2019届高三衡水中学状元笔记物理同步课时作业:原子核(PDF版)

合集下载

山东菏泽市高中物理选修三第五章《原子核》知识点总结(含解析)

山东菏泽市高中物理选修三第五章《原子核》知识点总结(含解析)

一、选择题1.下列核反应中,属于原子核的衰变的是( )A .427301213150He Al P n +→+B .32411120H H He n +→+ C .235190136192038540U n Sr Xe +10n ++→D .238234492902U Th He →+2.我国科学家为解决“玉兔号”月球车长时间处于黑夜工作的需要,研制了一种小型核能电池,将核反应释放的核能转变为电能,需要的功率并不大,但要便于防护其产生的核辐射。

请据此猜测“玉兔号”所用核能电池有可能采纳的核反应方程是( )A .32411120H+H He+n →B .235114192192056360U+n Ba+Kr+3n →C .238238094951Pu Am+e -→ D .274301132150Al+He P+n →3.放射性同位素14C 在考古中有重要应用,只要测得该化石中14C 残存量,就可推算出化石的年代,为研究14C 的衰变规律,将一个原来静止的14C 原子核放在匀强磁场中,观察到它所放射的粒子与反冲核的径迹是两个相内切圆,圆的半径之比R :r =7:1,如图所示,那么14C 的衰变方程式应是( )A .14104642C Be+He → B .14140651C Be+e → C .14140671C N+e -→D .14131651C B+H →4.下列说法中正确的是( )A .机械波和光有波动性,实物粒子不具有波动性B .用弧光灯发出紫外线照射锌板并发生光电效应后,锌板带正电C .由于核聚变需要很高的环境温度,21H 和31H 发生聚变过程中是需要从外界吸收能量的 D .构成物体的质量是守恒不变的 5.下列说法中正确的是( ) A .钍的半衰期为24天。

1g 钍23490Th 经过 120 天后还剩0.2g 钍B .一单色光照到某金属表面时,有光电子从金属表面逸出,延长入射光照射时间,光电子的最大初动能不会变化 C .放射性同位素23490Th 经α、β衰变会生成22286Rn ,其中经过了2次α衰变和 3 次β衰变D.大量处于n=4激发态的氢原子向低能级跃迁时,最多可产生4种不同频率的光子6.一个静止在磁场中的放射性同位素原子核3015P,放出一个正电子后变成原子核3014Si,在图中近似反映正电子和Si核轨迹的图是()A.B.C.D.7.下列说法正确的是()A.某种频率的光照射金属能发生光电效应,若增加入射光的强度,则单位时间内发射的光电子数增加B.在核反应堆中,镉棒的作用是使快中子变为慢中子C.结合能越大,原子核越稳定D.入射光的频率不同,同一金属的逸出功也会不同8.目前,在居室装修中经常用到花岗岩、大理石等装饰材料,这些岩石都不同程度地含有放射性元素.下列有关放射性知识的说法中,正确的是A.β射线与γ射线一样是电磁波,但穿透本领远比γ射线弱B.放射性元素发生β衰变时所释放的电子是原子核内的中子转化为质子时产生的C.氡的半衰期为3.8天,若有4个氡原子核,则经3.8天后就一定只剩下2个氡原子核D.23892U衰变成20682P b要经过4次β衰变和8次α衰变9.下列哪些事实表明原子核具有复杂结构A. 粒子的散射实验B.天然放射现象C .阴极射线的发现D .X 射线的发现 10.下列说法正确的是A .天然放射现象的发现揭示了原子具有核式结构B .温度升高,放射性元素衰变的半衰期减小C .原子核发生β衰变后原子序数不变D .人工放射性同位素的半衰期比天然放射性物质短的多,因此放射性废料容易处理 11.由于放射性元素23793Np 的半衰期很短,所以在自然界一直未被发现,只是在使用人工的方法制造后才被发现.已知23793Np 经过一系列α衰变和β衰变后变成20983Bi ,下列论断中正确的是( )A .衰变过程中原子核的质量和电荷量守恒B .20983Bi 的原子核比23793Np 的原子核少28个中子C .衰变过程中共发生了7次α衰变和4次β衰变D .经过两个半衰期后含有23793Np 的矿石的质量将变为原来的四分之一12.关于天然放射线性质的说法正确的是()A .γ射线就是中子流B .α射线有较强的穿透性C .β射线是高速电子流D .电离本领最强的是γ射线13.贝克勒尔在120年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用.下列属于放射性衰变的是 A .14140671C N e -→+B .2351139951920533902U n I Y n +→++C .23411120H +H He+n → D .427301213150He +Al P+n →14.轻核聚变的一个核反应方程为:21H +31H→42He +X ,若已知21H 的质量为m 1,31H 的质量为m 2,42He 的质量为m 3,X 的质量为m 4,则下列说法中正确的是( ) A .21H 和31H 在常温下就能够发生聚变 B .X 是质子C .这个反应释放的核能为ΔE =(m 1+m 2-m 3-m 4)c 2D .我国大亚湾核电站是利用轻核的聚变释放的能量来发电的15.某放射性元素X 的原子核发生了β衰变,产生了新的元素Y 原子核,同时放出γ光子,下列判断正确的是( ) A .Y 比X 原子序数小B .Y 原子核比X 原子核核子平均质量小C .X 原子核放出β射线,表明X 原子核内有β粒子D .γ光子来自X 原子核二、填空题16.核反应方程书写(1)卢瑟福发现质子的核反应方程为∶ 14472N +He →__________; (2)查德威克发现中子的核反应方程为∶ 9442Be +He ?→__________。

2019届高三衡水中学状元笔记物理课时作业:带电粒子在复合场中的运动实例分析 同步测试题

2019届高三衡水中学状元笔记物理课时作业:带电粒子在复合场中的运动实例分析 同步测试题

10·5 带电粒子在复合场中的运动实例分析一、选择题1. 如图所示是速度选择器的原理图,已知电场强度为 E 、磁感应强度为 B ,电场和磁场相互 垂直分布,某一带电粒子(重力不计)沿图中虚线水平通过,则该带电粒子 ( )A .一定带正电B .速度大小为E BC .可能沿 QP 方向运动D .若沿 PQ 方向运动的速度大于E B 将一定向下极板偏转 2.如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔 O 2 处射出后垂直进入偏转磁场,最终打在P 1、P 2 两点.则( )A .粒子在偏转磁场中运动的时间都相等B .打在 P 1 点的粒子是42HeC .打在 P 2 点的粒子是21H 和42HeD .O 2P 2 的长度是 O 2P 1 长度的 4 倍3. 回旋加速器工作原理示意图如图所示.磁感应强度为 B 的匀 强磁场与盒面垂直,两盒间的狭缝很小,粒子穿过的时间可忽略,它们接在电压为 U 、频率为f 的交流电源上,A 处粒子源产生的质子在加速器中被加速.下列说法正确( )A .若只增大交流电压 U ,则质子获得的最大动能增大B .若只增大交流电压 U ,则质子在回旋加速器中运行时间会变短C .若磁感应强度 B 增大,交流电频率 f 必须适当增大才能正常工作D .不改变磁感应强度 B 和交流电频率 f ,该回旋加速器也能用于加速 α 粒子4. 如图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强大小恒定,且被 限制在 AC 板间,虚线中间不需加电场,如图所示,带电粒子从 P 0 处以速度 v 0 沿电 场线方向射入加速电场,经加速后再进入 D 形 盒中的匀强磁场做匀速圆周运动,对这种改进后的回旋加速器,下列说法正确的是( )A.带电粒子每运动一周被加速两次B.带电粒子每运动一周 P 1P 2=P 3P 4C.加速粒子的最大速度与 D 形盒的尺寸有关D.加速电场方向需要做周期性的变化5. 如图所示为一种获得高能粒子的装置,环形区域内存在垂直于纸面、磁感应强度大小可调的匀强磁场(环形区域的宽度非常小)。

2019届高三衡水中学状元笔记物理课时作业:带电粒子在复合场中的运动 同步测试题

2019届高三衡水中学状元笔记物理课时作业:带电粒子在复合场中的运动 同步测试题

10·7 带电粒子在复合场中的运动一、选择题1.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂 直纸面向里,一带电微粒由 a 点进入电磁场并刚好能沿 ab 直线向上运动.下列说法 中正确的是( )A .微粒一定带负电B .微粒的动能一定减小C .微粒的电势能一定增加D .微粒的机械能不变2. 如图所示,长均为 d 的两正对平行金属板 MN 、PQ 水平放置,板间距离为 2d ,板间有正交的匀强电场和匀强磁场.一带电粒子从 MP 的中点 O 垂直于 电场和磁场方向以 v0 射入,恰沿直线从 NQ 的中点 A 射出;若撤去电场 , 则 粒子 从 M 点 射出 ( 粒 子 重力 不计 ). 以 下说 法 正确 的是( )A .该粒子带正电B .该粒子带正电、负电均可C .若撤去磁场,则粒子射出时的速度大小为 2v 0D .若撤去磁场,03. 在如图所示的空间直角坐标系所在的区域内,同时存在场强为 E 的匀强电场和磁感应强度为 B 的匀强磁场.已知从坐标原点 O 沿 x 轴正方向射入的带正电的小球(小球所 受的重力不可忽略)在穿过此区域时未发生偏转,则可以判断此区域中 E 和 B 的方向可 能是 ( )A .E 和B 都沿 y 轴的负方向B .E 和 B 都沿 x 轴的正方向C .E 沿 z 轴正方向,B 沿 y 轴负方向D .E 沿 z 轴正方向,B 沿 x 轴负方向4. 如图甲所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为 B ,电场强度为 E ,一质量为 m ,电荷量为 q 的带正电小球恰好处于静止状态。

现在将磁场方 向顺时针旋转 30°,同时给小球一个垂直磁场方向斜向下的速度 v ,如图乙所示。

则 关于小球的运动,下列说法正确的是( )A.小球做匀速圆周运动B.小球运动过程中机械能守恒C.小球运动到最低点时电势能增加了2mgv qBD.小球第一次运动到最低点历时 2mqB5.如图所示,场强为 E 的匀强电场方向竖直向下,场强为 B 的水平匀强磁场垂直纸面向 里,三个油滴 a 、b 、c 带有等量的同种电荷.已知 a 静止,b 、c 在纸面内按图示方向做匀速圆周运动(轨迹未画出).忽略三个 油滴间的静电力作用,比较三个油滴的质量及 b 、c 的运动情况, 以下说法中正确的是( )A .三个油滴的质量相等,b 、c 都沿顺时针方向运动B .a 的质量最大,c 的质量最小,b 、c 都沿逆时针方向运动C .b 的质量最大,a 的质量最小,b 、c 都沿顺时针方向运动D .三个油滴的质量相等,b 沿顺时针方向运动,c 沿逆时针方向运动6.一个带正电的小球沿光滑绝缘的桌面向右运动,速度方向垂直于一个水平向里的匀强 磁场.如图所示,小球飞离桌面后落到地板上,设飞行时间为 t 1,水平射程为 x 1,着地速度为 v 1,撤去磁场,其余的条件不变,小球飞行时间为 t 2,水平射程为 x 2,着地 速度为 v 2,则下列论述正确的是( )A .x 1>x 2B .t 1>t 2C .v 1 和 v 2 大小相等D .v 1 和 v 2 方向相同7.如图所示,竖直放置的两块很大的平行金属板 a 、b ,相距为 d ,ab 间的电场强度为 E ,今有一带正电的微粒从 a 板下边缘以初速度 v 0 竖直向上射入 电场,当它飞到 b 板时,速度大小不变,而方向变为水平方向,且刚好从高度也为 d 的狭缝穿过 b 板而进入 bc 区域,bc 区域的宽度也为 d ,所加电场强度大小为 E ,方 向竖直向上,磁感应强度方向垂直纸面向里,磁场磁感应强度 大小等于0E v ,重力加速为 g ,则下列关于微粒运动的有关说法正 确的是( )A .微粒在 ab 区域的运动时间为B .微粒在 bc 区域中做匀速圆周运动,圆周半径 r =2dC .微粒在 bc 区域中做匀速圆周运动,运动时间为06d v π D .微粒在 ab 、bc 区域中运动的总时间为063d v π+8.如图所示,在垂直于纸面的水平面内建立一直角坐标系xoy ,在竖直绝缘的平台上,一个带正电的小球以水平速度 v 0 抛出,落在地面上的 O (0,0)点,若加一垂直纸面向外的匀强电场和竖直向下的匀强磁场,下落时间t <mqB ,则小球的坐标 x 和 y 可能为( )A .x=0;y=0B .x=0;y <0C .x >0;y <0D. x <0;y >0 9.如图所示,质量为 m 、电荷量为 q 的微粒,在竖直向下的匀强电场、水平指向纸内的 匀强磁场以及重力的共同作用下做匀速圆周运动,下列说法正确的是( )A .该微粒带负电,电荷量 q =mg EB .若该微粒在运动中突然分成比荷相同的两个粒子,分裂后只要速度不为零且速度方向仍与磁场方向垂直,它们均做匀速圆周运动C .如果分裂后,它们的比荷相同,而速率不同,那么它们运动的轨道半径一定不同D .只要一分裂,不论它们的比荷如何,它们都不可能再做匀速圆周运动10.带电小球以一定的初速度 v 0 竖直向上抛出,能够达到的最大高度为 h 1;若加上水平方向的匀强磁场,且保持初速度仍为 v 0,小球上升的最大高度为 h 2;若加上水平方向的匀强 电场,且保持初速度仍为 v 0,小球上升的最大高度为 h 3。

2019届高三衡水中学状元笔记物理课时作业:反冲、爆炸 同步测试题(PDF版,含答案)

2019届高三衡水中学状元笔记物理课时作业:反冲、爆炸  同步测试题(PDF版,含答案)

6·5 反冲 爆炸一、选择题1. “爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向东;则另一块的速度为( ) A.3v 0-vB.2v 0-3vC.3v 0-2vD.2v 0+v2.一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离。

已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为 A .v 0-v 2 B .v 0+v 2 C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2)3.一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )。

A .v 2-v 0v 1M B .v 2v 2+v 1M C .v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M4. 将静置在地面上、质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。

忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )。

A .mM v 0B .Mm v 0 C .MM -m v 0 D .mM -m v 05.为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45 mm 。

查询得知,当时雨滴竖直下落的速度约为12 m/s 。

据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103 kg/m 3)( )。

2019-2020学年高中物理 第19章 原子核 第1节 原子核的组成课下作业(含解析)3-5

2019-2020学年高中物理 第19章 原子核 第1节 原子核的组成课下作业(含解析)3-5

第1节原子核的组成[随堂巩固]1.(三种射线的特性)(多选)天然放射性物质的射线包含三种成分,下列说法中正确的是A.α射线的本质是高速氦核流B.α射线是不带电的光子流C.三种射线中电离作用最强的是γ射线D.一张厚的黑纸可以挡住α射线,但挡不住β射线和γ射线解析α射线的本质是高速氦核流,β射线是高速电子流,A正确,B错误。

三种射线中电离作用最强的是α射线,C错误;一张厚的黑纸可以挡住α射线。

但挡不住β射线和γ射线,D正确。

答案AD2.(三种射线的特性)(多选)图19-1-4中P为放在匀强电场中的天然放射源,其放出的射线在电场的作用下分成a、b、c三束,以下判断正确的是图19-1-4A.a为α射线、b为β射线B.a为β射线、b为γ射线C.b为γ射线、c为α射线D.b为α射线、c为γ射线解析由题图可知电场线方向向右,α射线带正电,所受电场力方向与电场线方向一致,故α射线向右偏转,即c为α射线;β射线带负电,所受电场力方向与电场线方向相反,故β射线向左偏转,即a 为β射线;γ射线不带电,不发生偏转,即b为γ射线,故选项B、C 正确。

答案BC3.(原子核的组成及同位素)下列说法正确的是A.质子和中子的质量不等,但质量数相等B.质子和中子构成原子核,原子核的质量数等于质子和中子的质量总和C.同一种元素的原子核有相同的质量数,但中子数可以不同D.中子不带电,所以原子核的总电荷量等于质子和电子的总电荷量之和解析质子和中子的质量不同,但质量数相同,A对;质子和中子构成原子核,原子核的质量数等于质子和中子的质量数总和,B错;同一种元素的原子核有相同的质子数,但中子数可以不同,C错;中子不带电,所以原子核的总电荷量等于质子总电荷量之和,D错.4.(原子核的组成及同位素)(多选)氢有三种同位素,分别是氕(1,1H)、氘(错误!H)、氚(错误!H),则A.它们的质子数相等B.它们的核外电子数相等C.它们的核子数相等D.它们的化学性质相同解析氕、氘、氚的核子数分别为1、2、3,质子数和核外电子数均相同,都是1,中子数等于核子数减去质子数,故中子数各不相同,A、B正确,C错误;同位素化学性质相同,只是物理性质不同,D正确。

2019届高三衡水中学状元笔记物理课时作业:电磁的力的性质 同步测试题(PDF版,含答案)

2019届高三衡水中学状元笔记物理课时作业:电磁的力的性质 同步测试题(PDF版,含答案)

8·2 电场的力的性质一、选择题1. 由电场强度的定义式E=F/q 可知,在电场中的同一点( )A .电场强度E 跟F 成正比,跟q 成反比B .无论检验电荷所带的电量如何变化,F/q 始终不变C .不同电荷在电场中某点所受的电场力大小不同,该点的电场强度在不断改变D .一个不带电的小球在P 点受到的电场力为零,则P 点的场强一定为零2.如图所示,A 、B 是点电荷负Q 形成的电场中的两点(r A <r B ).若先后把带电量很小,不会影响Q 形成电场的正点电荷q 1、q 2(q 1>q 2)分别放到A 点和B 点,q 1、q 2在A 点受到的电场力分别为F A 1、F A 2,在B 点受到的电场力分别为F B 1、F B 2.则下列关于点电荷所受电场力F 和带电量q 的比值的大小的比较中,正确的说法是( )A.F A 1q 1<F B 1q 1,F A 1q 1<F A 2q 2 B .F A 1q 1<F B 1q 1,F A 1q 1=F A 2q 2 C.F A 1q 1>F B 1q 1,F A 1q 1=F A 2q 2 D .F A 1q 1>F B 1q 1,F A 1q 1>F A 2q 23. 离子陷阱是一种利用电场或磁场将离子俘获并囚禁在一定范围内的装置.如图所示为最常见的“四极离子陷阱”的俯视示意图,四根平行细杆与直流电压和叠加的射频电压相连,相当于四个电极,相对的电极带等量同种电荷,相邻的电极带等量异种电荷.在垂直于四根杆的平面内四根杆的连线是一个正方形abcd ,A 、C 是a 、c 连线上的两点,B 、D 是b 、d 连线上的两点,A 、C 、B 、D 到正方形中心O 的距离相等.则下列判断正确的是( ) A .D 点的电场强度为零B .A 、B 、C 、D 四点电场强度相同 C .A 点电势比B 点电势高 D .O 点的电场强度为零4.如图,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若三个小球均处于静止状态,则匀强电场场强的大小为( ) A.3kq 3l 2 B .3kq l 2 C.3kq l 2 D .23kql 25. 如图所示,在真空中有两个固定的等量异种点电荷+Q 和-Q .直线MN 是两点电荷连线的中垂线,O 是两点电荷连线与直线MN 的交点.a 、b 是两点电荷连线上关于O 的对称点,c 、d 是直线MN 上的两个点.下列说法中正确的是( ) A .a 点的场强大于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先增大后减小B .a 点的场强小于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先减小后增大C .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先增大后减小D .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c 移动到d ,所受电场力先减小后增大6.如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ) A .k 3q R 2 B .k 10q9R 2 C .k Q +q R 2 D .k 9Q +q 9R 27.直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图.M 、N 两点各固定一负点电荷,一电量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( )A.3kQ4a 2,沿y 轴正向 B .3kQ4a 2,沿y 轴负向 C.5kQ4a 2,沿y 轴正向D .5kQ4a 2,沿y 轴负向8.如图所示,等量异种点电荷A 、B 固定在同一水平线上,竖直固定的光滑绝缘杆与AB 连线的中垂线重合,C 、D 是绝缘杆上的两点,ACBD 构成一个正方形.一带负电的小球(可视为点电荷)套在绝缘杆上自C 点无初速度释放,则关于小球由C 点运动到D 点的过程,下列说法中正确的是 ( ) A .杆对小球的作用力先增大后减小 B .杆对小球的作用力先减小后增大 C .小球的速度先增大后减小 D .小球的速度先减小后增大9.如图甲所示,半径为R 的均匀带电圆形平板,单位面积带电荷量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出:E =2πkσ[1-x (R 2+x 2)12],方向沿x 轴.现考虑单位面积带电荷量为σ0的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图乙所示.则圆孔轴线上任意一点Q (坐标为x )的电场强度为( )A .2πkσ0x (r 2+x 2)12B .2πkσ0r (r 2+x 2)12C .2πkσ0x rD .2πkσ0r x10. 如图所示,竖直平面内有固定的半径为R 的光滑绝缘圆形轨道,水平匀强电场平行于轨道平面向左,P 、Q 分别为轨道的最高、最低点.质量为m 、电荷量为q 的带正电小球(可视为质点)在轨道内运动,已知重力加速度为g ,场强E=.要使小球能沿轨道做完整的圆周运动,下列说法中正确的是 ( ) A .小球过Q 点时速度至少为 B .小球过Q 点时速度至少为C .小球过Q 、P 点受轨道弹力大小的差值为6mgD .小球过Q 、P 点受轨道弹力大小的差值为7.5mg11. 在光滑绝缘的水平桌面上存在着方向水平向右的匀强电场,电场线如图中实线所示.一个初速度不为零的带电小球从桌面上的A 点开始运动,到C 点时,突然受到一个外加的水平恒力F 作用而继续运动到B 点,其运动轨迹如图中虚线所示,v 表示小球经过C 点时的速度,则 ( )A .小球带正电B .恒力F 的方向可能水平向左C .恒力F 的方向可能与v 方向相反D .在A 、B 两点小球的速率不可能相等12. 如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为θ.一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球A ,细线与斜面平行.小球A 的质量为m 、电荷量为q.小球A 的右侧固定放置带等量同种电荷的小球B ,两球心的高度相同、间距为d.静电力常量为k ,重力加速度为g ,两带电小球可视为点电荷.小球A 静止在斜面上,则( )A.小球A与B之间库仑力的大小为B.当时,细线上的拉力为0C.当时,细线上的拉力为0D.当时,斜面对小球A的支持力为0二、计算题13 如图所示,绝缘的水平面上有一质量为0.1 kg的带电物体,物体与水平面间的动摩擦因数μ=0.75,物体恰能在水平向左的匀强电场中向右匀速运动,电场强度E=1×103 N/C,g 取10 m/s2.(1)求物体所带的电荷量;(2)只改变电场的方向,使物体向右加速运动,求加速度的最大值及此时电场的方向.14.如图所示,平行板电容器的两板水平正对放置,在两板的正中心上各开一个孔,孔相对极板很小,对两板间电场分布的影响忽略不计.现给上、下两板分别充上等量的正、负电荷,上板带正电、下板带负电,使两板间形成匀强电场,电场强度大小为E=.一根长为L的绝缘轻质硬杆的上、下两端分别固定一个带电金属小球A、B,两球大小相等,且直径小于电容器极板上的孔,A球所带的电荷量Q A=-3q,B球所带的电荷量Q B=+q,两球质量均为m.将杆和球组成的装置移动到上极板上方且使其保持竖直,使B球刚好位于上板小孔的中心处且球心与上极板在同一平面内,然后由静止释放.已知带电平行板电容器只在其两板间存在电场,两球在运动过程中不会接触到极板且各自带的电荷量始终不变.忽略两球产生的电场对平行板间匀强电场的影响,两球可以看成质点,电容器极板厚度不计,重力加速度为g.(1)B球刚进入两板间时,求杆和球组成的装置的加速度大小;(2)若B球从下极板的小孔穿出后刚好能运动的距离,求电容器两极板的间距d.8·2 电场的力的性质·答案与解析1.【答案】 B【解析】 A 、电场强度等于试探电荷所受电场力与电荷量的比值,但电场强度E 并不跟F 成正比,跟q 成反比,而F 、q 无关,E 由电场本身决定.故A 错误.B .在电场中的同一点,电场强度E 是一定的,则无论试探电荷所带的电量如何变化,F/q 始终不变.故B 正确.C .由F=Eq 知,不同电荷在电场中某点所受的电场力大小不同,但场强E 却是一定的.故C 错误. 2.【答案】 C【解析】 由题可知,q 1、q 2在A 点受到的电场力分别为F A 1、F A 2,而A 点的电场强度一定,根据场强的定义式E =F q 可知,F A 1q 1=F A 2q 2=E A ,故A 错误;由点电荷的场强公式E =k Q r 2分析可知,A 点的场强大于B 点的场强,则有F A 1q 1>F B 1q 1,故B 错误;由上述分析可知,F A 1q 1>F B 1q 1,F A 1q 1=F A 2q 2,故C 正确,故D 错误. 3.【答案】 CD【解析】 根据电场的叠加原理,ac 两个电极带等量正电荷,其中点O 的合场强为零,bd 两个电极带等量负电荷,其中点O 的合场强为零,则O 点的合场强为零,D 正确;同理,D 点的场强水平向右,A 错误;A 、B 、C 、D 四点的场强大小相等,方向不同,B 错误;由电场特点知,电场方向由A 指向O ,由O 指向B ,故φA >φO ,φO >φB ,则φA >φB ,C 正确. 4.【答案】B【解析】 以c 球为研究对象,除受另外a 、b 两个小球的库仑力外还受匀强电场的静电力,如图所示,c 球处于平衡状态,据共点力平衡条件可知F 静=2k qq c l 2cos 30°,F 静=Eq c ,解得E =3kql 2,选项B 正确.5.【答案】C6.【答案】 B【解析】 已知a 处点电荷和带电圆盘均在b 处产生电场,且b 处场强为零,所以带电圆盘在b 处产生的电场场强E 1与q 在b 处产生的电场场强E ab 等大反向,即E 1=E ab=kqR 2,带电圆盘在d 处产生的电场场强E 2=E 1且方向与E 1相反,q 在d 处产生的电场场强E ad =2(3)qk R ,则d 处场强E d =E 2+E ad =kq R 2+kq 9R 2=k 10q 9R 2,选项B 正确. 7.【答案】 B【解析】 因正电荷Q 在O 点时,G 点的场强为零,则可知两负电荷在G 点形成的电场的合场强与正电荷Q 在G 点产生的场强等大反向,大小为E 合=k Qa 2;若将正电荷移到G 点,则正电荷在H 点的场强为E 1=k Q2a2=kQ4a 2,因两负电荷在G 点的场强与在H 点的场强等大反向,则H 点的合场强为E =E 合-E 1=3kQ4a 2,方向沿y 轴负向,故选B. 8.【答案】A【解析】 小球从C 点运动到D 点的过程中,电场强度先增大后减小,则电场力先增大后减小,杆对小球的作用力先增大后减小,故A 正确,B 错误;因直杆处于A 、B 的连线的中垂线上,所以直杆上所有点处的电场方向都是水平向右的,对带电小球进行受力分析,它受竖直向下的重力、水平向左的电场力和水平向右的弹力,水平方向上受力平衡,竖直方向上的合力等于重力,小球的加速度大小始终等于重力加速度,所以小球一直在做匀加速直线运动,故C 、D 错误. 9.【答案】 A【解析】 当r→∞时,x(r 2+x 2)12=0,则无限大平板产生的电场的场强为E =2πkσ0.当挖去半径为r 的圆板时,应在E 中减掉该圆板对应的场强E r =2πkσ0[1-x(r 2+x 2)12],即E ′=2πkσ0x(r 2+x 2)12,选项A 正确.10.【答案】BC【解析】根据“等效场”知识可得,电场力与重力的合力大小为mg 效=mg ,则g 效=g ,如图所示,tan θ=,即θ=37°,当小球刚好通过C 点关于O 对称的D 点时,就能做完整的圆周运动.小球在D 点时,由电场力和重力的合力提供向心力,则,从Q 到D ,由动能定理得-mg(R+R cos θ)-qER sin θ=,联立解得v Q=,故A错误,B正确;在P点和Q点,由牛顿第二定律得F Q-mg=m,F P+mg=m,从Q到P,由动能定理得-mg·2R=,联立解得F Q-F P=6mg,C正确,D错误.11.【答案】AB【解析】由小球从A点运动到C点的轨迹可得,小球受到的电场力方向向右,带正电,选项A正确;小球从C点运动到B点,合力指向轨迹凹侧,当水平恒力F水平向左时,合力可能向左,符合要求,当恒力F的方向与v方向相反时,合力不指向图示轨迹凹侧,选项B 正确,选项C错误;小球从A点运动到B点,由动能定理,当电场力与恒力F做功的代数和为0时,小球在A、B两点的速率相等,选项D错误.12.【答案】【解析】AC根据库仑定律得A、B间的库仑力F库=k,故A正确;当细线上的拉力为0时满足k=mg tan θ,得到,故B错误,C正确;斜面对小球A的支持力始终不为零,故D错误.13.【答案】(1)-7.5×10-4 C(2)m/s向左下方与水平方向成37°角【解析】 (1)物体向右匀速运动,则电场力与摩擦力大小相等,方向相反,因摩擦力方向向左,故电场力方向向右,而电场方向向左,则物体带负遇.由Eq=μmg解得q==7.5×10-4 N/C.(2)设电场方向与水平方向的夹角为θ,则Eq cos θ-μ(mg-qE sin θ)=ma解得a=(cos θ+μsin θ)-μg由数学知识可知,当θ=37°时,cos θ+μsin θ有极大值,此时a=m/s2即电场方向与水平方向的夹角为37°斜向左下时,加速度有最大值,为a=m/s2.14.(1)g(2)L[解析] (1)B球刚进入两板间时,以杆和球组成的装置为研究对象,有qE+2mg=2ma1解得a1=g.(2)从装置由静止释放到A刚进入两板间,有=2a1L解得v1=从A刚进入两板间到B即将穿出下孔,有qE+2mg-3qE=2ma2=2a2·sB穿出下孔后,有2mg-3qE=2ma30-联立解得s=L所以两板间距d=s+L=L.8·2 库仑定律电荷守恒定律·答题纸题号123456789101112得分答案二、计算题1314。

2019届高三衡水中学状元笔记物理课时作业: 碰撞 同步测试题(PDF版,含答案)

2019届高三衡水中学状元笔记物理课时作业: 碰撞 同步测试题(PDF版,含答案)
(1)求碰撞后 A 球的速度; (2)若碰撞为弹性碰撞,求碰撞后 B 球的动能。
8.如图所示,质量为 m2=2 kg 和 m3=3 kg 的物体静止放在光滑水平面 上,两者之间有压缩着的轻弹簧(与 m2、m3 不拴接).质量为 m1=1 kg 的物体以速度 v0=9 m/s 向右冲来,为防止冲撞,释放弹簧将 m3 物体发射出去,m3 与 m1 碰撞 后粘合在一起.试求:
A 在后,发生正碰后,A 球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比
vA′∶vB′为( )
A.1∶2
B.1∶3
C.2∶1
D.2∶3
5. 如图所示,两滑块 A、B 在光滑水平面上沿同一直线相向运动,滑块 A 的质量为 m,速度
大小为 2v0,方向向右,滑块 B 的质量为 2m,速度大小为 v0,方向向左,两滑块发生弹性
(1)m3 的速度至少为多大,才能使以后 m3 和 m2 不发生碰撞? (2)为保证 m3 和 m2 恰好不发生碰撞,弹簧的弹性势能至少为多大?
9.如图所示,上表面光滑的“L”形木板 B 锁定在倾角为 37°的足够长的斜面上;将一小物 块 A 从木板 B 的中点轻轻地释放,同时解除木板 B 的锁定,此后 A 与 B 发生碰撞,碰撞过 程时间极短且不计能量损失;已知物块 A 的质量 m=1 kg,木板 B 的质量 m0=4 kg,板长 L =6 cm,木板与斜面间的动摩擦因数为 μ=0.6,最大静摩擦力等于滑动摩擦力,g 取 10 m/s2,sin37°=0.6,cos37°=0.8。
3
静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则 A 应该向左运动,B 应 该向右运动,选项 D 正确,A、B、C 错误. 6.【答案】 【解析】 所有的碰撞都是弹性碰撞,所以不考虑能量损失。设竖直向上为正方向,根据机械 能守恒定律和动量守恒定律可得,(m1+m2)gh=12(m1+m2)v2,m2v-m1v=m1v1+m2v2,12(m1 +m2)v2=12m1v12+12m2v22,12m1v12=m1gh1,将 m2=3m1 代入,联立可得 h1=4h,选项 D 正 确。 7.【答案】(1)v20 (2)38mv02 【解析】(1)设当 A 球与 B 球相碰后 A 球的速度为 vA,根据动量守恒定律, 有:m0v0=m0vA+pB,又 m0vA=pB,所以 vA=v20。 (2)因为碰撞为弹性碰撞,根据能量守恒定律有 12m0v02=12m0vA2+EkB, 解得 EkB=38m0v02。8.【答案】 (1)1 m/s (2)3.75 J 【解析】 (1)设 m3 发射出去的速度为 v1,m2 的速度为 v2,以向右的方向为正方向, 对 m2、m3,由动量守恒定律得:m2v2-m3v1=0. 只要 m1 和 m3 碰后速度不大于 v2,则 m3 和 m2 就不会再发生碰撞,m3 和 m2 恰好不相撞 时,两者速度相等. 对 m1、m3,由动量守恒定律得: m1v0-m3v1=(m1+m3)v2 解得:v1=1 m/s 即弹簧将 m3 发射出去的速度至少为 1 m/s (2)对 m2、m3 及弹簧,由机械守恒定律得: Ep=12m3v12+12m2v22=3.75 J. 9.【答案】 (1)3.6 m/s,沿斜面向上 2.4 m/s,沿斜面向下 (2)3 m 28.8 J 【解析】 (1)对木板 B 受力分析,有 μ(mA+mB)gcos37°=mBgsin37°, 所以在 A 与 B 发生碰撞前,木板 B 处于静止状态。 设小物块 A 与木板 B 发生弹性碰撞前的速度大小为 v0,由机械能守恒定律得

2019届高三衡水中学状元笔记物理课时作业:功、功率 同步测试题(PDF版,含答案)

2019届高三衡水中学状元笔记物理课时作业:功、功率  同步测试题(PDF版,含答案)

5.1 功 功率一、选择题1.如图所示,两箱相同的货物,现要用电梯将它们从一楼运到二楼,其中图甲是利用扶梯台式电梯运送货物,图乙是用履带式自动电梯运送,假设两种情况下电梯都是匀速地运送货物,下列关于两电梯在运送货物时说法正确的是( ) A .两种情况下电梯对货物的支持力都对货物做正功 B .图乙中电梯对货物的支持力对货物做正功 C .图甲中电梯对货物的支持力对货物不做功 D .图乙中电梯对货物的支持力对货物不做功2. 如图所示,木板质量为M ,长度为L ,小木块质量为m ,水平地面光滑,一根不计质量的轻绳跨过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ,开始时小木块静止在木板左端,现用水平向右的力将小木块拉至右端,拉力至少做功为( ) A .μmgL B .2μmgL C.μmgL 2D .μ(M +m )gL3. 如图所示,乒乓球运动员用同一个乒乓球两次发球,乒乓球恰好都在等高处水平向左越过球网,从最高点落到台面的过程中(不计乒乓球的旋转和空气阻力),下列说法正确的是( )A .球第1次过网时的速度小于第2次的B .球第1次的速度变化量小于第2次的C .球两次落到台面时重力的瞬时功率相等D .球两次落到台面过程中重力的平均功率不相等4. 如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1和W 2,滑块经B 、C 两点的动能分别为E k B 和E k C ,图中AB =BC ,则( ) A .W 1>W 2 B .W 1<W 2C .W 1=W 2D .无法确定W 1和W 2的大小关系5. 质量m =20 kg 的物体,在大小恒定的水平外力F 的作用下,沿水平面做直线运动.0~2 s 内F 与运动方向相反,2~4 s 内F 与运动方向相同,物体的v -t 图象如图所示.g 取10 m/s 2,则( ) A .拉力F 的大小为100 NB .物体在4 s 时拉力的瞬时功率为120 WC .4 s 内拉力所做的功为480 JD .4 s 内物体克服摩擦力做的功为320 J6. 质量为2×103 kg 的汽车由静止开始沿平直公路行驶,行驶过程中牵引力F 和车速倒数1v的关系图象如图所示.已知行驶过程中最大车速为30 m/s ,设阻力恒定,则( ) A .汽车所受阻力为6×103 NB .汽车在车速为5 m/s 时,加速度为3 m/s 2C .汽车在车速为15 m/s 时,加速度为1 m/s 2D .汽车在行驶过程中的最大功率为6×104 W7.如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向成60°时,拉力的功率为( ) A .mgLω B.32mgLω C.12mgLω D.36mgLω 8. 质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图所示,其中OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为F f ,以下说法正确的是( )A .0~t 1时间内,汽车牵引力的数值为m v 1t 1+F fB .t 1~t 2时间内,汽车的功率等于(m v 1t 1+F f )v 2C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22D .汽车运动的最大速率v 2=(mv 1F f t 1+1)v 19.汽车从静止匀加速启动,最后做匀速运动,其速度随时间及加速度、牵引力和功率随速度变化的图象如图所示,其中错误的是( )10.质量为m 的物体静止在粗糙的水平地面上,从t =0时刻开始受到方向恒定的水平拉力F 作用,F 与时间t 的关系如图甲所示.物体在12t 0时刻开始运动,其v -t 图象如图乙所示,若可认为滑动摩擦力等于最大静摩擦力,则( )A .物体与地面间的动摩擦因数为F 0mgB .物体在t 0时刻的加速度大小为2v 0t 0C .物体所受合外力在t 0时刻的功率为2F 0v 0D .水平力F 在t 0到2t 0这段时间内的平均功率为F 0⎝⎛⎭⎫2v 0+F 0t 0m 11.如图所示,两根轻质细线的一端拴在O 点、另一端分别固定在楼道内的倾斜天花板上的a 点和b 点,一质量为m 的重物P 通过长度为L 的轻质细线固定在O 点,系统静止,Oa 水平、Ob 与竖直方向成一定夹角.现对重物施加一个水平向右的拉力F ,使重物缓缓移动至OP 间细线转动60°,此过程中拉力做功为W ,则下列判断正确的是( ) A .Oa 上的拉力F 1不断增大,Ob 上的拉力F 2一定不变 B .Oa 上的拉力F 1可能不变,Ob 上的拉力F 2可能增大 C .W=mgL ,拉力做功的瞬时功率一直增大 D .W=FL ,拉力做功的瞬时功率先增大后减小二、计算题12.某汽车集团公司研制了一辆燃油与电动混合动力赛车,燃油发动机单独工作时的额定功率为P ,蓄电池供电的电力发动机单独工作时的额定功率为3P4,已知赛车运动过程中受到的阻力恒定.(1)若燃油发动机单独工作时的最大速度为120 km/h ,则两台发动机同时工作时的最大速度为多少?(2)若赛车先单独启动电力发动机从静止开始做匀加速直线运动,经过t 1时间达到额定功率,然后以燃油发动机的额定功率单独启动继续加速,又经过t 2时间达到最大速度v 0,赛车总质量为m ,求赛车的整个加速距离.13.质量为2 kg的物体静止在水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.t=0时,物体受到方向不变的水平拉力F的作用,F的大小在不同时间段内有不同的值,具体情况如表格所示(g取=10 m/s2).求:时间t(s)0~22~44~66~8拉力F(N)4848(1)4 s末拉力的瞬时功率;(2)6~8 s内拉力所做的功;(3)8 s内拉力的平均功率.5·1 功 功率·限时作业答案1.【答案】D【解析】在图甲中,货物随电梯匀速上升时,货物受到的支持力竖直向上,与货物位移方向的夹角小于90°,故此种情况下支持力对货物做正功,选项C 错误;图乙中,货物受到的支持力与履带式自动电梯接触面垂直,此时货物受到的支持力与货物位移垂直,故此种情况下支持力对货物不做功,故选项A 、B 错误,D 正确. 2.【答案】A【解析】将小木块缓慢拉至木板右端,拉力F 做功最少,其中F =μmg +F T ,F T =μmg ,小木块位移为L 2,所以W F =F ·L2=μmgL ,故A 对.3.【答案】C【解析】球下落的高度相同,由h =12gt 2可知下落的时间相等,因球第1次比第2次通过的水平位移大,根据x =vt 可知,球第1次过网时的速度大于第2次过网时的速度.球在水平方向做匀速直线运动,在竖直方向做自由落体运动,故速度变化量只在竖直方向,由Δv =gt 可得速度变化量相等.重力的瞬时功率P =mgv y ,落地时竖直方向的速度相等,故球两次落到台面时重力的瞬时功率相等.平均功率等于功除以时间,重力两次做的功相同,时间也相同,重力两次的平均功率也相同.故选C. 4.【答案】A【解析】绳子对滑块做的功为变力做功,可以通过转换研究对象,将变力的功转化为恒力的功;因绳子对滑块做的功等于拉力F 对绳子做的功,而拉力F 为恒力,W =F ·Δl ,Δl 为绳拉滑块过程中力F 的作用点移动的位移,大小等于滑轮左侧绳长的缩短量,由图可知,Δl AB >Δl BC ,故W 1>W 2,A 正确. 5.【答案】B【解析】取物体初速度方向为正方向,由图象可知物体与水平面间存在摩擦力,由图象可知0~2 s 内,-F -f =ma 1且a 1=-5 m/s 2;2~4 s 内,-F +f =ma 2且a 2=-1 m/s 2,联立以上两式解得F =60 N ,f =40 N ,A 错误.由P =Fv 得4 s 时拉力的瞬时功率为120 W ,B 正确.拉力做功W =-Fx ,x 为物体的位移,由图象可知位移为8 m,4 s 内拉力所做的功为-480 J ,C 错误.摩擦力做功W =fs ,摩擦力始终与速度方向相反,故s 为路程,由图象可知总路程为12 m,4 s 内物体克服摩擦力做的功为480 J ,D 错误. 6.【答案】CD【解析】当牵引力等于阻力时,速度最大,由图线可知阻力大小F f =2 000 N ,故A 错误.倾斜图线的斜率表示功率,可知P =F f v =2 000×30 W =60 000 W ,车速为5 m/s时,汽车的加速度a =6 000-2 0002 000 m/s 2=2 m/s 2,故B 错误;当车速为15 m/s 时,牵引力F =P v =60 00015 N =4 000 N ,则加速度a =F -F f m =4 000-2 0002 000 m/s 2=1 m/s 2,故C 正确;汽车的最大功率等于额定功率,等于60 000 W ,故D 正确 7. 【答案】C【解析】由能的转化与守恒可知:拉力的功率等于克服重力的功率,P F =P G =mgv y =mgv cos 60°=12mgωL ,故选C.8. 【答案】AD【解析】0~t 1时间内汽车做匀加速运动,加速度为a =v 1t 1,由牛顿第二定律可知F -F f =ma ,解得F =m v 1t 1+F f ,选项A 正确;t 1~t 2时间内,汽车做加速度减小的加速运动,t 2时刻速度达到最大,此时F =F f ,汽车的功率等于P =F f v 2,选项B 错误;由图线可知,在t 1~t 2时间内,v -t 图线与坐标轴围成的面积所代表的位移大于汽车在这段时间内做匀加速运动的位移,则汽车的平均速率大于v 1+v 22,选项C 错误;汽车在t 1时刻达到最大功率,则P =Fv 1=(m v 1t 1+F f )v 1,又P =F f v 2,解得v 2=(mv 1F f t 1+1)v 1,D 正确.9 【答案】B【解析】汽车启动时由P =Fv 和F -F f =ma 可知,匀加速启动过程中,牵引力F 、加速度a 恒定不变,速度和功率均匀增大,当功率增大到额定功率后保持不变,牵引力逐渐减小到与阻力相等,加速度逐渐减小到零,速度逐渐增大到最大速度,故A 、C 、D 正确,B 错误. 10【答案】AD【解析】物体在t 02时刻开始运动,说明此时阻力等于水平拉力,即f =F 0,动摩擦因数μ=F 0mg ,故A 正确;在t 0时刻由牛顿第二定律可知,2F 0-f =ma ,a =2F 0-f m ,故B 错误;物体在t 0时刻受到的合外力为F =2F 0-f =F 0,功率为P =F 0v 0,故C 错误;2t 0时刻速度为v =v 0+F 0m t 0,在t 0~2t 0时间内的平均速度为v =v +v 02=2v 0+F 0m t 02,故平均功率为P =2F 0v =F 0(2v 0+F 0t 0m ),故D 正确.11.【答案】 AC【解析】对结点O 分析,细线OP 竖直方向上的拉力(大小为mg )与细线Ob 上的拉力F 2的竖直分力平衡,则F 2不变.对重物分析,应用图解法可知水平拉力F 不断增大,又F 2不变,对结点O 和重物分析,由于水平方向平衡,可知F 1不断增大,故A 正确,B 错误;由题意可知重物绕O 做匀速圆周运动,则拉力和重力垂直半径方向的分力等大,拉力做功功率P=mg sin θ·v 不断增大,根据动能定理可知W=mgL (1-cos 60°),选项C 正确,D 错误.12. 【答案】(1)210 km/h (2)P (3t 1+8t 2)v 0-4mv 38P【解析】(1)燃油发动机单独工作,P =F 1v 1=fv 1两台发动机同时工作,P +3P4=F 2v 2=fv 2最大速度v 2=7v 14=210 km/h.(2)燃油发动机的额定功率为P ,最大速度为v 0, 阻力f =Pv 0匀加速过程功率随时间均匀增加,发动机的平均功率为3P8,设总路程为s ,由动能定理有3P 8t 1+Pt 2-fs =12mv 20解得s =P (3t 1+8t 2)v 0-4mv 308P .13.【答案】(1)32 W (2)96 J (3)20 W【解析】(1)在0~2 s 内,拉力等于4 N ,最大静摩擦力等于4 N ,故物体静止.在2~4 s 内,拉力F =8 N ,由牛顿第二定律得F -μmg =ma 解得a =2 m/s 2位移为x 1=12a (Δt )2=4 m4 s 末物体的速度大小v =a Δt =4 m/s 4 s 末拉力的瞬时功率P =Fv =8×4 W =32 W.(2)在4~6 s 内,拉力等于4 N ,滑动摩擦力等于4 N ,故物体做匀速直线运动, 位移x 2=v Δt =4×2 m =8 m在6~8 s 内,拉力仍然是F =8 N ,物体的加速度大小仍为a =2 m/s 2.位移x 3=v Δt +12a (Δt )2=12 m拉力所做的功W =Fx 3=8×12 J =96 J.(3)8 s 内拉力做功W =0+8×4 J +4×8 J +96 J =160 J 平均功率P =Wt =20 W.5·1 功 功率·答题纸一、选择题二、计算题 12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15·3 原子核一、选择题1.关于天然放射性,下列说法正确的是A.所有元素都可能发生衰变B.放射性元素的半衰期与外界的温度无关C.放射性元素与别的元素形成化合物时仍具有放射性D.α、β和γ三种射线中,γ射线的穿透能力最强E.一个原子核在一次衰变中可同时放出α、β和γ三种射线2.下列说法正确的是()A.在核反应过程的前后,反应体系的质量数守恒,但电荷数不守恒B.用加温、加压或改变其化学状态的方法都不能改变放射性原子核的半衰期C.18个放射性元素的原子核经一个半衰期一定有9个发生了衰变D.由两种元素的原子核结合成一种新元素的原子核时,一定吸收能量3.根据所给图片结合课本相关知识,下列说法正确的是()A.图甲是电子束穿过铝箔后的衍射图样,证明电子具有粒子性B.图乙是利用不同气体制成的五颜六色的霓虹灯,原因是各种气体原子的能级不同,跃迁时发射光子的能量不同,光子的频率不同C.图丙是工业上使用的用射线检测金属板厚度的装置,在α、β、γ三种射线中,最有可能使用的射线是β射线D.图丁是原子核的比结合能与质量数A的关系图象,由图可知中等大小的核的比结合能最大,即(核反应中)平均每个核子的质量亏损最小4.下列说法正确的是()A.12C与14C是同位素,它们的化学性质并不相同B.核力是原子核内质子与质子之间的力,中子和中子之间并不存在核力C.在裂变反应K r都大,但比结合能没有Kr大D.α、β、γ三种射线都是带电粒子流5. 我国科学家为解决“玉兔号”月球车长时间处于黑夜工作的需要,研制了一种小型核能电池,将核反应释放的核能转变为电能,需要的功率并不大,但要便于防护其产生的核辐射.请据此猜测“玉兔号”所用核能电池有可能采纳的核反应方程是 ()A. nB. nC. eD. n6. 我国自主研发制造的国际热核聚变核心部件在国际上率先通过权威机构认证,这是我国对国际热核聚变项目的重大贡献.下列核反应方程中属于聚变反应的是()A.21H+31H→42He+10nB.147N+42He→178O+11HC.42He+2713Al→3015P+10nD.23592U+10n→14456Ba+8936Kr+310n7. 232 90Th(钍)经过一系列α和β衰变,变成208 82Pb(铅),下列说法错误的是()A.铅核比钍核少8个质子B.铅核比钍核少16个中子C.共经过4次α衰变和6次β衰变D.共经过6次α衰变和4次β衰变8.一静止的铀核放出一个α粒子衰变成钍核,衰变方程为238 92U→234 90Th+42He.下列说法正确的是()A.衰变后钍核的动能等于α粒子的动能B.衰变后钍核的动量大小等于α粒子的动量大小C.铀核的半衰期等于其放出一个α粒子所经历的时间D.衰变后α粒子与钍核的质量之和等于衰变前铀核的质量9.下列与α粒子相关的说法中正确的是()A.天然放射现象中产生的α射线速度与光速相当,贯穿能力很强B.238 92U(铀238)核放出一个α粒子后就变为234 90Th(钍234)C.高速α粒子轰击氮核可从氮核中打出中子,核反应方程为42He+14 7N→16 8O+10n D.丹麦物理学家玻尔进行了α粒子散射实验并首先提出了原子的核式结构模型10.云室能显示射线的径迹,把云室放在磁场中,从带电粒子运动轨迹的弯曲方向和半径大小就能判断粒子的属性.放射性元素的原子核A静止放在磁感应强度B=2.5 T的匀强磁场中,该原子核发生衰变,放射出粒子并变成新原子核B,放射出的粒子与新核运动轨迹如图31-3所示,测得两圆的半径之比R1∶R2=42∶1,且R1=0.2 m.已知α粒子质量mα=6.64×10-27kg,β粒子质量mβ=9.1×10-31kg,普朗克常量h取6.6×10-34 J·s,下列说法正确的是()A.新原子核B的核电荷数为84B.原子核A发生的是β衰变C.衰变放出的粒子的速度大小为2.4×107 m/sD.如果原子核A衰变时释放出一种频率为1.2×1015 Hz的光子,那么这种光子能使逸出功为4.54 eV的金属钨发生光电效应11.在匀强电场中有一个原来速度几乎为零的放射性碳14原子核,某时刻它发生衰变放射出一个粒子,其所放射的粒子与反冲核的初速度方向均与电场方向垂直,且经过相等的时间后形成的轨迹如图所示(a、b均表示长度).那么碳14的衰变方程可能是()A.14 6C→42He+10 4BeB.14 6C→0-1e+14 5BC.14 6C→0-1e+14 7ND.14 6C→21H+12 5B12.现有两动能均为E0=0.35 MeV的H核在一条直线上相向运动,两个H核发生对撞后能发生核反应,得到He核和新粒子,且在核反应过程中释放的能量完全转化为He核的质量为3.016 0 u,新粒子的质量为1.008 7 u,核反应时质量亏损1 u释放的核能约为931 MeV.下列说法正确的是(如果涉及计算,结果保留整数) ()A.核反应方程为HB.核反应前后不满足能量守恒定律C.新粒子的动能约为3 MeVD.He核的动能约为1 MeV二、非选择题13.运动的原子核X放出α粒子后变成静止的原子核Y.已知X、Y和α粒子的质量分别是M、m1和m2,真空中的光速为c,α粒子的速度远小于光速.求反应后与反应前的总动能之差以及α粒子的动能.14.用速度大小为v的中子轰击静止的锂核(63Li),发生核反应后生成氚核和α粒子.生成的氚核速度方向与中子的初速度方向相反,氚核与α粒子的速度之比为7∶8,中子的质量为m,质子的质量可近似看作m,光速为c.(1)写出核反应方程;(2)求氚核和α粒子的速度大小;(3)若核反应过程中放出的核能全部转化为α粒子和氚核的动能,求质量亏损.15.在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出的α粒子(42He)在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q分别表示α粒子的质量和电荷量.(1)放射性原子核用A Z X表示,新核的元素符号用Y表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小.(3)设该衰变过程释放的核能都转化为α粒子和新核的动能,新核的质量为M,求衰变过程的质量亏损Δm.15·3 原子核·限时作业答案1.【答案】BCD【解析】只有原子序数大于或等于83的元素才能发生衰变,选项A错.半衰期由原子核内部的结构决定,与外界温度无关,选项B对.放射性来自于原子核内部,与其形成的化合物无关,选项C对.α、β、γ三种射线中,γ射线能量最高,穿透能力最强,选项D对.一个原子核在一次衰变中要么是α衰变、要么是β衰变,同时伴随γ射线的产生,选项E错.2.【答案】B【解析】核反应前后质量数守恒,电荷数也守恒,A错误;半衰期是宏观统计概念,C错误;核聚变释放能量,D错误.3.【答案】B【解析】题图甲是电子束穿过铝箔后的衍射图样,证明电子具有波动性,选项A错误;题图乙是利用不同气体制成的五颜六色的霓虹灯,原因是各种气体原子的能级不同,跃迁时发射光子的能量不同,光子的频率不同,选项B正确;题图丙是工业上使用的用射线检测金属板厚度的装置,在α、β、γ三种射线中,由于γ射线穿透能力最强,最有可能使用的射线是γ射线,选项C错误;题图丁是原子核的比结合能与质量数A 的关系图象,可知中等大小的核的比结合能最大,即在核子结合成原子核时平均每个核子释放的能量最大,平均每个核子的质量亏损最大,选项D错误.4.【答案】C【解析】同位素的核外电子数量相同,所以一种元素的各种同位素都具有相同的化学性质,A错误;原子核内相邻的质子和中子之间均存在核力,B错误;核子数越多其结合能也越大,所以Kr都大,但Kr都小,C 正确;α射线、β射线都是带电粒子流,而γ射线是电磁波,不带电,故D错误.5.【答案】C【解析】A是聚变反应,反应剧烈,至今可控聚变反应还处于实验研究阶段;B是裂变反应,虽然实现了人工控制,因反应剧烈,防护要求高,还不能小型化;C是人工放射性同位素的衰变反应,是小型核能电池主要采用的反应方式;D是人工核反应,需要高能α粒子.6.【答案】A【解析】A对:两个轻核结合成质量较大的原子核;B错:原子核的人工转变;C错:原子核的人工转变;D错:重核裂变.7.【答案】C【解析】由于β衰变不会引起质量数的减少,故可根据质量数的减少确定α衰变的次数为x =232-2084=6.再结合电荷数的变化情况和衰变规律来判定β衰变的次数y ,应满足:2x -y =90-82=8,所以y =2x -8=4. 8.【答案】 B【解析】 衰变过程遵守动量守恒定律,故选项A 错,选项B 对.根据半衰期的定义,可知选项C 错.α衰变释放核能,有质量亏损,故选项D 错. 9.【答案】 B【解析】 天然放射现象中产生的α射线的速度约为光速的110,穿透能力不强,A 错误;根据质量数和电荷数守恒可知,238 92U(铀238)核放出一个α粒子后就变为23490Th(钍234),B 正确;高速α粒子轰击氮核可从氮核中打出质子,核反应方程为42He +14 7N→17 8O +11H ,C 错误;卢瑟福进行了α粒子散射实验并首先提出了原子的核式结构模型,D 错. 10.【答案】 ACD 、【解析】轨迹呈现外切,所以放射出的粒子带正电,即发生α衰变,B 错误;因为两圆的半径之比R 1∶R 2=42∶1,R=,又衰变过程动量守恒,可得新原子核B 的核电荷数为84,所以A 正确;由R 1=,得v α==2.4×107 m/s,所以C 正确;根据E=hν可得,光子的能量为E 光=7.92×10-19 J,钨的逸出功为W 逸=4.54×1.6×10-19 J≈7.26×10-19 J,光子能量大于钨的逸出功,故钨能发生光电效应,所以D 正确. 11.【答案】 A【解析】 设放射粒子反冲核的电荷数与质量数分别为q 1、m 1;q 2,m 2.则由动量守恒有:m 1v 1=m 2v 2①;对放射粒子有:2a =12 q 1E m 1 t 2②;a =v 12 t ③;对反冲核有:4b =12 q 2E m 2 t 2④;b=v 22 t ⑤;由①②③④⑤解得q 1q 2=12,对照选项的四个核反应方程可知,只有A 对. 12.【答案】CD【解析】由核反应过程中的质量数守恒和电荷数守恒可知n,则新粒子为中子n,A 错误;核反应过程中有质量亏损,释放能量,仍然满足能量守恒定律,B 错误;由题意可知ΔE=(2.014 1 u×2-3.016 0 u-1.008 7 u)×931 MeV/u=3.3 MeV,根据核反应中系统的能量守恒有E kHe +E kn =2E 0+ΔE ,根据核反应中系统的动量守恒有p He -p n =0,由E k =,可知,解得E kHe =·(2E 0+ΔE )≈1 MeV,E kn =(2E 0+ΔE )≈3MeV,C 、D 正确.13.【答案】 (M-m 1-m 2)c 2;【解析】 设运动的原子核Χ的速度为v 1,放出的α 粒子速度为v 2,由质量亏损可得k E ∆==(M-m 1-m 2)c 2由动量守恒定律得:Mv 1=m 2v 2 联立解得 E k =14.【答案】 (1)10n +63Li →31H +42He(2)711v 811v (3)141m v 2121c 2【解析】 (1)由题意可得,核反应方程为10n +63Li→31H +42He. (2)由动量守恒定律得mv =-3mv 1+4mv 2由题意得v 1∶v 2=7∶8,解得v 1=711v ,v 2=811v .(3)氚核和α粒子的动能之和为:E k =12×3mv 21+12×4mv 22=403242mv 2释放的核能为:ΔE =E k -E kn =403242mv 2-12mv 2=141121mv 2由爱因斯坦质能方程得,质量亏损为:Δm =ΔE c 2=141mv 2121c 2.15.【答案】(1)A Z X→A -4Z -2Y +42He(2)2πm qB q 2B2πm (3) Δm =(M +m )(qBR )22mMc 2. 【解析】 (1)A Z X→A -4Z -2Y +42He.(2)设α粒子的速度大小为v ,由qvB =m v 2R ,T =2πRv ,得α粒子在磁场中运动周期T =2πmqB环形电流大小I =q T =q 2B2πm .(3)由qvB =m v 2R,得v =qBR m设衰变后新核Y 的速度大小为v ′,系统动量守恒:Mv ′-mv =0 v ′=mv M =qBR M由Δmc 2=12Mv ′2+12mv 2得Δm =(M +m )(qBR )22mMc 2.15·3 原子核·答题纸。

相关文档
最新文档