屈服和抗拉强度的区别
屈服强度和拉伸强度

屈服强度和拉伸强度
抗拉强度:当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。
此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。
钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度。
屈服强度: 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。
首先解释一下材料受力变形。
材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)
屈服强度:当材料所受应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到一个值后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。
拉伸强度:拉伸强度是指材料在拉伸应力下产生最大均匀塑性变形的应力值。
关于抗拉强度和屈服强度的区别

关于抗拉强度和屈服强度的区别要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
究竟发生了怎样的变化呢?首先,材料在外力作用下,发生弹性形变,遵循胡克定律。
什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。
当外力继续增大,到一定的数值之后,材料会进入塑性形变期。
材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。
什么是屈服强度和抗拉强度

什么是屈服强度和抗拉强度要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
究竟发生了怎样的变化呢首先,材料在外力作用下,发生弹性形变,遵循胡克定律。
什么叫弹性形变呢就是外力消除,材料会恢复原来的尺寸和形状。
当外力继续增大,到一定的数值之后,材料会进入塑性形变期。
材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。
屈服强度和抗拉强度的区别

一、性质不同
1、屈服强度:是金属材料发生屈服现象时的屈服极限,也就是抵抗微量塑性变形的应力。
2、抗拉强度:是金属由均匀塑性形变向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。
二、表征不同
1、屈服强度:大于屈服强度的外力作用,将会使零件永久失效,无法恢复。
如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
2、抗拉强度:表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。
扩展资料:
建设工程上常用的屈服标准有三种:
1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。
2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
国际上通常以ReL表示。
应力超过ReL时即认为材料开始屈服。
3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为Rp0.2。
Q235低碳钢屈服强度与抗拉强度的区别

Q235低碳钢屈服强度与抗拉强度的区别
在弹性变形阶段,应力=E*应变,无论拉伸还是压缩,E是不变的;
当应力水平达到屈服应力时表明材料进入塑性变形阶段,而这个点对于拉伸还是压缩都是一样的。
前面的那张曲线说明了这个问题。
当进入塑性变形阶段,拉伸和压缩会有不同的走势: 拉伸阶段很快结束,达到断裂破坏;而由于Q235 有良好的塑性,而无法明确定义其压缩破坏的点。
总结:对于一般弹塑性材料,屈服极限是唯一的,无论拉伸还是压缩。
而强度极限则不同,压缩极限可能远大于拉伸极限。
什么是屈服强度和抗拉强度

什么是屈服强度和抗拉强度Document number:NOCG-YUNOO-BUYTT-UU986-1986UT什么是屈服强度和抗拉强度要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
究竟发生了怎样的变化呢首先,材料在外力作用下,发生弹性形变,遵循胡克定律。
什么叫弹性形变呢就是外力消除,材料会恢复原来的尺寸和形状。
当外力继续增大,到一定的数值之后,材料会进入塑性形变期。
屈服强度与抗拉强度

屈服强度与抗拉强度的定义屈服强度又称为屈服极限,常用符号δs,是材料屈服的临界应力值。
(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。
通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。
因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。
当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。
抗拉强度(tensile strength)试样拉断前承受的最大标称拉应力。
对于塑性材料,它表征材料最大均匀塑性变形的抗力;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。
符号为RM,单位为MPA。
抗拉强度的定义及符号表示:试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。
它表示金属材料在拉力作用下抵抗破坏的最大能力。
计算公式为:σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。
抗拉强度(Rm)指材料在拉断前承受最大应力值。
万能材料试验机当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。
什么是屈服强度和抗拉强度

什么是屈服强度和抗拉强度要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。
抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。
因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。
所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。
单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。
所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
那什么是屈服强度呢屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。
弹性材料在受到恒定持续增大的外力作用下,直到断裂。
究竟发生了怎样的变化呢首先,材料在外力作用下,发生弹性形变,遵循胡克定律。
什么叫弹性形变呢就是外力消除,材料会恢复原来的尺寸和形状。
当外力继续增大,到一定的数值之后,材料会进入塑性形变期。
材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
屈服和抗拉强度的区别
1. 屈服标准
工程上常用的屈服标准有三种:
(1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp 时即认为材料开始屈服。
(2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
国际上通常以σel表示。
应力超过σel时即认为材料开始屈服。
(3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。
2. 影响屈服强度的因素
影响屈服强度的内在因素有:
结合键、组织、结构、原子本性。
如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。
从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;
(2)形变强化;
(3)沉淀强化和弥散强化;
(4)晶界和亚晶强化。
沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。
在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。
影响屈服强度的外在因素有:
温度、应变速率、应力状态。
随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。
应力状态的影响也很重要。
虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。
我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。
3.屈服强度的工程意义
传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n 一般取6。
需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。
屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。
例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。
因此,屈服强度是材料性能中不可缺少的重要指标。
材料开始屈服以后,继续变形将产生加工硬化。
4.加工硬化指数n的实际意义
加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。
n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。
对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。
形变硬化是提高材料强度的重要手段。
不锈钢有很大的加工硬化指数n=0.5,因而也有很
高的均匀变形量。
不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。
高碳钢丝经过铅浴等温处理后拉拔,可以达到2000MPa以上。
但是,传统的形变强化方法只能使强度提高,而塑性损失了很多。
现在研制的一些新材料中,注意到当改变了显微组织和组织的分布时,变形中既能提高强度又能提高塑性。
5.抗拉强度
在材料不产生颈缩时抗拉强度代表断裂抗力。
脆性材料用于产品设计时,其许用应力是以抗拉强度为依据的。
抗拉强度对一般的塑性材料有什么意义呢?虽然抗拉强度只代表产生最大均匀塑性变形抗力,但它表示了材料在静拉伸条件下的极限承载能力。
对应于抗拉强度σb 的外载荷,是试样所能承受的最大载荷,尽管此后颈缩在不断发展,实际应力在不断增加,但外载荷却是在很快下降的。
材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
严格的说,它应该是真应力-应变曲线下所包围的面积也就是工程上为了简化方便,近似地采取:对塑性材料静力韧度是一个强度与塑性的综合指标。
单纯的高强度材料象弹簧钢,其静力韧度不高,而只具有很好塑性的低碳钢也没有高的静力韧度,只有经淬火高温回火的中碳(合金)结构钢才具有最高的静力韧度
硬度并不是金属独立的基本性能,它是指金属在表面上的不大体积内抵抗变形或者破裂的能力。