应用概率统计期末复习题及答案

合集下载

《概率统计》期末考试题(有答案)

《概率统计》期末考试题(有答案)
6.设 相互独立同服从区间(1,6)上的均匀分布, ( ).
7.设二维随机变量(X,Y)的联合分布律为
XY12
0
1

8.设二维随机变量(X,Y)的联合密度函数为 ,则
( )
9.若随机变量X与Y满足关系 ,则X与Y的相关系数 ( ).
10.设二维随机变量 ,则 ( ).
二.选择题(每小题 2分,共10 分)
五.证明题(6分)
设两两独立的三事件 满足条件 , ,且已知 ,试证明 .
参考答案
一.填空题:(共 10小题,每小题 2分,共20 分)
1. ( 0.3 );
2. ;
3. 0.0099 ;
4. 1,
5. 162
6. ;
7. ;
8.
9. .
10.2.
二.选择题(每小题 2分,共10 分)
1.(c) 2. 3.(c)4.(d) 5 .(b).
1.设当事件 同时发生时事件 也发生,则有( ).
2.假设事件 满足 ,则( ).
(a) B是必然事件 (b)
(c) (d)
3.下列函数不是随机变量密度函数的是().
(a) (ห้องสมุดไป่ตู้)
(c) (d)
4.设随机变量X服从参数为 的泊松分布,则概率 ( ).
5.若二维随机变量(X,Y)在区域 服从均匀分布,则 =( ).
3.设随机变量 的密度函数为 .(1)求参数 ;(2)求 的分布函数 ;(2)求 .
4.设随机变量 的密度函数为 ,求 的密度 .
5.设二维随机变量(X,Y)在区域 服从均匀分布,求(X,Y)的联合密度函数 与两个边缘密度函数 ,并判断 是否独立。
6.设随机变量 的数学期望均为0,方差均为1,且任意两个变量的协方差均为 .令 ,求 的相关系数..

应用概率统计期末复习题及答案

应用概率统计期末复习题及答案

第七章课后习题答案7.2 设总体X ~ N(12,4), X^XzJII’X n 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率.X解:由于 X ~ N(12,4),故 X 一 ~ N(0,1)/V n1 (2 0.8686 1) 0.2628107.3 设总体X 〜N(0,0.09),从中抽取n 10的简单随机样本,求P X :1.44i 1X i 0 X i 0X i ~N(0,°.09),故亠-X0r~N(0,1)X所以~ N(0,1),故UnP{ X1} 1 P{ X1}解: 由于X ~ N (0,0.09),所以10所以X i 22是)〜(10)所以10 10X : 1.44 Pi 1i 1X i 2(倉1.44 P0.09216 0.17.4 设总体X ~ N( , 2), X 1,X 2,|||,X n 为简单随机样本2,X 为样本均值,S 为样本方差,问U n X2服从什么分布?解:(X_)22( n )2X __ /V n,由于 X ~ N( , 2), 2~ 2(1)。

1 —n7.6 设总体X ~ N( , 2), Y〜N( , 2)且相互独立,从X,Y中分别抽取m 10, n215的简单随机样本,它们的样本方差分别为S2,M,求P(S2 4S; 0)。

解:S2P(S24S2 0) P(S24S;) P 12 4由于X ~ N( , 2), Y~ N( , 2)且相互独立S2所以S12~ F(10 1,15 1),又由于F°oi(9,14) 4.03 S2 即P F 4 0.01x第八章课后习题答案8.1 设总体X 的密度函数为f (x) C x ( 1) xC : C 0为已知,1。

X 1,X 2,|||,X n 为简单随机样本,(1) 的矩估计量。

⑵求的极大似然估计量。

解: (1) E(X) C xf(x)dx 1)dx x [1(1)]dx8.4 数,C C X dx (2)似然函数L(X 1,X 2,|”X n ;取对数(0C 1 f i (x)i 1C x i (1)nC n (nX i ) (1)i 1方程两侧对求导得g 皿d令^InL n d即极大似然估计量为设总体X 的密度函数为n Inn In Ci 1f(x)In n In CnnIn C x i 0nInX j nInCi 1In0,0,n1) iIn xnIn x i n In Ci 1其中 0是已知常0是未知参数,X 1,X 2,|||,X n 为简单随机样本:求 的极大似然估计量。

应用概率统计期末复习题及问题详解

应用概率统计期末复习题及问题详解

第七章课后习题答案7.2 设总体12~(12,4),,,,n X N X X X 为简单随机样本,求样本均值与总体均值之差的绝对值大于1的概率. 解:由于~(12,4)X N ,~(0,1)X N{1}1{1}1P X P X P μμ⎫->=--≤=-≤112(11(20.86861)0.262822P ⎡⎤=-≤=-Φ-=-⨯-=⎢⎥⎣⎦⎪⎭7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑.解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故~(0,1)0.3i i X X N σ--=所以10221()~(10)0.3i i X χ=∑ 所以{}101022211 1.441.44()160.10.30.09i i i i X P X P P χ==⎧⎫⎧⎫>=>=>=⎨⎬⎨⎬⎩⎭⎩⎭∑∑7.4 设总体2~(,),X N μσ12,,,n X X X 为简单随机样本, X 为样本均值,2S 为样本方差,问2X U n μσ⎛⎫-= ⎪⎝⎭服从什么分布?解:222X X X U n μσ⎛⎫⎛⎫-=== ⎪⎝⎭,由于2~(,)X N μσ,~(0,1)N,故22~(1)X U χ⎛⎫=。

7.6 设总体2~(,),X N μσ2~(,)Y N μσ且相互独立,从,X Y 中分别抽取1210,15n n ==的简单随机样本,它们的样本方差分别为2212,S S ,求2212(40)P S S ->。

解: 222221121222(40)(4)4S P S S P S S P S ⎛⎫->=>=> ⎪⎝⎭由于2~(,),X N μσ2~(,)Y N μσ且相互独立所以2122~(101,151)S F S --,又由于0.01(9,14) 4.03F =即()40.01P F >=第八章课后习题答案8.1 设总体X 的密度函数为(1),()010,C x x C f x C x C 为已知,θθθθ-+⎧>=>>⎨≤⎩。

【精选】国家开放大学电大本科《应用概率统计》2029-2030期末试题及答案(试卷号:1091)

【精选】国家开放大学电大本科《应用概率统计》2029-2030期末试题及答案(试卷号:1091)

国家开放大学电大本科《应用概率统计》2029-2030期末试题及答案(试卷号:1091)1-袋中有50个乒乓球,其中20个是黄球,30个是白球。

今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 ______________________ .2.设/(x,y)是二维随机变量(X,y)的联合密度函数,儿愆)与/, (y)分别是关于X与丫的边缘概率密度,且X与丫相互独立,则有/(x ,、)为_________________ .3.在每次试验中,事件A发生的概率等于0.5.利用契比雪夫不等式估计:在1000次独立试验中,事件A发生的次数在400和600次在之间的概率> __________________ o4.已知某一产品的某一指标X〜NQ Z,(0.5)2),若要使样本均值与总体期望值的误差不小于0.1,则至少应抽取容量为_________________ 的样本。

(设置信度为95% )5.当r e.ol < |r|<r0.05时,则变量丫为X的线性相关关系____________________ 。

二、判断题(回答对或错,每小题3分,共15分)6.设随机变筮X〜N(l,l),其概率密度为/(x),且分布函数为F(x),则P<X<l}=P{X21}=0.5 成立」)7.设两个相互独立的随机变量的方差分别为4和2,随机变量3X-2Y的方差是16.()8.设随机变量丁服从自由度为〃的,分布,则随机变量丁2服从F”.()9.在假设检验中,记Hi为备择假设,则称“若Hi不真,接受H,”为犯第一类错误。

()10.K A I=^O<»=1«2,3)为因素在A的三个不同水平试验指标之和。

()三、计算题(每小题10分,共50分)11.一个祀子是一个半径为2米的圆盘,设每次射击均能中祀,且击中靶上任一同心圆盘的概率与该圆盘的面积成正比,以X记弹着点与圆心的距离,求X的分布函数。

应用概率统计期末复习题及答案

应用概率统计期末复习题及答案

应用概率统计期末复习题及答案第七章课后习题答案7.2设置总x~n(12,4),x1,X2,?,Xn是一个简单的随机样本,得到样本均值和总体均值之和差的绝对值大于1的概率.解:由于x~n(12,4),故x??~n(0,1)N十、1.p{x1}?1.p{x1}?1.Pnnx5512()11p1(20.86861)0.262822n102 7.3设总体x~n(0,0.09),从中抽取n?10的简单随机样本,求p??xi?1.44?.我1.解:因为x~n(0.09),席~n(0,0.09),所以所以席?0席?0~n(0,1)0.3?(i?110xi2)~?2(10)0.3? 102?? 10xi21。

44? 2那么p??席?1.44?? P() P16?? 零点一0.09??i?1??i?10.37.4设总体x~n(?,?),x1,x2,?,xn为简单随机样本,x为样本均值,s为样22? 十、本,问你?N服从什么分配?解:u?n?2?xx???(x??)2??,由于x~n(?,?),22?(n)??n?2222?xx??2u?所以,故~n(0,1)??~?(1)。

NN一7.6设总体x~n(??,2)y,~n(??,2)且相互独立,从x,y中分别抽取22.找到P的简单随机样本(S12?4s2n1?10和N2?15,其样本方差分别为S12和S2?0)。

s12解:p(s?4s?0)?p(s?4s)?p?2?4?s2?21222122因为x~n(?,2)和Y~n(?,2)是相互独立的s12所以2~f(10?1,15?1),又由于f0.01(9,14)?4.03S2 p?F4.零点零一2第八章课后练习的答案c?x?(1)8.1设总体x的密度函数为f(x)??0?x?c,x?c,c?0为已知,??1。

(2)拜托?最大似然估计。

x1,x2,?,Xn是一个简单的随机样本,(1)发现?矩估计器。

解决方案:(1)??e(x)cxf(x)dx cx?cx??(??1)dx??Ccx[1?(??1)]dxccxdxc?1?(0?c1)?c?x11故?x。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

应用统计期末复习题及参考答案

应用统计期末复习题及参考答案

一简答题 (共10题,总分值100分 )1. 联系实际论述统计的基本职能。

(10 分)2. 下面是20个职工的一次业务考核成绩,请以5分为组距对它们进行分组整理,编制出次数分布表。

96 84 76 85 95 84 86 78 79 7580 82 83 82 87 92 90 92 96 83 (10 分)3. 联系实际论述变异指标的作用和类型(10 分)4. 联系实际阐述统计调查方案的内容(10 分)5. 下面是20个职工的年龄,请以5岁为组距对它们进行分组整理,编制出次数分布表。

51 28 37 46 35 43 37 39 40 2642 43 42 33 29 30 45 37 46 46 (10 分)6. 联系实际论述统计工作的过程(10 分)7. 某企业2015、2016、2017年的产量分别为:410万件、480万件、510万件,请计算该企业2016年和2017年产量的:⑴逐期增长量;⑵累积增长量;⑶环比增长速度;⑷定基增长速度(10 分)8. 结合实例阐述相关关系的种类(10 分)9. 联系实际论述典型调查的意义和作用(10 分)10. 某公司2014、2015、2016年的利润分别为:400万元、800万元、900万元,请计算该公司2015和2016年利润的:⑴逐期增长量;⑵累积增长量;⑶环比增长速度;⑷定基增长速度(10 分)一简答题 (共10题,总分值100分 )1. 答案:统计的基本职能包括:信息职能、咨询职能、监督职能。

信息职能表现在根据科学的统计指标和统计调查方法,全面、系统地搜集、处理和提供大量的以数据描述为基本特征的社会经济信息。

统计工作者通过对统计资料经过反复筛选,提炼出有价值的、接受者尚未掌握的数字情报资料等信息,向这些信息使用人提供服务。

咨询职能指利用已经掌握的丰富的统计信息资源,运用科学的分析方法和先进的技术手段,深入开展综合分析和专题研究,为科学决策和现代管理提供各种可供选择的咨询建议和对策方案。

【精选】国家开放大学电大本科《应用概率统计》2023-2024期末试题及答案(试卷号:1091)

【精选】国家开放大学电大本科《应用概率统计》2023-2024期末试题及答案(试卷号:1091)

国家开放大学电大本科《应用概率统计〉2023-2024期末试题及答案(试卷号:1091)1. 设事件A 与B 相互独立,若已知P (A U B)=0. 6, P(A)=0. 4,则P(B)= ------------------------------- •2. 已知随机变量X 〜N(1,22),X|,X2,…,X.为取自X 的简琳随机样本,则统计匿士兰服从参数为 _____________________ 的正态分布。

2/而3. 设/Cr,y)是二维随机变量(X,V)的联合密度函数,fx(工)与分别是关于x与Y 的边缘概率密度,且X 与Y 相互独立,则有/■(],»)= ------------------------ °4. 设随机变St 序列X,,X 2,-,X n ,…相互独立,服从相同的分布,且E(X») = “ ‘ D(X*)=(T 2> 0以=1,2,…),由莱维一林德伯格中心极限定理可知,当”充分大时,Sx*将近似地服从正态分布 ___________________________ . 5. 离差平方和始= __________________________ •6. X 】,X2,・・・,X“是取自总体N(")的样本,则X = rS x - ®从N(0,l )分布。

(71 ("17- 设甲、乙、丙人进行象棋比赛,考虑事件A ={甲胜乙负},则同为《甲负乙胜}.() 8- 设随机变量X 和丫的方差存在且不为零,若D(X+Y)=D(X)+O(y)成立,则X 和 丫一定不相关。

()9- 若C 是常数,则有E(C) = C° ()10.已知离散型随机变量X 服从参数为2的泊松分布,即P {x=4}=£_eT"=0,l,2, K !…,则随机变蛰Z=3X-2的数学期望E(Z)为8。

() 11.已知随机变量X 服从二项分布B(n,p),且E(X)=6,D(X)=3. 6,试求二项分布 的参数“ r p 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章课后习题答案7.2 设总体12~(12,4),,,,n X N X X X 为简单随机样本,求样本均值与总体均值之差的绝对值大于1的概率. 解:由于~(12,4)X N ,~(0,1)X N{1}1{1}1P X P X P μμ⎫->=--≤=-≤112(11(20.86861)0.262822P ⎡⎤=-≤=-Φ-=-⨯-=⎢⎥⎣⎦⎪⎭7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑.解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故~(0,1)0.3i i X X N σ--=所以10221()~(10)0.3i i X χ=∑ 所以{}101022211 1.441.44()160.10.30.09i i i i X P X P P χ==⎧⎫⎧⎫>=>=>=⎨⎬⎨⎬⎩⎭⎩⎭∑∑7.4 设总体2~(,),X N μσ12,,,n X X X 为简单随机样本, X 为样本均值,2S 为样本方差,问2X U n μσ⎛⎫-= ⎪⎝⎭服从什么分布?解:222X X X U n μσ⎛⎫⎛⎫-=== ⎪⎝⎭,由于2~(,)X N μσ,~(0,1)N,故22~(1)X U χ⎛⎫=。

7.6 设总体2~(,),X N μσ2~(,)Y N μσ且相互独立,从,X Y 中分别抽取1210,15n n ==的简单随机样本,它们的样本方差分别为2212,S S ,求2212(40)P S S ->。

解: 222221121222(40)(4)4S P S S P S S P S ⎛⎫->=>=> ⎪⎝⎭由于2~(,),X N μσ2~(,)Y N μσ且相互独立所以2122~(101,151)S F S --,又由于0.01(9,14) 4.03F =即()40.01P F >=第八章课后习题答案8.1 设总体X 的密度函数为(1),()010,C x x C f x C x C 为已知,θθθθ-+⎧>=>>⎨≤⎩。

12,,,n X X X 为简单随机样本,(1)求θ的矩估计量。

(2)求θ的极大似然估计量。

解:(1)(1)[1(1)]()()CCCE X xf x dx x C xdx Cx dx θθθθμθθ+∞+∞+∞-+-+====⎰⎰⎰11(0)11CC x dx C C C X θθθθθθθθθ+∞--==-==--⎰故XX Cθ=-。

(2) 似然函数121(,,;)()n n i i L x x x f x θ==∏(1)(1)11()nnnn ii i i C x C x θθθθθθ-+-+====∏∏取对数12ln (,,;)n L x x x θ=1ln ln (1)ln ni i n n C x θθθ=+-+∑方程两侧对θ求导得1ln ln ln ni i d L nn C x d θθ==+-∑ 令1ln ln ln 0ni i d L nn C x d θθ==+-=∑ 得 1ln ln nii nx n Cθ==-∑即极大似然估计量为1ln ln nii nXn Cθ==-∑8.4 设总体X 的密度函数为10,()00,xx e x f x x ααλλα--⎧>⎪=⎨≤⎪⎩其中0α>是已知常数,0λ>是未知参数,12,,,n X X X 为简单随机样本,求λ的极大似然估计量。

解:似然函数121(,,;)()n n i i L x x x f x λ==∏11111()ni i i nnx x nnii i i x ex eααλλααλαλα=----==∑==∏∏取对数12ln (,,;)n L x x x λ=11ln ln (1)ln n ni i i i n n x x αλααλ==+---∑∑方程两侧对λ求导得1ln n i i d L n x d αλλ==-∑ 令1ln 0n i i d L n x d αλλ==-=∑ 得 1nii nxαλ==∑即极大似然估计量为1nii nX αλ==∑8.6 设某种清漆的9个样品,其干燥时间(单位:h )分别为6.0,5.7,5.8,6.5,7.0,6.3,5.6,6.1,5.0设干燥时间2~(,),T N μσ就下面两种情况μ的置信度为0.95的双侧置信区间。

(1)0.6()h σ= (2)σ未知解:由已知可得26,0.574,0.33x s s ===(1)由于0.6σ=,9n =,0.05α=,0.025 1.96z =取统计量~(0,1)X Z N =所以μ的置信区间为22(X z X z αα-+即0.60.6(6 1.96,6 1.96)(5.608,6.392)33-⨯+⨯=(2)σ未知,9n =,0.05α=,0.574s =故取统计量2~(1)T t n α=- ,0.025(8) 2.306t =所以置信区间为22(((X t n X t n αα--+- 0.5740.574(6 2.306,6 2.306)(5.558,6.441)33-⨯+⨯= 8.8 随机的抽取某种炮弹9发做实验。

求得炮口速度的样本标准差11(/)S m s =,设炮口速度服从正态分布2(,),N μσ求炮口速度的均方差2σ的置信度为0.95的双侧置信区间。

解:均值μ未知,9n =,2(1)8121968n s -=⨯=,0.05α= 查表得20.025(8)17.535χ=,20.975(8) 2.18χ= 取统计量2222(1)~(1)n S n χχσ-=-,故置信下限为220.025(1)96855.2(8)17.535n s χ-==,置信上限为220.975(1)968444(8) 2.18n s χ-==所以2σ的置信区间为(55.2,444)8.11 研究两种燃料的燃烧率,设两者分别服从正态分布21(,0.05),N μ22(,0.05),N μ取样本容量1220n n ==的两组独立样本求得燃烧率的样本均值分别为18,24,求两种燃料燃烧率总体均值差12()μμ-的置信度为0.99的双侧置信区间.解:已知21~(,0.05),X N μ22~(,0.05),Y N μ1220n n ==,18x =, 24y =, 0.01α=故去统计量X Y Z =,由于0.0050.005() 2.58z t =∞=,所以 2.580.041δ==≈ 故置信区间为(-6.041,5.959)8.12 两化验员甲、乙各自独立的用相同的方法对某种聚合物的含氯量各做10次测量,分别求得测定值的样本方差为210.5419s =,220.6065s =,设测定值总体分别服从正态分布211(,),N μσ222(,),N μσ试求方差比2212()σ的置信度为0.95的双侧置信区间.解:已知210.5419s =,220.6065s =,1210n n ==,0.05α=取统计量22122212S S F σσ=,由于0.0252(9,9)(9,9) 4.03F F α==故置信下限为22221212120.02520.222(1,1)(9,9)s s s s F n n F α==--置信上限为2211210.02522222(1,1)(9,9) 3.601s s F n n F s s α--==所以置信区间为(0.222,3.601)第九章课后习题答案9.1 假定某厂生产一种钢索,其断裂强度5(10)X Pa 服从正态分布2(,40),N μ从中抽取容量为9的样本,测得断裂强度值为793, 782, 795, 802, 797, 775, 768, 798, 809据此样本值能否认为这批钢索的平均断裂强度为580010Pa ⨯?(0.05α=)解:已知791x =,2~(,40),X N μ 9n =, 0.05α=0:800H μ= 1:800H μ≠取统计量~(0,1)Z N =,故7918000.675403z -== 由于0.025 1.96z =,且27918000.675403z z α-==<又因为0H 的拒绝域是2z z α>所以接受0H ,拒绝1H .即可以认为平均断裂强度为580010Pa ⨯.9.3 某地区从1975年新生的女孩中随机抽取20个,测量体重,算得这20个女孩的平均体重为3160g ,样本标准差为300g ,而根据1975年以前的统计资料知,新生女孩的平均体重为3140g ,问1975年的新生女孩与以前的新生女孩比较,平均体重有无显著性的差异?假定新生女孩体重服从正态分布,给出0.05α=. 解:由已知3160,300x s ==,20n =,0.05α=0:3140H μ= 1:3140H μ≠取统计量2~(1)X T t n α=-,0.298T ===0.0252(19)(19) 2.0930t t α==所以0.02520.298 2.0930(19)(19)T t t α=<==,不在拒绝域2(19)T t α>中,故接受0H ,拒绝1H .即体重无明显差异.9.5 现要求一种元件的使用寿命不得低于1000h ,今从一批这种元件中随机的抽取25件,测定寿命,算得寿命的平均值为950h ,已知该种元件的寿命2~(,),X N μσ已知100σ=,试在检验水平0.05α=的条件下,确定这批元件是否合格?解:已知 25n =,950x =,100σ=,0.05α=0:1000H μ= 1:1000H μ<取统计量~(0,1)Z N=,故9501000 2.51005Z -==- 由于0.05 1.645z z α==,且95010002.5 1.6451005Z z α-==-<-=-又因为0H 的拒绝域是Z z α<-,所以拒绝0H ,接受1H . 即认为这批元件不合格.9.8 某厂生产的铜丝,要求其拉断力的方差不超过216()kg ,今从某日生产的铜丝中随机的抽取9根,测得其拉断力为(单位:kg )289 , 286 , 285 , 284 , 286 , 285 , 286 , 298 , 292设拉断力总体服从正态分布,问该日生产的铜丝的拉断力的方差是否合乎标准?(0.05α=).解:由已知有9n =,287.9x =, 4.51s =,220.36s =,0.05α=有假设 20:16H σ≤ 21:16H σ>取统计量222(1)820.3610.1816n S χσ-⨯==≈查表得 220.05(8)(8)15.507αχχ==,由于 22(8)αχχ<又因为 0H 的拒绝域是22(1)n αχχ>-所以接受0H , 拒绝1H ,即认为是合乎标准的。

相关文档
最新文档