人工智能复习提纲

合集下载

高级人工智能复习提纲

高级人工智能复习提纲

13. 说明解释泛化学习的过程。
解释泛化学习问题: 已知: • 目标概念 • 训练例 • 领域理论 • 可操作性标准 欲求: • 训练实例的泛化,使之满足以下条件 1) 是目标概念的充分概念描述 2) 满足可操作性标准 解释泛化学习的过程可以分为两个阶段: 1. 解释 • 利用领域理论知识解释为什么训练例满足目标概念的定义 2. 泛化 • 确定解释成立的最通用的条件
支持向量机需要使用核函数来进行非线性分类。 SVM 核心思想是建立在结构风险最小化原则基础上,可以自动寻找出那些对分类有较好区 分能力的支持向量,构成超平面作为两类的分割。 对非线性可分的处理是利用变换,把 数据输入从低维空间射到高维空间,然后在这个高维 空间中,将低维上非线性可分的问题变换成高维空间上线性可分的问题,求出分划超平面。 在高维空间中,实际上可以只需要进行内积计算,只要有一种核函数满足 Mercer 条件,它 就对应某一空间中的内积
14. 什么是深度学习?
是一类机器学习技术,利用多层次的非线性信息处理 的监督或无监督的特征提取和转换, 并进行模式分析和分类。即使用多层前向网络,每层网络相对独立的进行训练,然后多层联 合起来可以提高分类的准确性。
15. 给出强化学习的模型,并説明其含义。
强化学习系统接受环境状态的输入 s,根据内部的推理机制,系统输出相应的动作行为 a。 环境在系统动作作用 a 下,变迁到新的状态 s’。系统接手环境新状态输入,同时得到环境对 于系统的瞬时奖惩反馈 r。对于强化学习系统来讲,其目标是学习一个行为策略 π:S -> A, 使得系统选择的动作能够获得的环境奖励的累计值最大。
6. 什么是定性推理?
定性推理是从物理系统、生命系统的结构描述出发,导出行为描述,以便预测系统的行为并 给出原因解释。 定性推理采用系统部件间的局部结构规则来解释系统行为, 即部件状态的变 化行为只于直接相邻的部件有关。

人工智能总复习

人工智能总复习

第五章 问题求解与搜索策略(重点)
状态空间的搜索策略
状态空间表示
宽/广度优先搜索,代价树搜索,A/A*算法
与/或树的搜索策略
问题归约表示
宽/广度优先搜索,代价树搜索
第六章 人工神经网络(了解,可考)
人工神经网络基本结Leabharlann 了解人工神经网络当今新技术新发展
第七章 计算智能(了解,可考)
遗传算法
人工智能总复习
2018.1.5
第一章 绪论(了解)
人工智能的定义 人工智能的应用领域 人工智能的学科基础(哲学、数学、神经科学、计算机
学……) 人工智能的发展过程 人工智能领域的重要人物以及一些重要事件
第二章 知识表示(重点)
状态空间法 谓词逻辑法 问题归约法 与或树搜索 语义网络法 框架表示 其他方法(剧本表示、过程表示)
第三章 经典逻辑推理(重点)
自然演绎推理 归结演绎推理(子句集、归结、结论证明/问题求解) 与或形演绎推理
第四章 不确定推理(重点)
主观Bayes方法 可信度方法 (CF模型、阈值/加权/……) 证据理论 模糊推理(扎德模糊推理)
Rm ( A B) (AV ) UV (A(u) B (v)) (1 A(u)) /(u, v) Ra (AV ) (U B) UV 1 (1 A(u) B (v)) /(u,v)
基本概念、基本流程、重要操作算子
进化策略 进化编程 人工生命

人工智能简略复习大纲58

人工智能简略复习大纲58
人工智能简略复习大纲 58
PPT文档演模板
2020/11/9
人工智能简略复习大纲58
课程简介
• 通过人工智能课程的学习,了解人工智能 的发展概况、人工智能与人类智能之间的 联系、人工智能的应用领域、机器学习、 神经计算、遗传算法、专家系统等基本概 念,掌握知识表示方式和推理、搜索推理、 消解原理等人工智能原理的基本理论、方 法及其应用技术,注重培养综合运用人工 智能原理的知识解决问题的能力。
PPT文档演模板
人工智能简略复习大纲58
宽度优先搜索与深度优先搜 索的其他区别:
• 只要问题有解,宽度优先搜索总是能找到, 并且找到的总是搜索路径最短的解;而深 度优先搜索却因为可能陷入一条“花园小 径”,不一定能够找到解,并且找到的解 也不一定是搜索路径最短的解。
PPT文档演模板
人工智能简略复习大纲58
• 这种方法,也可称为均一代价法或等代价 法。
PPT文档演模板
人工智能简略复习大纲58
耗散值的概念及应用
• 搜索图中,在任意两节点弧线间移动付出 的代价,叫弧线耗散值。
• 而一条路径的耗散值等于,连接这条路径 各节点间所有弧线耗散值的总和。
• 分支界限法、动态规划法(均一代价法、 等代价搜索法)中,均采用路径耗散值作 为评价函数,即每次扩展优先选择具有最 小路径耗散值的节点进行,记做f(n)=g*(n)。
PPT文档演模板
人工智能简略复习大纲58
PPT文档演模板
•开始
•把S放入OPEN表
•OPEN表为空表?
•是
•失败
•否 •n为目标节点吗?
•是
•成功
•否
•把第一个节点(n)从OPEN表移至CLOSED表
•把n的后继节点放入OPEN表的 末端,提供返回节点n的指针

人工智能复习资料整理(修正版-如发现计算错误请指出)

人工智能复习资料整理(修正版-如发现计算错误请指出)

一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。

(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。

(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。

2.人工智能三个基本问题:知识获取、知识推理、知识利用。

3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。

4.机器学习分为:监督学习、无监督学习、强化学习。

5.遗传算法基本操作分为:选择、交叉和变异。

6.产生式系统的构成分为:规则库、综合数据库和推理机。

7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。

8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。

(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。

12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。

13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。

《人工智能原理》复习大纲

《人工智能原理》复习大纲

《人工智能原理》复习大纲《人工智能原理》复习大纲一、课程简介学生通过人工智能原理课程的学习,要了解人工智能的发展概况、人工智能与人类智能之间的联系、人工智能的应用领域、神经计算、模糊逻辑与模糊计算、遗传算法、专家系统等基本概念,掌握知识表示方式和推理、搜索推理、消解原理等人工智能原理的基本理论、方法及其应用技术,注重培养综合运用人工智能原理的知识解决问题的能力。

二、课程重点章节介绍本课程共分6章,其中第1.1,1.4,2.1~2.5,3.2,3.4~3.6,4.2,4.3,5.1章为重点章节。

三、本课程重点和难点内容简介第1章人工智能的定义(机器、学科、能力),人工智能三种主要学派及其主要观点,人工智能的应用领域第2章五种主要知识表示方法的应用(状态空间表示法、问题规约法、一阶谓词逻辑、语义网络和框架表示方法),置换与合一第3章图搜索的一般过程,广度优先搜索与有界深度优先搜索,谓词公式化子句集,消解反演,规则正向演绎、逆向演绎推理,不确定推理中证据和结论不确定性的计算。

第4章人工神经元的结构模型,神经元的几种互连形态及其特点,神经网络的推理过程,模糊集合、模糊逻辑、模糊关系合成第5章遗传算法的基本机理第6章专家系统的定义及其特征,专家系统的分类,Prolog的使用难点:置换与合一、五种知识表示方式的应用、消解反演、规则正、逆向演绎推理、模糊运算、遗传算法的基本机理。

通过学习和实践,学生要能够对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,初步掌握Prolog的编程方法。

各章具体要求详见《教学大纲》。

四、本课程内容疏理及应用领域、应用方法讲解第1章1.从不同科学或学科出发对人工智能进行了定义,着重掌握下面三种:定义1 智能机器能够在各类环境中自主地或交互地执行各种拟人任务(anthropomorphic tasks)的机器。

定义2 人工智能(学科) 人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。

人工智能 考试复习提纲

人工智能 考试复习提纲

第一章绪论●人工智能的诞生:1965年夏季,在达特茅斯大学●人工智能的学派:符号主义,联结主义,行为主义第二章知识表示方法●知识的特性:1.相对正确性;2.不确定性;3.可表示性;4.可利用性●★用谓词公式表示知识的步骤:1.定义谓词及个体,确定每个谓词及个体的确切含义。

2.根据所要表达的事物或概念,为每个谓词中的变元赋以特定的值。

3.根据所要表达的知识的语义,用适当的联接符号将各个谓词联接起来,形成谓词公式。

●★★机器人搬弄积木块问题表示P19●★一阶谓词逻辑表示法的特点:1.自然性;2.适宜于精确性知识的表示;3.易实现;4.与谓词逻辑表示法相对应的推理方法。

●产生式系统的组成:1.规则库;2.综合数据库;3.推理机●★产生式系统的推理方式:1.正向推理:①规则库中的规则与综合数据库中的事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③执行启动规则的后件。

将该启用规则的后件送入综合数据库或对综合数据库进行必要的修改。

重复这个过程直至达到目标。

2.反向推理:①规则库中的规划后件与目标事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③将启用规则的前件作为子目标。

重复这个过程直至各子目标均为已知事实,则反向推理的过程成功结束。

●★★语义网络表示知识举例:P36 例2.5、2.6、2.7;P71 作业18●框架的定义及组成:一个框架由若干个“槽”组成,每个“槽”又可划分为若干个“侧面”。

一个槽用于描述所论及对象的某一方面的属性,一个侧面用于描述相应属性的一个方面。

框架名<槽名><侧面><值>●脚本表示法:美国耶鲁大学的R.C.Schank及其同事们根据概念从属理论提出了一种知识表示方法——脚本表示法。

●问题状态空间的构成:1.状态;(2).算符;3.状态空间。

●★用状态空间表示问题的步骤1.定义状态的描述形式;2.用所定义的状态描述形式把问题的所有可能的状态都表示出来,并确定出问题的初始状态集合描述和目标状态集合描述;3.定义一组算符。

人工智能复习重点

人工智能复习重点

填空:1、人工智能(Artificial Intelligence,AI)主要研究用人的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。

2、人工智能之父:麦卡锡3、1973年基于一阶谓词逻辑中Horn自居理论的PROLOG语言4、产生式系统是1943年铂斯特提出,他用这种规则对符号串作替换运算产生式系统又:MYCIN、CLIPS、JESS5、语义网络是一种通过概念及其语义联系来表示知识的有向图,结点和弧必须带有标注6、问题求解系统的划分:知识贫乏系统知识丰富系统;前者依靠搜索技术解决问题,后者需求助推理技术7、盲目搜索有深度优先搜索和宽度优先搜索典型的启发式搜索有A算法A*算法为了节约计算机的存储容量,提高搜索效率,通常采用隐式存储方式进行隐式图搜索推理8状态空间很大的问题,设计搜索策略的关键是解决组合爆炸问题所谓组合爆炸是指:问题因素很多时,因素可能的组合个数会爆炸性增长,引起状态空间的急剧膨胀。

9所谓推理就是按照某种策略从已有事实和知识推出结论的过程。

推理又程序实现的,称为推理机。

简答:一、人工智能定义:就是要让机器的行为看起来就像人所表现出来的智能行为一样。

也就是人造机器所表现出来的智能。

二、人工智能的应用领域:1.机器学习:就是要让计算机能够像人那样自动获取新知识,并在实践中不断地完善自我和增强能力,是的系统下一次执行相同或类似的任务时,会比现在做的更好或效率更高。

2.专家系统:在特定的领域内具有相应的知识和经验的程序系统,并能够达到或接近专家的水平3.模式识别:研究如何是机器具有感知能力,主要是研究视觉模式和听觉模式下信息的识别4.自然语言处理:5.智能决策支持系统三、什么是知识:知识就是人类认识自然界的精神产物,是人类进行智能活动的基础表示:为描述世界所做的一组约定,就是把知识符号化的过程。

重要性:知识的表示与知识的获取、管理、处理、解释等有直接关系,对于问题能否求解,以及问题的效率有重大的影响1973年基于一阶谓词逻辑中Horn自居理论的PROLOG语言四、命题的定义和举例:具有真假意义的陈述句:今天要下雨五、产生式系统的组成:规则库、综合数据库和推理机六、推理分类演绎推理:从全称判断推出特称判断或单称判断的过程。

哈工大人工智能复习提纲

哈工大人工智能复习提纲

1人工智能复习提纲单丽莉IT&NLP智能技术与自然语言处理shanlili8888@2人工智能复习提纲z学习目标通过对本课程的学习,了解人工智能的发展历史,人工智能的相关研究及应用领域。

初步掌握人工智能的基本理论、技术及其应用方法。

能够应用相应的人工智能技术解决简单的实际应用问题。

突破传统思想的束缚,逐步领略人工智能思想的精髓,对人工智能的思想和方法有初步的理解和认识,学会从人工智能的角度出发去思考问题,解决问题。

为将来在人工智能各个方向的进一步研究,及在相关领域中的应用打下良好基础。

3人工智能课程的基本内容第1 章人工智能概述第2 章知识表示第3 章确定性推理第4 章不确定性推理第5 章搜索策略第6 章机器学习第7 章神经网络及连接学习4第1 章人工智能概述z通过人工智能提出的过程理解人工智能的概念–什么是人工智能?–为什么要研究人工智能?z人工智能研究的内容及应用领域–人工智能都研究哪些问题?–人工智能技术当前的应用情况如何?z人工智能的三大学派–有哪三大学派?他们的基本思想是什么?5第2 章知识表示z理解知识及知识表示的概念,了解人工智能中对知识的分类及选择知识表示方法时的考虑因素。

–什么是知识?–人工智能研究的知识如何分类?–根据哪些因素来进行知识的表示?z熟练掌握常用的知识表示方法,能够使用确定的方法正确的表示给定的知识。

–一阶谓词表示法–产生式表示法:产生式系统的基本结构–语义网络表示法6第3 章确定性推理z理解掌握推理的概念及其分类–什么是推理?–有哪些推理方法?其基本思想是什么?–推理策略有哪些?什么是冲突消解?z掌握归结演绎推理基本理论,理解掌握相关定义,掌握简单定理推论的证明过程。

能够熟练使用归结方法完成简单定理证明及问题求解。

–为证明F⇒G 反证法只要证明F∧¬G不可满足–F∧¬G不可满足⇔其标准子句集S不可满足–子句集S不可满足⇔S的一切H解释都为假:海伯伦理论–子句集S不可满足⇔由S可归结出空子句: 鲁宾逊归结原理7第3 章确定性推理z熟练掌握基于规则的正向演绎推理方法,能够进行简单定理证明和问题求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档