2013-2014学年南京市溧水区九年级数学一模试卷

合集下载

2013~2014学年玄武一模数学

2013~2014学年玄武一模数学

(3)已知各正多边形(包含圆)的面积相等.图一中点 A、B 的数值对应曲线的端点,
— 6 —
26. (9 分)在△ABC 中,∠ACB=90°,经过点 C 的⊙O 与斜边 AB 相切于点 P. (1)如图①,当点 O 在 AC 上时,试说明 2∠ACP=∠B; (2)如图②,AC=8,BC=6,当点 O 在△ABC 外部时,求 CP 长的取值范围.
2013~2014 学年第二学期九年级测试卷(一) 数 学
— 1 —
全卷满分 120 分.考试时间为 120 分钟. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰 有一项是符合题目要求的) 1.计算(a2)3÷(a2)2 的结果是 A.a B.a2 C.a3 D.a4 2.南京地铁 3 号线全长约 40 000 米,将 40 000 用科学记数法表示为 A.0.4×105 B.4×104 C.4×105 D.40×103 3.数据 1,1,4,3,3 的中位数是 A.4 B.3.5 C .3 D.2.5 4.已知点 A、B 在一次函数 y=kx+b(k、b 为常数,且 k≠0)的图象上,点 A 在第一象限, 点 B 在第二象限,则下列判断一定正确的是 A.k<0 B.k>0 C.b<0 D.b>0 5.如图,直线 a、b、c、d 互不平行,对它们截出的一些角的数量关系描述错误的是 A.∠1+∠5+∠4=180° B.∠4+∠5=∠2 C.∠1+∠3+∠6=180° D.∠1+∠6=∠2
19. (7 分)小红去买水果,5 kg 苹果和 3 kg 香蕉应付 52 元,可她把两种水果的单价弄反了, 以为要付 44 元. 那么在单价没有弄反的情况下, 购买 6 kg 苹果和 5 kg 香蕉应付多少元? 请你运用方程的知识解决这个问题.

江苏省南京市溧水区中考一模数学考试卷(解析版)(初三)中考模拟.doc

江苏省南京市溧水区中考一模数学考试卷(解析版)(初三)中考模拟.doc

江苏省南京市溧水区中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】实数9的平方根是()A.±3 B.3 C.± D.【答案】A【解析】试题分析:∵(±3)2=9,∴实数9的平方根是±3,故选:A.考点:平方根.【题文】下列运算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a8【答案】C【解析】试题分析:A、a2+a3=a5,不是同类项无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a3÷a2=a,故此选项正确;D、(a2)3=a6,故此选项错误;故选:C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若DE=2,BC=5,则AD:DB=()A.3:2 B.3:5 C.2:5 D.2:3【答案】D【解析】试题分析:∵DE∥BC,评卷人得分∴△ADE∽△ABC,∴,∴,故选:D.考点:相似三角形的判定与性质.【题文】月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A.1.738×106 B.1.738×107 C.0.1738×107 D.17.38×105【答案】A【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.将1738000用科学记数法表示为:1.738×106.考点:科学记数法—表示较大的数.【题文】如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.0.1 B.0.2 C.0.3 D.0.4【答案】B【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴S阴影=S正方形﹣S圆=1﹣0.25π≈0.215.故选:B.考点:估算无理数的大小.【题文】在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个 B.4个 C.5个 D.6个【答案】C【解析】试题分析:如图,AC⊥BC时,∵∠ABC=30°,AB=4,∴AC=AB=×4=2,∵垂线段最短,∴AC≥2,∴在1、2、3、4、5中可取的值有2、3、4、5,当AC=2时可以作1个三角形,当AC=3时可以作2个三角形,当AC=4时可以作1个三角形,当AC=5时可以作1个三角形,共1+2+1+1=5,所以,三角形的个数是5个.故选C.考点:全等三角形的判定.【题文】﹣2的相反数是,﹣2的倒数是.【答案】2,【解析】试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,﹣2的倒数是.考点:倒数;相反数.【题文】函数y=中,自变量x的取值范围是.【答案】x≠2.【解析】试题分析:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.考点:函数自变量的取值范围;分式有意义的条件.【题文】计算的结果为【答案】【解析】试题分析:考点:二次根式的加减法【题文】分解因式(a+1)(a+3)+1的结果是.【答案】【解析】试题分析:首先去括号,进而利用乘法公式分解因式,(a+1)(a+3)+1==.故答案为:考点:因式分解-运用公式法.【题文】不等式组的解集是.【答案】﹣2≤x<2.【解析】试题分析:先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集.解这个不等式得,即为﹣2≤x<2故答案为﹣2≤x<2.考点:解一元一次不等式组.【题文】已知方程x2﹣6x+m=0有一个根是2,则另一个根是,m=.【答案】4 ;8【解析】试题分析:设另一根为a,由根与系数的关系可得2+a=6,解得a=4,可得m=2×4=8.考点:根与系数的关系;一元二次方程的解.【题文】将点A(2,0)绕着原点O顺时针方向旋转60°角到对应点A′,则点A′的坐标是.【答案】【解析】试题分析:如图,连接OA′,过点A′作A′B⊥x轴于点B,∵点A(2,0),∴OA=2,∵点A(2,0)绕着原点O顺时l【答案】89【解析】试题分析:由题意得,,不等式两边都乘以10得,180+225+5x≥850,解得x≥89,所以,小军的期末考试成绩x不低于89分.故答案为:89.考点:加权平均数.【题文】如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°.若点E在上,则∠E=°.【答案】125【解析】试题分析:∵∠C+∠BAD=180°,∴∠BAD=180°﹣110°=70°,∵AB=AD,∴∠ABD=∠ADB,∴∠ABD=(180°﹣70°)=55°,∵四边形ABDE为圆的内接四边形,∴∠E+∠ABD=180°,∴∠E=180°﹣55°=125°.故答案为125.考点:圆内接四边形的性质.【题文】如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数(x >0)的图象经过顶点B,则反比例函数的表达式为.【答案】(x>0).【解析】试题分析:∵A的坐标为(3,4),∴OA==5,∵四边形OABC为菱形,∴AB=OA=5,AB∥OC,∴B(8,4),把B(8,4)代入得k=8×4=32,∴反比例函数的表达式为(x>0).考点:菱形的性质;待定系数法求反比例函数解析式.【题文】解不等式:,并把它的解集在数轴上表示出来.【答案】x<﹣2,数轴见解析【解析】试题分析:首先去分母,然后去括号,移项合并,系数化为1,即可求得答案.注意系数化1时,因为系数是﹣1,所以不等号的方向要发生改变,在数轴上表示时:注意此题为空心点,方向向左.试题解析:去分母,得x﹣6>2(x﹣2).去括号,得x﹣6>2x﹣4,移项,得x﹣2x>﹣4+6,合并同类项,得﹣x>2,系数化为1,得x<﹣2,这个不等式的解集在数轴上表示如下图所示.考点:解一元一次不等式;在数轴上表示不等式的解集.【题文】计算:【答案】【解析】试题分析:先对括号内的异分母分式加减,需要通分,再把除法转化为乘法运算进行计算,约分就可以了.试题解析:原式===考点:分式的混合运算.【题文】水龙头关闭不严会造成滴水,小明用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的容器内盛水量y(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题.(1)容器内原有水多少升?(2)求y与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?【答案】(1)容器内原有水0.3升;(2)在这种滴水状态下一天的滴水量是9.9升.【解析】试题分析:(1)根据点(0,0.3)的实际意义可得;(2)设y与t之间的函数关系式为y=kt+b,待定系数法求解可得,再计算t=24时y的值即可.试题解析:(1)根据图象可知,t=0时,y=0.3,即容器内原有水0.3升;(2)设y与t之间的函数关系式为y=kt+b,将(0,0.3),(1.5,0.9)代入,得,解得,故y与t之间的函数关系式为y=0.4t+0.3;当t=24时,y=0.4×24+0.3=9.9(升),故在这种滴水状态下一天的滴水量是9.9升.考点:一次函数的应用.【题文】如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且,(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.【答案】(1)∠1=∠2;(2)△ABE∽△ACD.【解析】试题分析:(1)由,得到△ABC∽△AED,推出∠BAC=∠EAD,即可得到∠1=∠2;(2)由,得,根据两边对应成比例且夹角相等得到△ABE∽△ACD.试题解析:(1)∠1与∠2相等.在△ABC和△AED中,∵,∴△ABC∽△AED,∴∠BAC=∠EAD,∴∠1=∠2.(2)△ABE与△ACD相似.由,得,在△ABE和△ACD中,∵,∠1=∠2,∴△ABE∽△ACD.考点:相似三角形的判l(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.【答案】(1)500,0.05;(2)图见解析;(3)估算“哲学”类图书应采购500册较合适;(4)鼓励学生多借阅哲学类的书.【解析】试题分析:(1)用阅读“自然科学”类图书的人数除以它所占的百分比得到调查的总人数,再用总人数乘以0.25得到m的值,接着用1分别减去其他三组的百分比可得到n的值;(2)补全统计图;(3)利用样本估计总体,用1万乘以“哲学”类所占的百分比即可;(4)可从阅读“哲学”类图书的人数较少提建议.试题解析:(1)400÷0.20=2000,m=2000×0.25=500,n=1﹣0.20﹣0.5﹣0.25=0.05;故答案为500,0.05;(2)如图,(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;(4)鼓励学生多借阅哲学类的书.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.【题文】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【答案】(1);(2)小明顺利通关的概率为;(3)建议小明在第一题使用“求助”.【解析】试题分析:(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为;如果在第二题使用“求助”小明顺利通关的概率为,即可求得答案.试题解析:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是;故答案为;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为;(3)∵如果在第一题使用“求助”小明顺利通关的概率为;如果在第二题使用“求助”小明顺利通关的概率为;∴建议小明在第一题使用“求助”.考点:列表法与树状图法.【题文】如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A 处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;(结果保留两位小数)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】旗杆MN的高度度约为9.75米.【解析】试题分析:过点M的水平线交直线AB于点H,设MH=x,则AH=x,结合等腰直角三角形的性质和解直角三角形ABH得到AB=AH﹣BH=x﹣0.60x=0.4x=3.5,由此求得MH的长度,则MN=AB+BH.试题解析:过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=31°,AB=3.5,设MH=x,则AH=x,BH=xtan31°=0.60x,∴AB=AH﹣BH=x﹣0.60x=0.4x=3.5,解得x=8.75,则旗杆高度MN=x+1=9.75(米)答:旗杆MN的高度度约为9.75米.考点:解直角三角形的应用-仰角俯角问题.【题文】如图1,▱ABCD 中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.(1)求证:四边形EBFD是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH .此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.【答案】(1)四边形EBFD是平行四边形.(2)GF∥EH,AE∥CF;【解析】试题分析:(1)由平行四边形的性质得出AD∥BC,∠ABC=∠ADC.AD=BC,由角平分线得出∠ABE=∠EBC=∠ADF=∠CDF.证出EB∥DF,即可得出结论;(2)由平行四边形的性质得出BE∥DF,DE=BF,得出AE=CF,证出四边形AFCE是平行四边形,得出GF∥EH ,即可证出四边形EGFH是平行四边形.试题解析:(1)证明:在▱ABCD中,AD∥BC,∠ABC=∠ADC.AD=BC,∵BE平分∠ABC,∴∠ABE=∠EBC=∠ABC.∵DF平分∠ADC,∴∠ADF=∠CDF=∠ADC.∵∠ABC=∠ADC.∴∠ABE=∠EBC=∠ADF=∠CDF.∵AD∥BC,∴∠AEB=∠EBC.∴∠AEB=∠ADF.∴EB∥DF.∵ED∥BF,∴四边形EBFD是平行四边形.(2)补全思路:GF∥EH,AE∥CF;理由如下:∵四边形EBFD是平行四边形;∴BE∥DF,DE=BF,∴AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∴GF∥EH,∴四边形EGFH是平行四边形.考点:平行四边形的判定.【题文】如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后(剩下的部分做成一个)容积为90立方米的无盖长方体箱子,已知长方体箱子底面积的长比宽多4米,求矩形铁皮的面积.【答案】矩形铁皮的面积是117平方米.【解析】试题分析:设矩形铁皮的宽为x米,则长为(x+4)米,无盖长方体箱子的底面长为(x+4﹣4)米,底面宽为(x﹣4)米,根据运输箱的容积为90立方米建立方程求出其解即可.试题解析:设矩形铁皮的宽为x米,则长为(x+4)米,由题意,得x(x﹣4)×2=90,解得:x1=9,x2=﹣5(舍去),所以矩形铁皮的长为:9+4=13米,矩形铁皮的面积是:13×9=117(平方米).答:矩形铁皮的面积是117平方米.考点:一元二次方程的应用.【题文】如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.【答案】(1)∠CAD=∠BAC;(2)∠CAD=∠BAG.【解析】试题分析:(1)连接OC,根据切线的性质定理以及等角的余角相等即可证明;(2)构造直径所对的圆周角,根据等弧所对的圆周角相等以及等角的余角相等,发现∠BAC=∠GAD,再根据等式的性质即可证明∠BAG=∠DAC.试题解析:(1)证明:如图一,连接OC,则OC⊥EF,且OC=OA,易得∠OCA=∠OAC.∵AD⊥EF,∴OC∥AD.∴∠OCA=∠CAD,∴∠CAD=∠OAC.即∠CAD=∠BAC.(2)解:与∠CAD相等的角是∠BAG.证明如下:如图二,连接BG.∵四边形ACGB是⊙O的内接四边形,∴∠ABG+∠ACG=180°.∵D,C,G共线,∴∠ACD+∠ACG=180°.∴∠ACD=∠ABG.∵AB是⊙O的直径,∴∠BAG+∠ABG=90°∵AD⊥EF∴∠CAD+∠ACD=90°∴∠CAD=∠BAG.考点:切线的性质;圆周角定理;圆内接四边形的性质【题文】问题提出某商店经销《超能陆战队》超萌“小白”(图1)玩具,“小白”玩具每个进价60元.为进行促销,商店制定如下“优惠”方案:如果一次销售数量不超过10个,则销售单价为100元/个;如果一次销售数量超过10个,每增加一个,所有“小白”玩具销售单价降低1元/个,但单价不得低于80元/个.一次销售“小白”玩具的单价y(元/个)与销售数量x(个)之间的函数关系如图2所示.(1)求m的值并解释射线BC所表示的实际意义;(2)写出该店当一次销售x个时,所获利润w(元)与x(个)之间的函数关系式;(3)店长经过一段时间的销售发现:即并不是销量越大利润越大(比如,卖25个赚的钱反而比卖30个赚的钱多).为了不出现这种现象,在其他条件不变的情况下,店长应把原来的最低单价80(元/个)至少提高到多少元/个?【答案】(1)m=30,当一次销售数量超过30个以后,都是按单价80元/个销售;(2)当0<x≤10时,w=40x;当10<x≤30时,w=﹣x2+50x;当x>30时,w=20x;(3)店家应把最低价每个80元至少提高到每个85元.【解析】试题分析:(1)利用价格变化规律,进而求出m的值,然后根据解析式解释线段AB所表示的实际优惠销售政策即可;(2)分类讨论:当0<x≤10时,当10<n≤30时;当n>30时,分别得出等式;(3)配方W=﹣x2+50x得到W=﹣(x﹣25)2+625,根据二次函数的性质讨论增减性,可得卖25个赚的钱反而比卖30个赚的钱多.为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到85元.试题解析:(1)由题意可得:m=(100-80)+10=30,射线BC所表示的实际意义是:当一次销售数量超过30个以后,都是按单价80元/个销售;(2)当0<x≤10时,w=(100-60)x=40x;当10<x≤30时,y=100﹣(x﹣10)=110﹣x,w=[100﹣(x﹣10)﹣60]x=﹣x2+50x;当x>30时,w=(80﹣60)x=20x;(3)当10<x≤30时,w=﹣x2+50x=﹣(x﹣25)2+625.①当10<x≤25时,w随x的增大而增大,即卖的个数越多,利润越大.②当25<x≤30时,w随x的增大而减小,即卖的个数越多,利润越小.当x=25时,售价为y=110﹣x=85(元).故为了不出现这种现象,在其他条件不变的情况下,店家应把最低价每个80元至少提高到每个85元.考点:二次函数的应用.。

溧水区2013~2014学年度第一学期九年级期中质量调研测试参考答案

溧水区2013~2014学年度第一学期九年级期中质量调研测试参考答案

1 溧水区2013~2014学年度第一学期期中质量调研测试初三数学答案一、选择题:(本大题共有6小题,每小题2分,共12分)1.C2.D3.B4.A5.D6.C二、填空题(本大题共10个小题,每小题2分,共20分)7.答案不唯一,如AC=BD 或∠ABC=90°等; 8. x ≤1; 9.4; 10.3; 11.4、23; 12.10 13.11; 14. -2≤k <2; 15.16; 16. 6三、解答题(本大题共有12小题,共88分)17. 原式=24238+-…………………………………………3分=23 ……………………………………………………5分18.当x >0,y ≥0时,原式=y y x 22· y x 2……………………2分=222y xy …………………………4分=222xy ………………………………5分(其它方法参照给分)19.解:移项得 03522=--x x ……………………………………………1分,∵3,5,2-=-==c b a∴ ()()0493245422>=-⨯⨯--=-ac b (可不写) ……………3分 ∴()344951=+--=x ,()2144952-=---=x ………………………5分 (不写b 2-4ac 的计算过程,结果正确不扣分,另其它方法得3分)20.解:3x (x -1)=-2(x -1) ……………………………………………………1分3x (x -1)+2(x -1)=0……………………………………………………2分(x -1)( 3x +2) =0 ………………………………………………………3分32,121-==x x (其它方法参照给分)…………………………………4分 21.证明: ∵AD∥BC; ∴∠ADE=∠CBF …………1分又∵AE⊥AD,CF⊥BC;∴∠EAD=∠FCB=90°………3分又∵AE=CF ∴△AED ≌△CFB (AAS) …………5分∴AD=BC ……………………………………………6分又∵AD ∥BC, ∴四边形ABCD 是平行四边形 ………7分第21题图222.解:(1)由题意得,4+2m+n+1=0 ……………………………………… 1分; 所以n=-5-2m ……………………………………………………2分.(2) 由题意得,=-ac b 42n m 42--=2m 4(-5-2m) …………………3分=4)4(2++m …………………………………5分∵2)4(+m ≥0;∴ac b 42->0;……………………………… 6分∴关于y 的一元二次方程02=++n my y 总有两个不相等的实数根……7分23.(1)10 , 2………………………………………………………………2分;(2)理由:小秋与小夏平均得分相同,且小秋的方差小于小夏,即小秋的得分稳定,能正常发挥. …………………………………5分(答到小秋方差小,得分稳定即可得2分)(3)平均数变大,方差变小………………………………………………7分(答对每一项即可得1分,少答一个扣1分;若仅回答中位数不变,众数不变也可得1分)24.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .………1分根据题意得:5000(1+x )2 =7200.…………………………………4分解得 x 1 =0.2=20%,x 2 =﹣2.2 (不合题意,舍去) ………………6分答:这两年我国公民出境旅游总人数的年平均增长率为20%.…………7分(2)如果2013年仍保持相同的年平均增长率,则2013年我国公民出境旅游总人数为 7200(1+x )2 =7200×1.44=10368万人次. 答:预测2013年我国公民出境旅游总人数约1.368万人次.…………………8分25.(1)证明:∵四边形ABCD 是矩形∴AC =BD , AB ∥CD …1分 又∵BE ∥AC , ∴四边形ABEC 是平行四边形 … 2分∴BE= AC ……………………………………… 3分∴BD=BE ………………………………………… 4分(2)解:∵四边形ABCD 是矩形 ∴AO=OC=BO=OD=4,即BD=8∵∠DBC =30︒ ,∴∠ABO= 90°— 30°= 60°∴△ABO 是等边三角形 即AB=OB=4 于是AB =DC =CE =4 ……… 6分在Rt △BCD 中,由勾股定理得BC=34 …………………………… 7分 ∴梯形ABED 的面积=32434)444(21)(21=⋅++⋅=⋅+⋅BC DE AB … 8分C D E3 26.解:设这批运动服定价为每件x 元, ……………………………………… 1分 根据题意得:12000)100560800)(50(=⨯---x x ……………………4分 解这个方程得 80,7021==x x …………………………………………6分 当701=x 时,该商店应进这种服装600件;当802=x 时,该商店应进这种服装400件;……………………………8分 答:这批服装定价为每件70元,该商店应进这种服装600件,这批服装定价为每件80元,该商店应进这种服装400件.………………9分27. (1)等腰三角形……………………………………………………………… 1分(2)(作图2分,写作法2分)①连接BE,②画BE 的垂直平分线,交BC 于点F③连接EF ,则△BEF 即为所求作的折叠三角形…………………………4分(3)∵四边形ABCD 为矩形∴CD=AB=2,AD=BC=4,∠A=∠D=90°由折叠可知:FE=BC=4,NE=BE在Rt △DEF 中,由勾股定理可得:=42—22=23 …………6分 设AN=x , 则NE=BN=AB -AN=2-x在Rt △ANE 中,由勾股定理可得:AN 2+AE 2=NE 2 ……………………… 7分 即222)2()324(x x -=-+,………………………………………………… 8分 解得:634,634-==∴-=x AN x ………………………………………10分28. 情境观察 AD (或A′D ),90 ……………………2分问题探究 结论:EP =FQ . ……………………3分证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE=90°.∴∠BAG +∠EAP =90°. ……………………………4分∵AG ⊥BC ,∴∠BAG +∠ABG =90°, ……………5分∴∠ABG =∠EAP . …………………………………6分∵EP ⊥AG ,∴∠AGB =∠EPA =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . …………………7分同理AG =FQ . ∴EP =FQ . …………………………8分 拓展延伸 结论: HE =HF . ……………………9分理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q .∵四边形ABME 是矩形,∴∠BAE =90°,QPHA B CE F G N M 图3 A B C E F G P Q4 ∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP .∵∠AGB =∠EPA =90°,∴△ABG ∽△EAP ,∴AG EP = AB EA . ……………………………………………10分 同理△ACG ∽△FAQ ,∴AG FP = AC FA. ∵AB =k AE ,AC =k AF ,∴AB EA = AC FA =k ,∴AG EP = AG FP. ∴EP =FQ . …………11分 ∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF ……………………12分。

2013年江苏省南京市中考数学第一次模拟试卷及答案

2013年江苏省南京市中考数学第一次模拟试卷及答案

2013年江苏省南京市中考数学第一次模拟试卷一、选择题(本大题共6小题,每小题2分,共计12分) ﹣. 甲=乙,S 甲2=S 乙2. 甲=乙,S 甲2>S 乙2. 甲=乙,S 甲2<S 乙2. 甲<乙,S 甲2<S 乙2. 为( ) . cm B 7.(2分)已知⊙O 1的半径为3,⊙O 2的半径为5,O 1O 2=7,则⊙O 1、⊙O 2的位置关系是 _________ . 8.(2分)校篮球队进行1分钟定点投篮测试,10名队员投中的球数由小到大排序的结果为7、8、9、9、9、10、10、10、10、12,则这组数据的中位数是 _________ . 9.(2分)不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的,这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是 _________ . 10.(2分)如图,一位同学将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2= _________ °.11.(2分)如图,平行四边形ABCD 中,AD=5cm ,AB ⊥BD ,点O 是两条对角线的交点,OD=2,则AB=_ cm . 12.(2分)全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 _________ . 13.(2分)点(﹣4,3)在反比例函数图象上,则这个函数的关系式为 _________ .y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如下表:15.(2分)如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M 是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是_________.16.(2分)如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG=45°,点F在边AD的延长线上,且DF=BE.则下列结论:①∠ECB是锐角;②AE<AG;③△CGE≌△CGF;④EG=BE+GD中一定成立的结论有_________(写出全部正确结论).三、解答题(本大题共12小题,共计88分)17.(6分)先化简,再求值:(﹣)÷,其中x=+1.18.(6分)解不等式组,并写出它的所有整数解.19.(6分)如图,已知,四边形ABCD为梯形,分别过点A、D作底边BC的垂线,垂足分别为点E、F.四边形ADFE是何种特殊的四边形?请写出你的理由.20.(6分)在直角坐标平面内,二次函数y=ax2+bx﹣3(a≠0)图象的顶点为A(1,﹣4).(1)求该二次函数关系式;(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.21.(6分)某中学组织全体学生参加了“喜迎青奥,走出校门,服务社会”的活动.该中学以九年级(2)班为样本,统计了该班学生宣传青奥,打扫街道,去敬老院服务和在十字路口值勤的人数,并做了如下直方图和扇形统计图(A~宣传青奥;B~打扫街道;C~去敬老院服务;D~在十字路口值勤).(1)求去敬老院服务对应的扇形圆心角的度数;(2)若该中学共有800学生,请估计这次活动中在十字路口值勤的学生共有多少人?22.(6分)“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.(1)该顾客至多可得到 _________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(8分)已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有_________(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,_________.求证:_________.证明:_________.24.(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)25.(8分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是_________吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?26.(10分)如图直角坐标系中,已知A(﹣4,0),B(0,3),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.27.(8分)(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是_________;需要测量的数据是_________.28.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.①求证:△ABP≌△ACQ;②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG 的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.2013年江苏省南京市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共计12分)﹣325次射击命中的环数如下:.甲=乙,S甲2=S乙2.甲=乙,S甲2>S乙2.,乙甲乙5.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则圆心O到弦CD的距离为().BcmOE==二、填空题(本大题共10小题,每小题2分,共计20分)7.(2分)已知⊙O1的半径为3,⊙O2的半径为5,O1O2=7,则⊙O1、⊙O2的位置关系是 相交.8.(2分)校篮球队进行1分钟定点投篮测试,10名队员投中的球数由小到大排序的结果为7、8、9、9、9、10、10、10、10、12,则这组数据的中位数是9.5..9.(2分)不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的,这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是.个,摸到白色乒乓球的概率是=故答案为:=10.(2分)如图,一位同学将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=70°.11.(2分)如图,平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2,则AB=3cm.OD=OB=BD=4=312.(2分)全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是3.6×107.13.(2分)点(﹣4,3)在反比例函数图象上,则这个函数的关系式为y=﹣.,因为过(﹣y=3=.y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:的取值范围是y>﹣5..15.(2分)如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M 是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是4+4.ME=AE=AE=AB=2==2=4+4.16.(2分)如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG=45°,点F在边AD的延长线上,且DF=BE.则下列结论:①∠ECB是锐角;②AE<AG;③△CGE≌△CGF;④EG=BE+GD中一定成立的结论有①③④(写出全部正确结论).三、解答题(本大题共12小题,共计88分)17.(6分)先化简,再求值:(﹣)÷,其中x=+1.++1=18.(6分)解不等式组,并写出它的所有整数解.,19.(6分)如图,已知,四边形ABCD为梯形,分别过点A、D作底边BC的垂线,垂足分别为点E、F.四边形ADFE是何种特殊的四边形?请写出你的理由.20.(6分)在直角坐标平面内,二次函数y=ax2+bx﹣3(a≠0)图象的顶点为A(1,﹣4).(1)求该二次函数关系式;(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.)根据二次函数的顶点坐标(﹣)求出系数)由题意,得21.(6分)某中学组织全体学生参加了“喜迎青奥,走出校门,服务社会”的活动.该中学以九年级(2)班为样本,统计了该班学生宣传青奥,打扫街道,去敬老院服务和在十字路口值勤的人数,并做了如下直方图和扇形统计图(A~宣传青奥;B~打扫街道;C~去敬老院服务;D~在十字路口值勤).(1)求去敬老院服务对应的扇形圆心角的度数;(2)若该中学共有800学生,请估计这次活动中在十字路口值勤的学生共有多少人?=4%22.(6分)“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(8分)已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有①②(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,a∥b,直线a、b被直线c所截.求证:∠1=∠2.证明:∵a∥b,∴∠1=∠3(两直线平行,同位角相等).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).24.(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)x2x=725.(8分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是60.吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?45+××26.(10分)如图直角坐标系中,已知A(﹣4,0),B(0,3),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.x+3x+3y=y=a+3.的坐标为(﹣,x+3x x,所以,.的坐标为(﹣,27.(8分)(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是卷尺、测角仪.;需要测量的数据是∠α、∠β的度数和PQ的长度..∴.∴.28.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.①求证:△ABP≌△ACQ;②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG 的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.CQEH=参与本试卷答题和审题的老师有:nhx600;lk;dbz1018;cair。

2013-2014学年南京市鼓楼区九年级数学一模试卷

2013-2014学年南京市鼓楼区九年级数学一模试卷
O
A (第 25 题)
B
第 6 页 共 8 页
26. (11 分) 问题提出 平面内不在同一条直线上的三点确定一个圆. 那么平面内的四点(任意三点均不在同一 直线上) ,能否在同一个圆呢? 初步思考 设不在同一条直线上的三点 A、B、C 确定的圆为⊙O. ⑴当 C、D 在线段 AB 的同侧时, 如图①,若点 D 在⊙O 上,此时有∠ACB=∠ADB,理由是 如图②,若点 D 在⊙O 内,此时有∠ACB ▲ ∠ADB; 如图③,若点 D 在⊙O 外,此时有∠ACB ▲ ∠ADB. (填“=” 、 “>”或“<” ) ;
O B y
x1 5
x210
(第 27 题)
x
k k 这说明:x1< x2 时, > .也就是:自变量值增大了,对应的函数值反而变小了. x1 x2 即:当 x>0 时,y 随 x 的增大而减小. 同理,当 x<0 时,y 随 x 的增大而减小. k (1)试说明:反比例函数 y= (k>0)的图象关于原点对称. x 【运用推广】 (2)分别写出二次函数 y=ax2 (a>0,a 为常数)的对称性和增减性,并进行说理. 对称性: 增减性: 说理:

由上面的探究,请用文字语言直接写出 A、B、C、D 四点在同一个圆上的条件: ▲ .
(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB 是⊙O 的直径,点 C 在⊙O 上. 求作:CN⊥AB. 作法:①连接 CA,CB; ⌒上任取异于 B、C 的一点 D,连接 DA,DB; ②在 CB ③DA 与 CB 相交于 E 点,延长 AC、BD,交于 F 点; ④连接 F、E 并延长,交直径 AB 于 M; ⑤连接 D、M 并延长,交⊙O 于 N.连接 CN. 则 CN⊥AB.

南京2013年中考数学一模练习卷

南京2013年中考数学一模练习卷

8
25.解: (1)∵ y x2 2x 1 ( x 1)2 2 ,∴顶点 A 的坐标为 (1 , 2) ,对称轴为 x=1 。„„2 分 又∵二次函数 y ax2 bx 的图象经过原点,且它的顶点在二次函数 y x2 2 x 1图象的对 称轴 x =1 上,∴点 C 和点 O 关于直线 x =1 对称。∴点 C 的坐标为 (2, 0) 。„„„„„„„4 分 (2)∵四边形 AOBC 是菱形, ∴点 B 和点 A 关于直线 OC 对称。∴点 B 的坐标为 (1 , 2) 。„„„„„„„„„„„6 分
22. (8 分)小芳到同学小英家玩,小英从一个装有 2 只苹果和 2 个橘子的不透明水果盒中,随机拿 了一只招待小芳,接着,又拿了一只给自己. (1)用树状图或表格表示两人拿到水果的所有可能情况; (2)求两人拿到相同水果的概率.
3
23. (8 分) 《中华人民共和国道路交通管理条例》规定: “小汽车在城市街道公路上的行驶速度不得 超过 70km/h(即 19.44m/s) ” .如图所示,已知测速站 M 到街道公路 l 的距离为 90m,一辆小汽车在 街道公路 l 上由东向西行驶,测得此车从点 A 行驶到点 B 所用的时间为 6s,并测得 A 在 M 的北偏西 27°方向上,B 在 M 的北偏西 60°方向上.求出此车从 A 到 B 的平均速度,并判断此车是否超过 限速. (参考数据: 3 ≈1.73,sin27° ≈0.45,cos27° ≈0.89,tan27° ≈0.50) B A
(第 11 题)
14.已知一个矩形的长为 3cm,宽为 2cm,试估算它的对角线长约为
cm(结果保留两个有效
1
数字, 要求误差小于 0.2) 15.矩形 ABCD 中,AB=5,BC=12。如果分别以 A、C 为圆心的两圆相切,点 D 在圆 C 内,点 B 在 圆 C 外,那么圆 A 的半径 r 的取值范围是 .

2013年南京中考一模数学试题及答案

2013建邺一模数学试卷注意事项:注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题纸上,答在本试卷上无效.上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题纸上.毫米黑色墨水签字笔填写在答题纸上.3.答选择题必须用2B 铅笔将答题纸上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必面用0.5毫米黑色墨水签字笔写在答题纸上的指定位置,在其它位置答题一律无效.位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题纸上)的序号填涂在答题纸上) 1.()2-+的值是(的值是( )A .2-B .2 C .2±D .4 2.联合国粮农组织2012年6月发表声明,指出全世界每年浪费的粮食数量达到约1300000000吨.将1300000000用科学记数法可表示为(用科学记数法可表示为( ) A .81310´ B .81.310´ C .91.310´D .100.1310´3.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果125Ð=°,那么2Ð的度数是(的度数是( ) A .100° B .105° C .115° D .120°4.为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是(分,则小华的成绩是( )小明小君小红小华A .31分B .33分C .36分D .38分5.甲、乙两名射击运动员在某场测试中各射击20次,甲、乙两人的测试成绩如下表,则测度成绩比较稳定的是(则测度成绩比较稳定的是( )甲的成绩甲的成绩 乙的成绩乙的成绩环数环数6 7 8 9 10 环数 6 7 8 9 10 频数频数 3 5 4 5 3 频数频数 5 3 4 3 5 A .甲 B .乙.乙C .甲、乙两人成绩稳定程度相同 D .无法确定.无法确定 6.在同一直角坐标系中,P 、Q 分别是3y x =-+与35yx =-的图象上的点,的图象上的点,且且P 、Q关于原点成中心对称,则点P 的坐标是(的坐标是( )A .()21,B .()25-,C .1722æö-ç÷èø, D .()47-,21二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题纸相应位置.......上)上) 7.在函数12yx=+中,自变量x 的取值范围是的取值范围是 .8.在1-,()22-,03,14-中任取一个数,取到正数的概率是中任取一个数,取到正数的概率是 . 9.如图,在直角坐标系中,在直角坐标系中,直线直线2y x =与双曲线()0k y k x=≠相交于A 、B 两点,过A作A C x^轴,过B 作BC y ^轴,A C、B C交于点C且A B C△的面积为8,则k =.CO BAy x10.如图,12345Ð+Ð+Ð+Ð+Ð= °.5432111.如图,在四边形A B C D中,8A C =,6B D =,且A C B D ^,E 、F 、G 、H 分别是A B 、B C 、C D 、D A 的中点,则22E G F H += .H GFE D C BA12.如图,在矩形A B C D 中,5A D=,4A B=,E 是B C 上的一点,3B E =,D F A E ^,垂足为F ,则tan F D CÐ=.F EDCBA13.两组邻边分别相等的四边形我们称它为菱形.如图,在四边形A B C D 中,A B A D =,B C D C =,A C 与B D 相交于点O ,下列判断正确的有的有 .(填序号). ①A C B D ^;②A C 、B D 互相平分;互相平分; ③A C 平分B D C Ð;④90A B C A D C Ð=Ð=°;ODCBA⑤筝形A B C D 的面积为12A CB D ×.14.如图,R t A B C △的周长为()535c m+,以A B 、A C 为边向外作正方形A B P Q 和正方形A C M N .若这两个正方形的面积之和为225c m,则A B C △的面积是2cm .NMPQCBA15.如图,在梯形A B C D 中,45C Ð=°,90B A D B Ð=Ð=°,3A D =,22C D=,M为B C 上一动点,则A M D △周长的最小值为周长的最小值为 .M DCBA16.如图,点E 是正方形A B C D 的边C D 上一点,以A 为圆心,A B 为半径的弧与B E 交于点F ,则E F D Ð= °.FE D CBA三、解答题(本大题共有12小题,共88分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)要的文字说明、证明过程或演算步骤)17.(本题6分)解不等式组()3261213x x x x ì--ïí+>-ïî≤. 18.(本题6分)化简:22111111x x x x x xx +æö+¸-ç÷+-+-èø.19.(本题6分)如图1,圆规两脚形成的角a 称为圆规的张角.一个圆规两脚均为12cm ,最大张角150°,你能否画出一个半径为20cm 的圆?请借助图2说明理由.(参考数据:sin sin1150.26°≈,cos150.97°≈,tan tan1150.27°≈,sin 750.97°≈,c o s 750.26°≈,tan 75 3.73°≈)图2CB A20.(本题6分)把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图),小明和小亮用图中的转盘做游戏;小明和小亮用图中的转盘做游戏;分别转动转盘两次,分别转动转盘两次,分别转动转盘两次,若两次数字之积是偶数,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.32121.(本题6分)通常儿童服药量要少于成人.某药厂用来计算儿童服药量y的公式为12a x y x =+,其中a 为成人服药量,x 为儿童的年龄()13x ≤.问:.问:(1)3岁儿童服药量占成人服药量的岁儿童服药量占成人服药量的 ;(2)请求出哪个年龄的儿童服药量占成人服药量的一半?)请求出哪个年龄的儿童服药量占成人服药量的一半? 22.(本题7分)如图,已知点E ,C 在线段B F 上,B E E C C F ==,A B D E ∥,A CB F Ð=Ð.(1)求证:A B C D E F △≌△;(2)试判断:四边形A E C D 的形状,并证明你的结论.的形状,并证明你的结论.FE DCBA23.(本题7分)小明就本班同学“上网情况”进行了一次调查统计.下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有)该班共有 名学生;名学生; (2)补全条形统计图;)补全条形统计图;(3)若全校有1830名学生,请你估计出“其他”部分的学生人数.“上网情况”调查统计图“上网情况”调查统计图人数玩游戏 聊天 查资料查资料 其他 项目1615246810161412 其他查资料玩游戏30%聊天18%24.(本题8分)在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2:1,设制作这面镜子的宽度是x 米,总费用是y 元,则224018060y x x =++.(注:总费用=镜面玻璃的费用+边框的费用+加工费)加工费)(1)这块镜面玻璃的价格是每平方米)这块镜面玻璃的价格是每平方米 元,加工费元,加工费 元;元; (2)如果制作这面镜子共花了210元,求这面镜子的长和宽.元,求这面镜子的长和宽.25.(本题8分)甲、乙两观光船分别从A 、B 两港同时出发,相向而行,两船在静水中速度相同,水流速度为5千米/小时,甲船逆流而行4小时到达B 港.下图表示甲观光船距A港的距离y(千米)与行驶时间x(小时)之间的函数关系式,结合图象解答下列问题:(1)A 、B 两港距离两港距离 千米,船在静水中的速度为千米,船在静水中的速度为 千米/小时; (2)在同一坐标系中画出乙船距A 港的距离y (千米)与行驶时间x (小时)之间的函数图象;函数图象;(3)求出发几小时后,两船相距5千米.千米. y /千米x /小时0102030401 2 3 426.(本题8分)如图,直线l 与O 交于C 、D 两点,且与半径O A 垂直,垂足为H ,30O D C Ð=°,在O D 的延长线上取一点B ,使得A D B D =. (1)判断直线A B 与O 的位置关系,并说明理由;的位置关系,并说明理由; (2)若O 的半径为2,求图中阴影部分的面积.(结果保留π)27.(本题10分)已知:四边形A B C D 中,对角线的交点为O ,E 是O C 上的一点,过点A 作A G B E ^于点G ,A G 、B D 交于点F .(1)如图1,若四边形A B C D 是正方形,求证:O E O F =; (2)如图2,若四边形A B C D 是菱形,120A B C Ð=°.探究线段O E 与O F 的数量关系,并说明理由;并说明理由;(3)如图3,若四边形A B C D 是等腰梯形,A B C a Ð=,且A C B D ^.结合上面的活动经验,探究线段O E 与O F 的数量关系为的数量关系为 .(直接写出答案). 图1O GF E DCBA图2AB CDEFG O 图3ABCDEFG O28.(本题10分)如图,在平面直角坐标系x O y 中,A 、B 为x 轴上两点,C 、D 为y 一上两点,经过点A 、C 、B 的抛物线的一部分1C 与经过点A 、D B 的抛物线的一部分2C 组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为302æö-ç÷èø,,点M是抛物线()22:230C y m x m x m m =--<的顶点.的顶点.(1)求A 、B 两点的坐标;两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得P B C △的面积最大?若存在,求出P B C △面积的最大值;若不存在,请说明理由;面积的最大值;若不存在,请说明理由;(3)当D B DM M △为直角三角形时,求m 的值.的值.MODCBA y x备用图xyA B C DOM。

溧水区2013~2014学年度初三数学一模调研测试卷评分标准

设CD=x.
在Rt△ACD中,sin∠A= ,AC= =2x,
在Rt△BCD中,sin∠B= ,BC= = x,
∵AC+BC=2x+ x=68.………………………………………………………3分
∴x= =20.……………………………………………………4分
在Rt△ACD中,tan∠A= ,AD= =20 ,
∴6+k=2b,k=2b-6;………………………………………………………7分
∵C、D之间的整数和为21,
∴由8≤k<9,或-1<k≤1,
∴8≤2b-6<9,或-1<2b-6≤1,…………………………………………9分
解得7≤b<7.5或2.5<b≤3.5.…………………………………………10分
解法三:∵ =b,∴k=2b-6;…………………………………………………7分
∴AF=BF.∴AE=BC.…………………………………7分
∴四边形ABEC是矩形.…………………………………8分
20.(本题8分)
(1)解:引体向上、实心球、立定跳远、50米跑分别用A、B、C、D来代表,列树状图如下:
………………………………………………3分
①小明选择的项目是三分钟跳绳、实心球、立定跳远(记为M事件),P(M)= .
在△ABF和△ECF中,
∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
∴△ABF≌△ECF.……………………………………4分
(2)∵△ABF≌△ECF,∴AF=FE,BF=FC.………5分
∴四边形ABEC是平行四边形
∵∠AFC=2∠ABC,又∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF.
在Rt△BCD中,tan∠B= ,BD= =20,
AB=20 +20 54,…………………………………………………………………6分

2013中考数学一模试卷苏教版

2012–2013学年第一次模拟考试试卷九年级数学(满分:150分 ;考试时间:120分钟)说明:1.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上。

2.选择题每小题选出答案后,请用2B 铅笔在答题卡指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。

非选择题请用0.5毫米的黑色签字笔在答题卡指定区域作答,在试卷或草稿纸上作答一律无效。

考试结束后,请将答题卡交回。

3.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置.......上) 1.5-的相反数是( ▲ ). A .15 B .15- C .5D .5-2.在△ABC 中,∠C=90°,AC=8,BC=6,则sin B 的值是( ▲ ) A .45B .35C .43 D .343.下列计算正确的是( ▲ ) A .()623a a -=-B .222)(b a b a -=- C .235325a a a +=D .336a a a =÷4.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ▲ )A .内切B .相交C .外切D .外离5.下列说法不正确...的是( ▲ ) A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据方差=2甲S 0.39,乙组数据方差=2乙S 0.27,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 6.下列命题中,真命题是( ▲ ) A .矩形的对角线相互垂直B .顺次连结四边形各边中点所得到的四边形是矩形C .等边三角形既是轴对称图形又是中心对称图形D .对角线互相垂直平分的四边形是菱形7.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( ▲ )A .①②B .②③ C. ②④D.③④8.某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是(▲ )①正方体②圆柱③圆锥④球A .360036001.8x x = B .36003600201.8x x -=C .36003600201.8x x -=D .36003600201.8x x+=二、填空题(本大题共有10小题,每小3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.函数2-=x xy 中自变量x 的取值范围是 ▲ . 10.月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为 ▲ 米.11.一个材质均匀的正方体的六个面上分别标有字母A 、B 、C ,其展开图如图所示,随机抛掷此正方体,A 面朝上的概率是 ▲ .12.在“我为红十字献爱心”的捐赠活动中,某班40位同学捐款金额统计如下,则在这次活动中,该班同学捐款金额的中位数是 ▲ 元.13.已知圆锥的底面半径为3 cm ,侧面积为15πcm 2,则这个圆锥的高为 ▲ cm.14.如图,在梯形ABCD 中,AD//BC , ∠B=70°,∠C=40°,DE//AB 交BC 于点E .若AD=3 cm ,BC=10 cm ,则CD 的长是 ▲ cm.15.某种商品原价为100元,经过连续两次的降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ▲ . 16.如图,已知点A 在双曲线xy 6=上,过点A 作AC ⊥x 轴于点C ,OC=3,线段OA 的垂直平分线交OC 于点B ,则△ABC 的周长为 ▲ .17.若关于x 的一元二次方程022=-+m x x 有两个不相等的实数根,则化简代数式1)2(2+-+m m 的结果为 ▲18.如图,直线l 的解析式为x y 33=,⊙O 是以坐标原点为圆心,半径为1的圆,点P 在x 轴上运动,过点P 且与直线l 平 行(或重合)的直线与⊙O 有公共点,则点P 的横坐标为整数的点的个数有 ▲ 个.三、解答题(本大题共有10个小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算或化简:(1)计算21)2011(60tan 3201-+-+--π. (2)化简:2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x x20.(本题满分8分)解不等式组或方程:(1)求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解; (2)解一元二次方程:0142=+-x x (配方法)21.(本题满分8分)2012年北京春季房地产展示交易会期间,某公司对参加本次O yxP第18题第14第11题A B A BCC第16题房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表消费者打算购买住房面积统计图 请你根据以上信息,回答下列问题:(1)求出统计表中的a = ▲ ,并补全统计图;(2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为 ▲ ; (3)求被调查的消费者平均每人年收入为多少万元?22.(本题满分8分)扬州体育场下周将举办明星演唱会,小莉和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去. (1)请用树状图或列表的方法求小莉去体育场看演唱会的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.年收入(万元)4.86 91224a第21题23.(本题满分10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。

南京市溧水区中考数学一模试卷含答案解析

江苏省南京市溧水区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.实数9的平方根是()A.±3 B.3 C.±D.2.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a83.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若DE=2,BC=5,则AD:DB=()A.3:2 B.3:5 C.2:5 D.2:34.月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A.1.738×106B.1.738×107C.0.1738×107D.17.38×1055.如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.0.1 B.0.2 C.0.3 D.0.46.在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个 B.4个 C.5个 D.6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.﹣2的相反数是,﹣2的倒数是.8.函数y=中,自变量x的取值范围是.9.计算﹣的结果为.10.分解因式(a+1)(a+3)+1的结果是.11.不等式组的解集是.12.已知方程x2﹣6x+m=0有一个根是2,则另一个根是,m=.13.将点A(2,0)绕着原点O顺时针方向旋转60°角到对应点A′,则点A′的坐标是.14.小的期末总评成绩由平时、期中、期末成绩按权重比2:3:5组成,现小平时考试得90分,期中考试得75分,要使他的总评成绩不低于85分,那么小的期末考试成绩x不低于分.15.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°.若点E在上,则∠E=°.16.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则反比例函数的表达式为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式:﹣1>,并把它的解集在数轴上表示出来.18.计算:19.水龙头关闭不严会造成滴水,小明用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的容器内盛水量y(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题.(1)容器内原有水多少升?(2)求y与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?20.如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且==.(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.21.某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:各种图书频数频率自然科学400 0.20文学艺术1000 0.50社会百科m 0.25哲学n(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)23.如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M 的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;(结果保留两位小数)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)24.如图1,▱ABCD 中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.(1)求证:四边形EBFD是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD 于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.25.如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后(剩下的部分做成一个)容积为90立方米的无盖长方体箱子,已知长方体箱子底面积的长比宽多4米,求矩形铁皮的面积.26.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.27.问题提出某商店经销《超能陆战队》超萌“小白”(图1)玩具,“小白”玩具每个进价60元.为进行促销,商店制定如下“优惠”方案:如果一次销售数量不超过10个,则销售单价为100元/个;如果一次销售数量超过10个,每增加一个,所有“小白”玩具销售单价降低1元/个,但单价不得低于80元/个.一次销售“小白”玩具的单价y (元/个)与销售数量x(个)之间的函数关系如图2所示.(1)求m的值并解释射线BC所表示的实际意义;(2)写出该店当一次销售x个时,所获利润w(元)与x(个)之间的函数关系式;(3)店长经过一段时间的销售发现:即并不是销量越大利润越大(比如,卖25个赚的钱反而比卖30个赚的钱多).为了不出现这种现象,在其他条件不变的情况下,店长应把原来的最低单价80(元/个)至少提高到多少元/个?江苏省南京市溧水区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.实数9的平方根是()A.±3 B.3 C.±D.【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵(±3)2=9,∴实数9的平方根是±3,故选:A.2.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a8【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用合并同类项法则、同底数幂的除法法则、同底数幂的乘法法则、积的乘方法则分别计算得出即可.【解答】解:A、a2+a3=a5,不是同类项无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a3÷a2=a,故此选项正确;D、(a2)3=a6,故此选项错误;故选:C.3.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若DE=2,BC=5,则AD:DB=()A.3:2 B.3:5 C.2:5 D.2:3【考点】相似三角形的判定与性质.【分析】由DE∥BC可得△ADE∽△ABC,根据相似三角形性质可得.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,故选:D.4.月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A.1.738×106B.1.738×107C.0.1738×107D.17.38×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1738000用科学记数法表示为:1.738×106.故选:A.5.如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.0.1 B.0.2 C.0.3 D.0.4【考点】估算无理数的大小.【分析】先估算出圆的面积,再根据S阴影=S正方形﹣S圆解答.【解答】解:∵正方形的边长为1,圆与正方形的四条边都相切,∴S阴影=S正方形﹣S圆=1﹣0.25π≈0.215.故选:B.6.在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个 B.4个 C.5个 D.6个【考点】全等三角形的判定.【分析】根据30°角所对的直角边等于斜边的一半以及垂线段最短的性质求出AC 边的最短值,然后选择即可得解.【解答】解:如图,AC⊥BC时,∵∠ABC=30°,AB=4,∴AC=AB=×4=2,∵垂线段最短,∴AC≥2,∴在1、2、3、4、5中可取的值有2、3、4、5,当AC=2时可以作1个三角形,当AC=3时可以作2个三角形,当AC=4时可以作1个三角形,当AC=5时可以作1个三角形,共1+2+1+1=5,所以,三角形的个数是5个.故选C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.﹣2的相反数是2,﹣2的倒数是﹣.【考点】倒数;相反数.【分析】根据相反数和倒数的定义分别进行求解即可.【解答】解:﹣2的相反数是2;﹣2的倒数是﹣;故答案为:2,﹣.8.函数y=中,自变量x的取值范围是x≠2.【考点】函数自变量的取值范围;分式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.9.计算﹣的结果为.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并求出答案.【解答】解:﹣=2﹣=.故答案为:.10.分解因式(a+1)(a+3)+1的结果是(a+2)2.【考点】因式分解-运用公式法.【分析】首先去括号,进而利用乘法公式分解因式得出答案.【解答】解:(a+1)(a+3)+1=a2+4a+4=(a+2)2.故答案为:(a+2)2.11.不等式组的解集是﹣2≤x<2.【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集.【解答】解:解这个不等式得即为﹣2≤x<2故答案﹣2≤x<2.12.已知方程x2﹣6x+m=0有一个根是2,则另一个根是4,m=8.【考点】根与系数的关系;一元二次方程的解.【分析】利用根与系数的关系先求出另一根,再利用根与系数的关系即可求出m 的值.【解答】解:设另一根为a,由根与系数的关系可得2+a=6,解得a=4,可得m=2×4=8.13.将点A(2,0)绕着原点O顺时针方向旋转60°角到对应点A′,则点A′的坐标是(1,﹣).【考点】坐标与图形变化-旋转.【分析】作出图形,连接OA′,过点A′作A′B⊥x轴于点B,根据点A的坐标以及旋转变换的性质可得OA′的长度,∠A′OB=60°,然后解直角三角形求出OB、A′B的长度,从而得解.【解答】解:如图,连接OA′,过点A′作A′B⊥x轴于点B,∵点A(2,0),∴OA=2,∵点A(2,0)绕着原点O顺时针方向旋转60°角到对应点A′,∴OA′=OA=2,∠A′OB=60°,∴OB=OA′cos60°=2×=1,A′B=OA′sin60°=2×=,所以,点A′的坐标是(1,﹣).故答案为(1,﹣).14.小的期末总评成绩由平时、期中、期末成绩按权重比2:3:5组成,现小平时考试得90分,期中考试得75分,要使他的总评成绩不低于85分,那么小的期末考试成绩x不低于89分.【考点】加权平均数.【分析】根据加权平均数列出不等式,然后求解即可.【解答】解:由题意得,≥85,不等式两边都乘以10得,180+225+5x≥850,解得x≥89,所以,小的期末考试成绩x不低于89分.故答案为:89.15.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°.若点E在上,则∠E=125°.【考点】圆内接四边形的性质.【分析】先根据圆内接四边形的性质计算出∠BAD=180°﹣∠C=70°,再根据等腰三角形的性质和三角形内角和定理计算出∠ABD=55°,然后再根据圆内接四边形的性质可得∠E的度数.【解答】解:∵∠C+∠BAD=180°,∴∠BAD=180°﹣110°=70°,∵AB=AD,∴∠ABD=∠ADB,∴∠ABD==55°,∵四边形ABDE为圆的内接四边形,∴∠E+∠ABD=180°,∴∠E=180°﹣55°=125°.故答案为125.16.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则反比例函数的表达式为y=(x>0).【考点】菱形的性质;待定系数法求反比例函数解析式.【分析】先利用勾股定理计算出OA=5,再根据菱形的性质得到AB=OA=5,AB∥OC,则B(8,4),然后利用待定系数法求反比例函数解析式.【解答】解:∵A的坐标为(3,4),∴OA==5,∵四边形OABC为菱形,∴AB=OA=5,AB∥OC,∴B(8,4),把B(8,4)代入y=得k=8×4=32,∴反比例函数的表达式为y=(x>0).故答案为y=(x>0).三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式:﹣1>,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先去分母,然后去括号,移项合并,系数化为1,即可求得答案.注意系数化1时,因为系数是﹣1,所以不等号的方向要发生改变,在数轴上表示时:注意此题为空心点,方向向左.【解答】解:去分母,得x﹣6>2(x﹣2).去括号,得x﹣6>2x﹣4,移项,得x﹣2x>﹣4+6,合并同类项,得﹣x>2,系数化为1,得x<﹣2,这个不等式的解集在数轴上表示如下图所示.18.计算:【考点】分式的混合运算.【分析】先对括号内的异分母分式加减,需要通分,再把除法转化为乘法运算进行计算,约分就可以了.【解答】解:原式===.19.水龙头关闭不严会造成滴水,小明用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的容器内盛水量y(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题.(1)容器内原有水多少升?(2)求y与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?【考点】一次函数的应用.【分析】(1)根据点(0,0.3)的实际意义可得;(2)设y与t之间的函数关系式为y=kt+b,待定系数法求解可得,再计算t=24时y的值即可.【解答】解:(1)根据图象可知,t=0时,y=0.3,即容器内原有水0.3升;(2)设y与t之间的函数关系式为y=kt+b,将(0,0.3),(1.5,0.9)代入,得:,解得:,故y与t之间的函数关系式为y=0.4t+0.3;当t=24时,y=0.4×24+0.3=9.9(升),故在这种滴水状态下一天的滴水量是9.9升.20.如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且==.(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.【考点】相似三角形的判定与性质.【分析】(1)由,得到△ABC∽△AED,推出∠BAC=∠EAD,即可得到∠1=∠2;(2)由得,根据两边对应成比例且夹角相等得到△ABE∽△ACD.【解答】解:(1)∠1与∠2相等.在△ABC和△AED中,∵,∴△ABC∽△AED,∴∠BAC=∠EAD,∴∠1=∠2.(2)△ABE与△ACD相似.由得,在△ABE和△ACD中,∵,∠1=∠2,∴△ABE∽△ACD.21.某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:各种图书频数频率自然科学400 0.20文学艺术1000 0.50社会百科m 0.25哲学n(1)表中m=500,n=0.05;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用阅读“自然科学”类图书的人数除以它所占的百分比得到调查的总人数,再用总人数乘以0.25得到m的值,接着用1分别减去其他三组的百分比可得到n的值;(2)补全统计图;(3)利用样本估计总体,用1万乘以“哲学”类所占的百分比即可;(4)可从阅读“哲学”类图书的人数较少提建议.【解答】解:(1)400÷0.20=2000,m=2000×0.25=500,n=1﹣0.20﹣0.5﹣0.25=0.05;故答案为500,0.05;(2)如图,(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;(4)鼓励学生多借阅哲学类的书.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【考点】列表法与树状图法.【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.23.如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M 的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;(结果保留两位小数)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点M的水平线交直线AB于点H,设MH=x,则AH=x,结合等腰直角三角形的性质和解直角三角形ABH得到AB=AH﹣BH=x﹣0.60x=0.4x=3.5,由此求得MH的长度,则MN=AB+BH.【解答】解:过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=31°,AB=3.5,设MH=x,则AH=x,BH=xtan31°=0.60x,∴AB=AH﹣BH=x﹣0.60x=0.4x=3.5,解得x=8.75,则旗杆高度MN=x+1=9.75(米)答:旗杆MN的高度度约为9.75米.24.如图1,▱ABCD 中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.(1)求证:四边形EBFD是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD 于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.【考点】平行四边形的判定.【分析】(1)由平行四边形的性质得出AD∥BC,∠ABC=∠ADC.AD=BC,由角平分线得出∠ABE=∠EBC=∠ADF=∠CDF.证出EB∥DF,即可得出结论;(2)由平行四边形的性质得出BE∥DF,DE=BF,得出AE=CF,证出四边形AFCE是平行四边形,得出GF∥EH,即可证出四边形EGFH是平行四边形.【解答】(1)证明:在▱ABCD中,AD∥BC,∠ABC=∠ADC.AD=BC,∵BE平分∠ABC,∴∠ABE=∠EBC=∠ABC.∵DF平分∠ADC,∴∠ADF=∠CDF=∠ADC.∵∠ABC=∠ADC.∴∠ABE=∠EBC=∠ADF=∠CDF.∵AD∥BC,∴∠AEB=∠EBC.∴∠AEB=∠ADF.∴EB∥DF.∵ED∥BF,∴四边形EBFD是平行四边形.(2)解:补全思路:GF∥EH,AE∥CF;理由如下:∵四边形EBFD是平行四边形;∴BE∥DF,DE=BF,∴AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∴GF∥EH,∴四边形EGFH是平行四边形.25.如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后(剩下的部分做成一个)容积为90立方米的无盖长方体箱子,已知长方体箱子底面积的长比宽多4米,求矩形铁皮的面积.【考点】一元二次方程的应用.【分析】设矩形铁皮的宽为x米,则长为(x+4)米,无盖长方体箱子的底面长为(x+4﹣4)米,底面宽为(x﹣4)米,根据运输箱的容积为90立方米建立方程求出其解即可.【解答】解:设矩形铁皮的宽为x米,则长为(x+4)米,由题意,得x(x﹣4)×2=90,解得:x1=9,x2=﹣5(舍去),所以矩形铁皮的长为:9+4=13米,矩形铁皮的面积是:13×9=117(平方米).答:矩形铁皮的面积是117平方米.26.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.【考点】切线的性质;圆周角定理;圆内接四边形的性质.【分析】(1)连接OC,根据切线的性质定理以及等角的余角相等即可证明;(2)构造直径所对的圆周角,根据等弧所对的圆周角相等以及等角的余角相等,发现∠BAC=∠GAD,再根据等式的性质即可证明∠BAG=∠DAC.【解答】(1)证明:如图一,连接OC,则OC⊥EF,且OC=OA,易得∠OCA=∠OAC.∵AD⊥EF,∴OC∥AD.∴∠OCA=∠CAD,∴∠CAD=∠OAC.即∠CAD=∠BAC.(2)解:与∠CAD相等的角是∠BAG.证明如下:如图二,连接BG.∵四边形ACGB是⊙O的内接四边形,∴∠ABG+∠ACG=180°.∵D,C,G共线,∴∠ACD+∠ACG=180°.∴∠ACD=∠ABG.∵AB是⊙O的直径,∴∠BAG+∠ABG=90°∵AD⊥EF∴∠CAD+∠ACD=90°∴∠CAD=∠BAG.27.问题提出某商店经销《超能陆战队》超萌“小白”(图1)玩具,“小白”玩具每个进价60元.为进行促销,商店制定如下“优惠”方案:如果一次销售数量不超过10个,则销售单价为100元/个;如果一次销售数量超过10个,每增加一个,所有“小白”玩具销售单价降低1元/个,但单价不得低于80元/个.一次销售“小白”玩具的单价y (元/个)与销售数量x(个)之间的函数关系如图2所示.(1)求m的值并解释射线BC所表示的实际意义;(2)写出该店当一次销售x个时,所获利润w(元)与x(个)之间的函数关系式;(3)店长经过一段时间的销售发现:即并不是销量越大利润越大(比如,卖25个赚的钱反而比卖30个赚的钱多).为了不出现这种现象,在其他条件不变的情况下,店长应把原来的最低单价80(元/个)至少提高到多少元/个?【考点】二次函数的应用.【分析】(1)利用价格变化规律,进而求出m的值,然后根据解析式解释线段AB所表示的实际优惠销售政策即可;(2)分类讨论:当0<x≤10时,当10<n≤30时;当n>30时,分别得出等式;(3)配方W=﹣x2+50x得到W=﹣(x﹣25)2+625,根据二次函数的性质讨论增减性,可得卖25个赚的钱反而比卖30个赚的钱多.为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到85元.【解答】解:(1)由题意可得:m=+10=30,射线BC所表示的实际意义是:当一次销售数量超过30个以后,都是按单价80元/个销售;(2)当0<x≤10时,w=x=40x,当10<x≤30时,y=100﹣(x﹣10)=110﹣x,w=[100﹣(x﹣10)﹣60]x=﹣x2+50x,当x>30时,w=(80﹣60)x=20x;(3)当10<x≤30时,w=﹣x2+50x=﹣(x﹣25)2+625.①当10<x≤25时,w随x的增大而增大,即卖的个数越多,利润越大.②当25<x≤30时,w随x的增大而减小,即卖的个数越多,利润越小.当x=25时,售价为y=110﹣x=85(元).故为了不出现这种现象,在其他条件不变的情况下,店家应把最低价每个80元至少提高到每个85元.7月5日21 / 21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.(8分)在一条直线上依次有A、B、C三地,自行车爱好者甲、乙两人同时分别从A、B两地出发,沿直线匀速骑向C地.已知甲的速度为20 km/h,设甲、乙两人行驶x(h)后,与A地的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.
(1)求y2与x的函数关系式;
(2)若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人在骑行过程中可以用对讲机通话的时间.
(1)求证:△ABF≌△ECF;
(2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.
20.(9分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
B
A
B
C
C
B
二、填空题(本大题共10小题,每小题2分,共20分)
7.±3 8.9.x=110.5.7×10311.9
12.4.8 13.36 14.4 15.(3,0)、(-3,0)16.
三、解答题(本大题共11小题,共88分)
17.(本题6分)18.(本题6分)
∴BC1=BC,∠A1C1B=∠C=30°,…………1分
∴∠BC1C=∠C=3 0°,……………………2分
∴∠ CC1A1=60°;……………………………3分
(2)如图2,由(1)知:△A1C1B≌△ACB,
∴∠ADC=∠OCE=90°,
∴AD⊥DC.………………………………………………4分
(2)连接BC.
∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,……5分
∵∠2=1,∴△ACD∽△ABC,∴=,………6分
∴AC2=AD·AB,∴AB=()2=,……………8分
答:AB的长为.
26.(本题9分)
解:(1)如图1,依题意得:△A1C1B≌△ACB.
请你根据图表中的信息回答下列问题:
(1)训练后篮球定时定点投篮平均每个人的进球数为▲;
(2)选择长跑训练的人数占全班人数的百分比是▲,该班共有同学▲人;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.
21.(8分)南京市体育中考现场考试男生有三项内容:三分钟跳绳、1000米跑(二选一);引体向上、实心球(二选一);立定跳远、50米跑(二选一).小明三分钟跳绳是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.
解:-解:解不等式①,得x<4.…………2分
=-………1分解不等式②,得x≥2.…………4分
=…………………4分所以不等式组的解集是2≤x<4.……6分
==.………6分ห้องสมุดไป่ตู้
19.(本题8分):⑴∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵EC=DC,∴AB=EC.……………………………2分
∴AF=BF.∴AE=BC.…………………………………7分
∴四边形ABEC是矩形.…………………………………8分
20.(本题8分)
(1)解:引体向上、实心球、立定跳远、50米跑分别用A、B、C、D来代表,列树状图如下:
………………………………………………3分
①小明选择的项目是三分钟跳绳、实心球、立定跳远(记为M事件),P(M)=.
A.它们的函数值y随着x的增大而增大
B.它们的函数值y随着x的增大而减小
C.k<0
D.它们的自变量x的取值为全体实数
6.明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
24.(本题8分)
解:(1)∵甲的速度为20 km/h,∴y1=20x…1分
当x=1时,y1=20=y2,………………2分
设y2=kx+b,根据题意,得:
,解得,
∴y2=15x+5.……………………………4分
(2)当y2-y1=3时,15x+5-20x=3,x=;……………5分
当y1-y2=3时,20x-(15x+5)=3,x=;………6分
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.计算-6+6×(-)的结果是
A.10
B.-10
C.-9
D.-2
2.计算a6×a3的结果是
A.a9
B.a2
C.a18
D.a3
3.已知无理数1+,若a<1+<b,其中a、b为两个连续的整数,则ab的值为
A.2
B.6
C.12
D.20
4.正n边形的每个内角都是140°,则n为
A.7
B.8
C.9
D.10
5.一次函数y=kx+b与反比例函数y=的图象如图所示,下列结论正确的是
………………………………………………4分
②小明选择的项目中有立定跳远(记为N事件),P(N)=.……………5分
(2)答案不惟一,下列方法仅供参考:抛一枚硬币两次,第一次掷硬币正面朝上表示选择引体向上、反面朝上表示选择实心球;第二次掷硬币正面朝上表示选择立定跳远、反面朝上表示选择50米跑.…………………………8分
(1)若该二次函数的图象与x轴只有一个交点,
①则b、c应满足关系为▲;
②若该二次函数的图象经过A(m,n)、B(m+6,n)两点,求n的值;
(2)若该二次函数的图象与x轴有两个交点C(6,0)、D(k,0),线段CD(含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为21,求b的取值范围.
溧水初三一模数学试题参考答案及评分标准
(2)如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,直接写出线段EP1长度的最大值与最小值.
27.(10分)已知一个二次函数的关系式为y=x2-2bx+c.
15.在平面直角坐标系中,已知点A(-,0),B(,0),点C在x轴上,且AC+BC=6,写出满足条件的所有点C的坐标▲.
16.计算: =▲.
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)化简-.
18.(6分)解不等式组
19.(8分)如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
25.(8分)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)试说明:AD⊥DC;
(2)若AD=1,AC=,求AB的长.
26.(9分)在△ABC中,AB=6,BC=8,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
2013-2014学年南京市溧水区九年级数学一模试卷
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
解得n1=10,n2=-13(不合题意,舍去).……………………………………5分
白色瓷砖块数为n(n+1)=110,………………………………………………6分
黑色瓷砖块数为4(n+1)=44.………………………………………………7分
答:白色瓷砖需买110块,黑色瓷砖需买44块.……………………………………8分
23.(8分)小明的家庭作业中有这样一道题:
“如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.
……
在第n个图中,黑、白瓷砖各有多少块.(用含n的代数式表示)”
小明做完作业后发现这些图案很美.正好小明爸爸的商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.于是他建议爸爸按照图案方式进行装修.已知每块白色瓷砖40元,每块黑色瓷砖20元,贴瓷砖的费用每平方米15元.经测算,瓷砖无须切割,且恰好能完成铺设,总费用需7260元.问两种瓷砖各需买多少块?
AB=20+20 54,…………………………………………………………………6分
AC+BC-AB=68-54=14(km)………………………………………………7分
答:隧道开通后,汽车从A地到B地比原来少走14千米.…………………………8分
23.(本题8分)
解:设白色瓷砖的行数为n,根据题意,得
40n(n+1)+20×4(n+1)+15(n+1)(n+2)=7260.………………3分
∴-=.………………………………………8分
答:甲、乙两人在骑行过程中可以用对讲机通话的时间为小时.
25.(本题8分)
(1)解:连接OC,
∵CD与⊙O相切,∴OCCD,∴∠OCE=90°,…1分
相关文档
最新文档