星进动太阳这样巨大的星体,施瓦西半径2m很小,因此可以用围绕法求解有质量星体轨道方程d2µdφ2+µ−ml2+3mµ2=0,得到一阶近似µ1(φ)≈ml2{1+σcos[(1−δ)φ]},得到近日点为φ=0,但近日点2π近似为2π(1+δ),因此近日点每周期进动2πδ.20.什么是一点的编时过去、编时未来、因果过去、因果未来?p点的编时未来:集合I+(p)={q∈M|存在未来定向的类时曲线γ(τ)使得γ(0)=p,γ(1)= q}.编时过去:集合I−(p)={q∈M|存在过去定向的类时曲线γ(τ)使得γ(0)=p,γ(1)=q}.因果未来:集合J+(p)={q∈M|存在未来定向的因果曲线γ(τ)使得γ(0)=p,γ(1)=q}.因果过去:集合J−(p)={q∈M|存在过去定向的因果曲线γ(τ)使得γ(0)=p,γ(1)=q}.21.简述一个未来不可延者的事件视界其世界线为γ,则他的未来事件视界是其编时过去的边界,他的过去事件视界是其编时未来的边界.22.什么是黑洞?黑洞是一个区域,它的事件视界是渐进无限远平坦区域中所有寿命足够长的观测者所共有的未来事件视界,即B=M−I−(R).1问答题723.Penrose图的基本特征是什么?Penrose时空图是Kruskal时空图的共形等度规映射,将无限远可视化.类时无限远为点,记为i+,i−;类空无限远为点,i0,类光无限远为线,记为I+,I−.闵氏时空中,类时测地线从i−出发,到i+终止,类空测地线的起终点为i0,;类光测地线起终点在I+,I−上,且仍为和竖直方向成45度的直线(可以进行Weyl重新标度).24.简述Birkhoff定理真空爱因斯坦场方程Rµν=0的球对称解必为静态的,且具有施瓦西解的形式.25.简述星体中可能存在的抗衡引力塌缩的机制高温高压的星体内部存在大量的电子,由于泡利不相容原理,电子气体会产生很强的排斥压力,即简并压,可以远大于热运动产生的压力,是与引力抗衡的主要压强.26.简述Buchdahl定理在广义相对论中,只要ρ(r)≥0,ρ′(r)≤0,任何半径为R的球对称星体的质量都不能超过4R.927.简述Penrose奇异性定理的内容如果时空(M,g ab)包含一个非紧的柯西面和一个闭合的未来俘获面,且对任意的因果矢量场ξa满足R abξaξb≥0,则时空中存在未来不完备的类空测地线.28.线性引力理论中,平面引力波有哪些基本特征?线性引力近似在闵氏时空中描述自由无质量点粒子的运动,自旋为2,以光速传播;用洛伦兹规范、横向无迹规范后极化为2种,为+和-极化模式.2证明题829.简述爱因斯坦引力理论在弱场、低速、弱场且低速等极限下可得到什么样的理论时空度规退化到闵氏度规时,退化为狭义相对论;弱场近似,但不需要低速近似时,退化为线性引力理论;弱场、低速、物质低压强近似下,退化为牛顿引力理论;在牛顿近似下,引入广义相对论一阶修正,称为后牛顿引力理论.30.引力波源中产生引力波的主要部分是什么?质量4-极矩31.简述宇宙学原理每一时刻宇宙的空间在大尺度上是均匀各向同性的.32.简述宇宙奇点的存在性问题由Fridman方程˙H−ka2=−4πGρ,有3¨a=−4πa(ρ+3p);若物质满足强能量条件ρ+3p≥0,则˙θ≤0,可证明宇宙必然过去存在θ→∞的奇点.2证明题1.外代数的基本关系有:dx∧dy=−dy∧dxdx∧dx=0d(ω∧θ)=dω∧θ+(−1)deg(ω)ω∧dθ微分操作为(例如):ω=f(x1,x2,x3,x4)dx1∧dx2dω=∂f∂x3dx3∧dx1∧dx2+∂f∂x4dx4∧dx1∧dx22证明题9因此对此题,闭形式为dω=0:ω=xdxx2+y2+ydyx2+y2dω=−2yx(x2+y2)2dy∧dx+−2xy(x2+y2)2dx∧dy=0恰当形式及凑全微分:ω=d[12ln(x2+y2)],只用到复合函数,无需考虑外代数.2.2-阶的KroneckerDelta张量为:δa,cδb,d−δa,dδb,c和曲率进行缩并,考虑对称性化简,得到结果:2R ab ab=2R4-阶的KroneckerDelta张量为:δa1,d2δa2,d1δb1,c2δb2,c1−δa1,d1δa2,d2δb1,c2δb2,c1−δa1,d2δa2,c2δb1,d1δb2,c1+δa1,c2δa2,d2δb1,d1δb2,c1 +δa1,d1δa2,c2δb1,d2δb2,c1−δa1,c2δa2,d1δb1,d2δb2,c1−δa1,d2δa2,d1δb1,c1δb2,c2+δa1,d1δa2,d2δb1,c1δb2,c2 +δa1,d2δa2,c1δb1,d1δb2,c2−δa1,c1δa2,d2δb1,d1δb2,c2−δa1,d1δa2,c1δb1,d2δb2,c2+δa1,c1δa2,d1δb1,d2δb2,c2 +δa1,d2δa2,c2δb1,c1δb2,d1−δa1,c2δa2,d2δb1,c1δb2,d1−δa1,d2δa2,c1δb1,c2δb2,d1+δa1,c1δa2,d2δb1,c2δb2,d1 +δa1,c2δa2,c1δb1,d2δb2,d1−δa1,c1δa2,c2δb1,d2δb2,d1−δa1,d1δa2,c2δb1,c1δb2,d2+δa1,c2δa2,d1δb1,c1δb2,d2 +δa1,d1δa2,c1δb1,c2δb2,d2−δa1,c1δa2,d1δb1,c2δb2,d2−δa1,c2δa2,c1δb1,d1δb2,d2+δa1,c1δa2,c2δb1,d1δb2,d2和曲率进行缩并,考虑对称性化简,得到结果.其中分别有独立的曲率项带2个不同指标、3个不同指标、4个不同指标:4R ac ac R bd db+16R ac cb R bd ad+4R ab cd R dc ba=4R2−16R a b R b a+4R ab cd R dc ba3.(1)度规相容联络、无挠导数算子满足:∇a g bc=0(∇a∇b−∇b∇a)f=01-阶Ricci恒等式为:R abc d v d=(∇a∇b−∇b∇a)v c2证明题10应用以上各式:(∇a − ∇a)f=[(∇a g bc)∇b∇c+g bc∇a∇b∇c−g bc∇b∇c∇a]f=g bc(∇a∇b∇c−∇b∇c∇a)f=g bc[∇a∇b∇c−∇b∇a∇c+∇b(∇a∇c−∇c∇a)]f=g bc(∇a∇b∇c−∇b∇a∇c)f=g bc(∇a∇b−∇b∇a)∇c f=g bc R abc d∇d f=R ab bd∇d f=−R ab db∇d f=−R ab∇b f(2)对∇c v d的2-阶Ricci恒等式:(∇a∇b−∇b∇a)∇c v d=R abc e∇e v d+R abd e∇c v e应用以上各式:(∇a − ∇a)v d=g bc(∇a∇b∇c−∇b∇c∇a)v d=g bc[∇a∇b∇c−∇b∇a∇c+∇b(∇a∇c−∇c∇a)]v d=g bc(∇a∇b−∇b∇a)∇c v d+g bc∇b(R acd e v e)第一项为:g bc R abd e∇c v e+g bc R abc e∇e v d=R acd e∇c v e+R ab be∇e v d=R acd e∇c v e−R ae∇e v d第二项为:g bc∇b R acd e v e+g bc R acd e∇b v e=∇b R abd e v e+R acd e∇c v e相加得:(∇a − ∇a)v d=2R acd e∇c v e−R ae∇e v d+∇b R abd e v e,将指标替换为答案中的顺序d→c,c→b,e→d.2证明题114.需证明Bianchi 恒等式∇[a R bc ]de ,由Ricci 恒等式:(∇a ∇b −∇b ∇a )∇c ωd =R abc e ∇e ωd +R abd e ∇c ωe∇a [(∇b ∇c −∇c ∇b )ωd ]=∇a (R bcd e ωe )=ωe ∇a R bcd e +R bcd e ∇a ωe 对两式各做[a,b,c]的轮换,显然(∇[a ∇b ∇c ]−∇[b ∇a ∇c ])ωd =(∇[a ∇b ∇c ]−∇[a ∇c ∇b ])ωd ,因此上面右式的两个轮换也相等:R [abc ]e ∇e ωd +R [ab |d |e ∇c ]ωe =ωe ∇[a R bc ]d e +R [bc |d |e ∇a ]ωe由外微分d 2ω=0,可得∇[a ∇b ωc ]=0,故对∀ωd 有:2∇[a ∇b ωc ]=∇[a ∇b ωc ]−∇[b ∇a ωc ]=R [abc ]d ωd =0因此前面式子的左边第一项为0,而两边第二项因为轮换而相等,于是剩下:∀ωe ωe ∇[a R bc ]d e =0再降下e 指标,得到Bianchi 恒等式∇[a R bc ]de =0.展开恒等式有:∇a R bcde +∇b R cade +∇c R abde =0乘上g bd 做缩并,有:0=∇a R bc b e +∇b R cabe +∇c R ab b e=∇a R cbe b +∇b R cabe −∇c R abe b=∇a R ce −∇c R ae +∇b R ca b e再乘上g ce 做缩并,有:0=∇a R −∇e R ae +∇b R ca be=∇a R −∇e R a e −∇b R a b=∇a R −2∇b R a b于是有:∇b R a b −12∇a R =∇b (R ab −12Rg ab )=∇b G ab =05.由于v c ∇c (g ab v a v b )=g ab v a v c ∇c v b +g ab v b v c ∇c v a +v a v b v c ∇c g ab ,度规满足∇c g ab =0,测地线满足v c ∇c v a =0,因此显然v c ∇c ∥v ∥2=0.弧长定义为L =∫λq λp ds ∥v ∥,∥v ∥沿测地线为常数,得证.3计算题126.(1)Killing场满足L K g ab=∇a K b+∇b K a=0,能动量张量是对称张量,且满足∇a T ab=0,因此:∇a P a=∇a(T ab K b)=K b∇a T ab+T ab∇a K b=12(T ab+T ba)∇a K b=12T ab(∇a K b+∇b K a)=0(2)共形Killing场L K g ab=∇a K b+∇b K a=λg ab,因此:∇a P a=T ab∇a K b=12T ab(∇a K b+∇b K a)=λ2T ab g ab=0故有T ab g ab=0.7.能动张量为T ab=(ε+P)U a U b+P g ab,由于度规相容,缩并后仍有∇c g ca=0,有:0=∇c T ca=∇c[(ε+P)U c U a+P g ca]=U c∇c(ε+P)U a+(ε+P)∇c U c U a+(ε+P)a a+∇a P 使用U a U a=−1,a a U a=0,投影到U a;0=∇c T ca U a=−U c∇c(ε+P)−(ε+P)∇c U c+U a∇a P=−U c∇cε−(ε+P)∇c U c故L Uε+(ε+P)∇c U c=0使用h a b=g a b+U a U b,U a h a b=0,投影到h a b:0=∇c T ca h a b=(ε+P)a a(g a b+U a U b)+∇a P(g a b+U a U b)=(ε+P)a b+∇b P+U a∇a P U b降指标即为:(ε+P)a b+∇b P+(L U P)U b=03计算题1.完全用Mathematica计算,广义相对论常用程序包的代码如下(其中Weyl张量的代码里需改为DownRiemannCurvature):3计算题13此题度规只有非对角分量,对半分成两个非对角元.使用此程序包,输入变量:({0,−12e 2ϕ(u,v )}{−12e 2ϕ(u,v ),0}u v)使用ChrisoffelSym (z ),得到Christoffel 符号;使用RiemannCurvature (z ),得到R abc d 的结果:3计算题14使用DownRiemanncurvature(z),得到全下指标R abcd的结果;使用RicciT(z),得到Ricci 张量的结果;使用RicciS(z),得到Ricci标量的结果:2.使用MMA计算引力辐射(等质量双星系统):星体1x=Rcos(Ωt),y=Rsin(Ωt),z=0星体2x=−Rcos(Ωt),y=−Rsin(Ωt),z=0(1)计算4-极矩†ij的代码如下:PolarmomentI[z_]:=Module[{m,x,r,l},{m,x,r}=z;l=Length[m];res=Table[Sum[m[[a]]∗(x[[a,i]]∗x[[a,j]]−(1/3)∗(r[[a]])∧2∗KroneckerDelta[i,j]),{a,1,l}],{i,1,3},{j,1,3}];FullSimplify[res]]代入参数{{M,M},{{R Cos[tω],R Sin[tω],0},{−R Cos[tω],−R Sin[tω],0}},{R,R}},得到结3计算题15果:13MR2(3cos(2tω)+1)MR2sin(2tω)0MR2sin(2tω)13MR2(1−3cos(2tω))000−2MR23(2)计算†T T ij分量的代码如下:PolarmomentP[z_]:=Module[{x,dr,res},{x,dr}=z;res=Table[KroneckerDelta[i,j]−(x[[i]]∗x[[j]]/(dr)∧2),{i,1,3},{j,1,3}];FullSimplify[res]] PolarmomentITT[z_]:=Module[{x,xr,m,r,dr,P,I,res},{x,xr,m,r,dr}=z;I=PolarmomentI[{m,x,r}];P=PolarmomentP[{xr,dr}];res=Table[Sum[(P[[i,l]]∗P[[j,m]]−(1/2)∗P[[i,j]]∗P[[l,m]])∗I[[l,m]],{l,1,3},{m,1,3}],{i,1,3},{j,1,3}];FullSimplify[res]]代入参数z={{{R Cos[tω],R Sin[tω],0},{−R Cos[tω],−R Sin[tω],0}},{x1,x2,x3},{M,M},{R,R},r},做中间计算:y=PolarmomentITT[z]F ullSimplify[D[y,t,2]]得到¨†T T ij,里面含场矢量的分量的项特别多,现在只取一阶量:¨†T Txx=−¨†T T yy=−4MR2Ω2cos(2Ωt)¨†T Txy=−¨†T T yx=−4MR2Ω2sin(2Ωt)h T T xx =−h T Tyy=−8MR2rΩ2cos(2Ωt)h T T xy =−h T Tyx=−8MR2rΩ2sin(2Ωt)(3)计算辐射功率的代码为:p={{M,M},{{R Cos[tω],R Sin[tω],0},{−R Cos[tω],−R Sin[tω],0}},{R,R}}u=PolarmomentI[p]Intin=Sum[D[u,{t,3}][[i,j]]∗D[u,{t,3}][[i,j]],{i,1,3},{j,1,3}]Int=(1/(5∗τ))Integrate[Intin,{t,0,τ}]得到辐射功率为1285M2R4Ω6。