2016-2017学年江苏省南京市溧水区七年级(上)期中数学试卷
江苏省南京市溧水县孔镇中学2016-2017学年七年级(上)期中数学模拟试卷(3)(解析版)

2016-2017学年江苏省南京市溧水县孔镇中学七年级(上)期中数学模拟试卷(3)一、选择题:(每小题2分,共16分)1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.下列说法正确的是()A.的次数是2 B.﹣2xy与4yx是同类项C.4不是单项式D.的系数是3.在数﹣32、﹣|﹣2.5|、、﹣(﹣3)2、(﹣3)2、(﹣3)3中,负数的个数是()A.1 B.2 C.3 D.44.下列各项中是同类项的是()A.﹣mn与mn B.2ab与2abc C.x2y与x2z D.a2b与ab25.下列去括号正确的是()A.a+(﹣3b+2c﹣d)=a﹣3b+2c﹣d B.﹣(﹣x2+y2)=﹣x2﹣y2C.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c D.a﹣2(b﹣c)=a+2b﹣c6.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克7.如图,数轴上点A,B,C,D表示的数中,绝对值相等的两个点是()A.点A和点C B.点B和点C C.点A和点D D.点B和点D8.如果a+b<0,且b>0,那么a,b,﹣a,﹣b的大小关系为()A.a<b<﹣a<﹣b B.﹣b<a<﹣a<b C.a<﹣b<﹣a<b D.a<﹣b<b<﹣a二、填空题:(每小题2分,共20分)9.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作千米.10.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y 元.则代数式500﹣3x﹣2y表示的实际意义是.11.2013年,南京将继续推进中小学“校安工程”.截至10月底,全市共新建、加固校舍约280000m2,将280000用科学记数法表示为cm2.12.若m与n互为相反数,则|m+n﹣2|=.13.已知3x﹣2y=5,则代数式9x﹣6y﹣5的值是.14.已知|a|=3,|b|=2,且ab<0,则a﹣b=.15.某一个月的月历中成一竖列的连续三个日期的和是33,这三天分别是.16.已知4个有理数:3、4、﹣6、10,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是.17.计算()﹣(1﹣)﹣2()的结果是.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…则第2014次输出的结果为.三、解答题:(本大题共5小题,共64分)19.计算与化简:(1)12+(﹣8)+11+(﹣2)+(﹣12)(2)(+﹣)×(﹣36)(3)﹣1100﹣(﹣3)2÷×(﹣)3(4)化简:3(3a2b﹣ab2)﹣4(﹣ab2+2a2b)(5)化简并求值:﹣x+2(x﹣y2)﹣(﹣x+y2),其中x=2,y=﹣1.20.若2a2﹣4ab+b2与一个多项式的差是﹣3a2+2ab﹣5b2,试求这个多项式.21.在数轴上表示下列各数:﹣(﹣4),﹣|﹣3.5|,﹣,0,+2.5,1,并用“<”号把这些数连接起来.22.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣7表示的点与数表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①13表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为2009(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?23.将正方形ABCD(如图1)作如下划分:第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有个正方形.解决问题:继续划分下去,能否将正方形ABCD划分成有2014个正方形的图形?请说明理由.2016-2017学年江苏省南京市溧水县孔镇中学七年级(上)期中数学模拟试卷(3)参考答案与试题解析一、选择题:(每小题2分,共16分)1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.下列说法正确的是()A.的次数是2 B.﹣2xy与4yx是同类项C.4不是单项式D.的系数是【考点】单项式;同类项.【分析】根据单项式的定义、同类项的定义及单项式系数的定义,结合选项即可作出判断.【解答】解:A、的次数是3,而不是2,故本选项错误;B、﹣2xy与4yx是同类项,故本选项正确;C、4是单项式,故本选项错误;D、的系数为π,不是,故本选项错误;故选B.3.在数﹣32、﹣|﹣2.5|、、﹣(﹣3)2、(﹣3)2、(﹣3)3中,负数的个数是()A.1 B.2 C.3 D.4【考点】正数和负数;绝对值;有理数的乘方.【分析】先根据乘方、绝对值、相反数的概念对各数进行化简,结合正负数的概念进行判断即可.【解答】解:因为:﹣32=﹣9,﹣|﹣2.5|=﹣2.5,﹣(﹣2)=2,﹣(﹣3)2=﹣9,(﹣3)2=9,(﹣3)3=﹣27,所以负数的个数是4个,故选:D.4.下列各项中是同类项的是()A.﹣mn与mn B.2ab与2abc C.x2y与x2z D.a2b与ab2【考点】同类项.【分析】根据同类项的定义:含有相同的字母,且相同字母的次数相同,即可作出判断.【解答】解:A、正确;B、所含字母不同,则不是同类项,选项错误;C、所含字母不同,则不是同类项,选项错误;D、相同字母的次数不同,故不是同类项,选项错误.故选A.5.下列去括号正确的是()A.a+(﹣3b+2c﹣d)=a﹣3b+2c﹣d B.﹣(﹣x2+y2)=﹣x2﹣y2C.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c D.a﹣2(b﹣c)=a+2b﹣c【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则进行解答即可.【解答】解:A、a+(﹣3b+2c﹣d)=a﹣3b+2c﹣d,故本选项正确;B、﹣(﹣x2+y2)=x2﹣y2,故本选项错误;C、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c,故本选项错误;D、a﹣2(b﹣c)=a﹣2b+2c,故本选项错误;故选A.6.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【考点】正数和负数.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.7.如图,数轴上点A,B,C,D表示的数中,绝对值相等的两个点是()A.点A和点C B.点B和点C C.点A和点D D.点B和点D【考点】数轴;绝对值.【分析】本题需先根据各点在数轴上表示得数,再根据绝对值的性质即可求出结果.【解答】解:根据数轴上点A,B,C,D在数轴上表示的数得出;A=﹣6,D=6∴|A|=6,∴|D|=6,∴绝对值相等的两个点是点A和点D.故选C.8.如果a+b<0,且b>0,那么a,b,﹣a,﹣b的大小关系为()A.a<b<﹣a<﹣b B.﹣b<a<﹣a<b C.a<﹣b<﹣a<b D.a<﹣b<b<﹣a 【考点】不等式的性质.【分析】利用取特殊值的方法,设b=1,a=﹣2,即可得出a,b,﹣a,﹣b的大小关系.【解答】解:∵设b=1,a=﹣2,则有:﹣b=﹣1,﹣a=2,a<﹣b<b<﹣a.故选:D.二、填空题:(每小题2分,共20分)9.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作﹣2千米.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:汽车向东行驶3千米记作3千米,向西行驶2千米应记作﹣2千米.故答案为:﹣2.10.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y 元.则代数式500﹣3x﹣2y表示的实际意义是体育委员买了3个足球、2个篮球后剩余的经费.【考点】代数式.【分析】本题需先根据买一个足球x元,一个篮球y元的条件,表示出2x和3y 的意义,最后得出正确答案即可.【解答】解:∵买一个足球x元,一个篮球y元,∴3x表示体育委员买了3个足球,2y表示买了2个篮球,∴代数式500﹣3x﹣2y:表示体育委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球后剩余的经费.11.2013年,南京将继续推进中小学“校安工程”.截至10月底,全市共新建、加固校舍约280000m2,将280000用科学记数法表示为 2.8×105cm2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将280000用科学记数法表示为:2.8×105.故答案为:2.8×105.12.若m与n互为相反数,则|m+n﹣2|=2.【考点】相反数;绝对值.【分析】根据互为相反数的两个数的和等于0可得m+n=0,然后代入代数式进行计算即可得解.【解答】解:∵m与n互为相反数,∴m+n=0,∴|m+n﹣2|=|0﹣2|=2.故答案为:2.13.已知3x﹣2y=5,则代数式9x﹣6y﹣5的值是10.【考点】代数式求值.【分析】先把9x﹣6y﹣5变形为3(3x﹣2y)﹣5,然后利用整体代入的方法计算.【解答】解:∵3x﹣2y=5,∴9x﹣6y﹣5=3(3x﹣2y)﹣5=3×5﹣5=10.故答案为10.14.已知|a|=3,|b|=2,且ab<0,则a﹣b=5或﹣5.【考点】有理数的减法;绝对值;有理数的乘法.【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.15.某一个月的月历中成一竖列的连续三个日期的和是33,这三天分别是4,11,18.【考点】一元一次方程的应用.【分析】竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.【解答】解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=33,解得:x=11,x﹣7=4,x+7=18,这三天分别是4,11,18.故答案为4,11,18.16.已知4个有理数:3、4、﹣6、10,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是3×(10+4﹣6)或10﹣4﹣3×(﹣6).【考点】有理数的混合运算.【分析】利用“24点”游戏规则,将4个有理数连接,使其结果为24即可.【解答】解:根据题意得:3×(10+4﹣6)或10﹣4﹣3×(﹣6).故答案为:3×(10+4﹣6)或10﹣4﹣3×(﹣6)17.计算()﹣(1﹣)﹣2()的结果是﹣.【考点】有理数的加减混合运算.【分析】设()=a,把原式化为a﹣(1﹣a)﹣2(a+),进一步计算得出答案即可.【解答】解:设()=a,原式=a﹣(1﹣a)﹣2(a+)=a﹣1+a﹣2a﹣=﹣.故答案为:﹣.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…则第2014次输出的结果为3.【考点】代数式求值.【分析】先分别计算出当x=48时,x=×48=24;当x=24时,x=×24=12;当x=12时,x=×12=6;当x=6时,x=×6=3;当x=3时,x+3=3+3=6,…,以后输出的结果循环出现3与6,从第三次开始,奇数次,输出6;偶数次,输出3.按此规律计算即可求解.【解答】解:当输入x=48时,第一次输出48×=24;当输入x=24时,第二次输出24×=12;当输入x=12时,第三次输出12×=6;当输入x=6时,第四次输出6×=3;当输入x=3时,第五次输出3+3=6;当输入x=6时,第六次输出6×=3;…∴第2014次输出的结果为3.故答案为:3.三、解答题:(本大题共5小题,共64分)19.计算与化简:(1)12+(﹣8)+11+(﹣2)+(﹣12)(2)(+﹣)×(﹣36)(3)﹣1100﹣(﹣3)2÷×(﹣)3(4)化简:3(3a2b﹣ab2)﹣4(﹣ab2+2a2b)(5)化简并求值:﹣x+2(x﹣y2)﹣(﹣x+y2),其中x=2,y=﹣1.【考点】整式的加减—化简求值;有理数的混合运算.【分析】(1)根据有理数加减法则运算即可求出答案.(2)利用乘法分配律即可求出答案.(3)根据有理数混合运算法则即可求出当.(4)先将括号去掉,然后合并同类项.(5)先将原式化简,然后代入求值即可.【解答】解:(1)原式=12﹣8+11﹣2﹣12=1;(2)原式=﹣18﹣30+21=﹣27;(3)原式=﹣1+9××=1(4)原式=9a2b﹣3ab2+4ab2﹣8a2b=a2b+ab2(5)当x=2,y=﹣1时,原式=﹣x+2x﹣y2+x﹣y2=3x﹣y2=3×2﹣(﹣1)2=6﹣1=5,20.若2a2﹣4ab+b2与一个多项式的差是﹣3a2+2ab﹣5b2,试求这个多项式.【考点】整式的加减.【分析】根据减法是加法的逆运算知,这个多项式应表示为:(2a2﹣4ab+b2)﹣(﹣3a2+2ab﹣5b2),去括号,合并同类项即可求得这个多项式.【解答】解:由题意知,所求多项式为:(2a2﹣4ab+b2)﹣(﹣3a2+2ab﹣5b2),=2a2﹣4ab+b2+3a2﹣2ab+5b2,=5a2﹣6ab+6b2.21.在数轴上表示下列各数:﹣(﹣4),﹣|﹣3.5|,﹣,0,+2.5,1,并用“<”号把这些数连接起来.【考点】有理数大小比较;数轴;绝对值.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:如图,用“<”号把这些数连接起来﹣|﹣3.5|<﹣<0<1<+2.5<﹣(﹣3).22.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣7表示的点与数7表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①13表示的点与数﹣9表示的点重合;②若数轴上A、B两点之间的距离为2009(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【考点】数轴.【分析】(1)数轴上数1表示的点与﹣1表示的点重合,则利用数轴易得数﹣7表示的点与数7表示的点重合;(2)①由于数轴上数﹣1表示的点与数5表示的点重合,利用数轴可得这两点到2表示的点的距离相等,所以数轴上数13表示的点与数﹣9表示的点重合;②先把A、B两点之间的距离除以2,则A、B两点到2表示的点的距离为1004.5,然后根据数轴表示数的方法可得A、B两点表示的数.【解答】解:(1)若1表示的点与﹣1表示的点重合,则﹣7表示的点与数7表示的点重合;(2)若﹣1表示的点与5表示的点重合,则﹣1表示的点与数5表示的点到2表示的点的距离相等,①数轴上数13表示的点到2表示的点有11个单位,而﹣9表示的点到2表示的点有11个单位,所以数轴上数13表示的点与数﹣9表示的点重合;②2009÷2=1004.5,2+1004.5=1006.5,2﹣1004.5=﹣1002.5,所以A点表示的数是﹣1002.5,B点表示的数是1006.5.故答案为:7;﹣9.23.将正方形ABCD(如图1)作如下划分:第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有9个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有401个正方形.解决问题:继续划分下去,能否将正方形ABCD划分成有2014个正方形的图形?请说明理由.【考点】作图—应用与设计作图.【分析】由第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,可得规律:第n次可得(4n+1)个正方形,继而求得n=100时的答案;由规律可得4n+1=2014,又由n为整数,可求得答案【解答】解:∵第一次划分,得出5个正方形,∴第2次划分,根据图形得出共有9个正方形;∴依题意得:第n次划分后,图中共有4n+1个正方形,∴第100次划分后,共有401个正方形;∵第n次划分后,图中共有4n+1个正方形,∴方程4n+1=2014没有整数解,∴不能得到2014个正方形,故答案为:9,4n+1.2017年3月14日。
2016-2017学年苏教版七年级数学上册期中试卷及答案3

2016-2017学年第一学期七年级数学期中测试卷题号 1 2 3 4 5 6 7 8 9 10 答案1.计算(-2)2的结果是 A .0 B .-2 C .4 D .-82.下列各数22200923122(3) ,0 ,() , ,(1) ,2 ,(8) , 274---------中,正数有A .2个B .3个C .4个D .5个3.与a -b 互为相反数的是A .a+bB .a -bC .-b -aD .b -a4.下列运算正确的是A .5x -2x=3B .xy 2-x 2y=0C .a 2 +a 2 =a 4D .222211333xy xy xy -= 5.若n 为整数,则2n+1是A .奇数B .偶数C .素数D .合数 6.若n b a 425与327b a m -是同类项,则m 、n 的取值为 A .m=2,n=3 B .m=4,n=2 C .m=3,n=3 D .m=4,n=3 7.已知24a -=,则a 的值为 A .6 B .-2 C .6或-2 D .-6或2 8.有理数a 、b 在数轴上的位置如图示,则A .a+b<0B .a+b>0C .a -b=0D .a -b>0 9.已知x 、y 互为相反数,a 、b 互为倒数,m 的绝对值是3.则22x ym ab m+++的值 为A .12B .10C .9D .11 10.已知a+b=4,c -d=-3,则(b+c)-(d -a)的值为 A .7 B .-7 C .1 D .-1 二、填空题(本题20分,每空2分)11.用代数式表示:比a 的3倍大2的数____________. 12.用科学记数法表示:380500=_____________.班级 学号 姓名 考试号 座位号13.单项式2323a b -的系数是 . 14.如果一个数的平方等于它的绝对值,那么这个数是__________. 15.比较大小:78-______910-. 16.绝对值大于2而小于5的整数之和是_______________.17.当x=-2时,代数式3x+2x 2-1与代数式x 2-3x 的差是__________. 18.已知代数式22a a -值是4,则代数式2136a a +-的值是_____________.19.观察下更算式:1+3=2 2,1+3+5=3 2,1+3+5+7=4 2,1+3+5+7+9=5 2…………,请你猜测1+3+5+……+2n -1=________________.20.在数1、2、3、4、……、2009、2010的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:_____ ___ __ ______. 三、解答题(9大题,共60分) 21.计算(本题24分)(1) 2111943+-+-- (2) 3×(—4)+(—28)÷7(3) 36926521⨯⎪⎭⎫ ⎝⎛-- (4) ()⎪⎭⎫⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-⨯3255.294321(5)2)3(315131511-⨯-⎪⎭⎫ ⎝⎛-÷- (6)24312111[3()(1)]()2342-⨯⨯---+÷-22.化简(本题6分)(1) a 2-3a+8-3a 2+4a -6 (2) )212(44622ab a ab a +-+23.先化简,再求值.(本题12分)(1)(5a 3+3)-(1-2a)+3(3a -a 3),其中a=-1.(2)()22222322x y xy xy x y ⎡⎤-++⎣⎦,其中12x =,y=-2.(3) 已知A= 5x 2+4x –1,B= –x 2–3x+3,C= 8–7x –6x 2,求A –B+C 的值24.(本题6分)回答下列问题:(1)填空:①()223⨯= ② 2223⨯=③2182⎛⎫-⨯ ⎪⎝⎭= ④22182⎛⎫-⨯ ⎪⎝⎭=⑤3122⎛⎫-⨯ ⎪⎝⎭= ⑥33122⎛⎫-⨯ ⎪⎝⎭= (2)想一想:(1)中每组中的两个算式的结果是否相等? (3)猜一猜:当n 为正整数时,()nab 等于什么?(4)试一试:2009200912123⎛⎫⎛⎫⨯- ⎪⎪⎝⎭⎝⎭结果是多少?25.(本题6分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱剩余油量为30升.(假设行驶过程中汽车的耗油量是均匀的.)(1)写出用行驶路程x(千米)来表示剩余油量Q(升)的代数式;(2)当x=300千米时,求剩余油量Q的值;(3)当油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.26.(本题6分)某股民上星期五买进某公司股票1000股,每股20元,下表为本周内每日(1)星期三收盘时,每股是多少元?(2)本周内最高收盘价是每股多少元? 收盘价最低是每股多少元?(3)已知此股民买进和卖出股票时都要付0.15%的手续费和卖出时0.1%的交易税,如果他在星期五以收盘价将股票全部卖出,他的收益情况如何?初一数学期中考试答案11、 3a +2 12、510805.3⨯ 13、 32-14、 0和1 15、 > 16、0 17、—9 18、13 19、2n 20、—1+2+3—4—5+…+2007—2008—2009+2010 三、解答题:21、(1) 211-194-3-++ (2) 72843÷+⨯)(-)(- =(-3-4-11)+(19+2) (1’) =-12+(-4) (2’)=-(3+4+11)+(19+2) (1’) =-16 (2’) =-18+21 (1’) = 3 (1’)(3) 36926521⨯⎪⎭⎫⎝⎛-- (4) ()⎪⎭⎫⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-⨯3255.294321=369236653621⨯-⨯-⨯ (2’) =)253()25(9435-⨯-⨯-⨯)( (2’)=18-30-8 (1’) =)253259435(⨯⨯⨯- (1’) =-20 (1’) =-2 (1’) (5)2)3(315131511-⨯-⎪⎭⎫ ⎝⎛-÷- (6) 24312111[3()(1)]()2342-⨯⨯---+÷- =931)152(56⨯-÷-(2’) =)81(41]1943[211-÷+-⨯⨯- (1’) =3)215(56-⨯ (1’) =)8(41]134[211-⨯+-⨯- (1’) =39- =)8(4131211-⨯+⨯- (1’)=6 (1’) =67)2(611-=-+- (1’)22、(1)原式=(223a a -)+(a a 43+-)+(8-6) (2’) = 222++-a a (1’)(2)原式=)28(4622ab a ab a +-+ (1’) =ab a ab a 284622--+ (1’) =ab a 222+- (1’) 23、(1) 原式=33392135a a a a -++-+ (1’) =(3335a a -)+(a a 92+)+(3-1) (1’) =21123++a a (1’)当a= -1时 21123++a a =2)1(11)1(23+-⨯+-⨯ (2’)=112112-=+-- (1’)(2)原式=]423[22222y x xy xy y x ++- (1’) =y x xy xy y x 22224232--- (1’) =2252xy y x -- (1’)当2,21-==y x 时, 2252xy y x --=22)2()21(5)2()21(2-⨯⨯--⨯⨯- (2’)= -9 (1’) (3)A-B+C=)678()33(145222x x x x x x --++----+ (2’) =22267833145x x x x x x --+-++-+ (2’) =4 (2’)24、(1) ①36 ②36 (两空1分,错一个全扣)③16 ④16 (1’)⑤-1 ⑥-1 (1’)(2) 相等 (1’) (3) nnb a (1’)(4)-1 (1’)25、(1)Q=45-0.1x (2’)(2)当x=300时Q=15 (2’)(3)当x=400时Q=5 >3 ,所以能在汽车报警前回家(2’)26、(1)周三收盘时,股价为20.6元(2’)(2)最高21.6元;最低20.1元。
2016—2017学年度上期七年级数学 期中试题

七年级数学 - 1 - (共6页)2016—2017学年度第一学期期中测试卷七 年 级 数 学一、选择题.(每小题3分.共24分)1、小明身高165cm ,以小明身高为标准,小明爸爸身高175cm ,记作+10cm ,小明妈妈身高162cm ,应记作( )A .-3cmB .13cmC .3cmD .-13cm2、如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q3、今年11月份甲、乙、丙三个城市的平均气温分别为-5℃、-1℃、15℃,那么最高的平均气温比最低的平均气温高( )A .10℃B .14℃C .16℃D .20℃4、如果单项式13a x y +-与212b y x 是同类项,那么a 、b 的值分别为( )A .2a =,3b =B .1a =,2b =C .1a =,3b =D .2a =,2b = 5、下列说法正确的是( )A .近似数3.9×103精确到十分位B .把数50430精确到千位得5.0×104C . 按科学计数法表示的数8.04×105其原数是80400D .用四舍五入得到的近似数8.1780精确到0.001 6、若2a -b =3,则9+4a -2b 的值为( )A .15B .12C .6D .0 7、等式2x -y =10变形为-4x +2y =-20的依据为( )A .等式性质1B .等式性质2C .分数的基本性质D .乘法分配律 8、在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A .4,2,1B .2,1,4C .1,4,2D .2,4,1七年级数学 - 2 - (共6页)二、填空题.(每小题3分,共24分)9、体育委员带了500元钱去买体育用品,已知一个足球a 元.则代数式500-9a10、不改变原式的值,将6-(+3)-(-7)+(-2)改写成省略加号的和的形式11、 若3||=x ,4||=y ,且x <y ,则y x += .12、一个正常人的心跳平均每分钟约70次,一年(按365天计算)大约可以跳 次(用科学计数法表示).13、当K= 时,代数式kxy y xy x 5310822+-+-中不含xy 项.14、已知a 、b 都是有理数,且202014-12=++b a )(,则b a 15、若关于x 的方程12=+m x 的解是方程1223+=-x x 的解的3倍,则m 的值是 .16、电子跳蚤落在数轴上的某点k 0,第一步从k 0向左跳1个单位到k 1,第二步由k 1向右跳2个单位到k 2,第三步由k 2向左跳3个单位到k 3,第四步由k 3向右跳4个单位到k 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点三、解答题:(共72分)17.计算和解方程:(12分)(1) 计算: (8分)2136)43(2014---+⨯-)( 24×(16-34-58)+(-13)2÷(-172)七年级数学 - 3 - (共6页)(2)解方程:(4分)x x 3.15.67.05.0-=-18. 先化简,再求值: (8分)2,23),3123()3141(222-==+-+--y x y x y x x 其中.19.(8分)交警的巡逻汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负(单位:千米),从出发点开始所走的路程为:+10,-3,+4,+2,+5,( ),-8,+12,-5,-7,其中( )为记录器出现故障未显示的数据,但最后又刚好回到出发点。
2016-2017学年南京市溧水县孔镇中学七上期中数学试卷(3)

2016年江苏南京溧水县孔镇中学七年级上学期数学期中模拟考试试卷(3)一、选择题(共8小题;共40分)1. 的相反数是A. B. C. D.2. 下列说法正确的是A. 的次数是B. ﹣与是同类项C. 不是单项式D. 的系数是3. 在数,,,,,中,负数的个数是A. B. C. D.4. 下列各项中是同类项的是A. 与B. 与C. 与D. 与5. 下列去括号正确的是A.B.C.D.6. 杨梅开始采摘啦!每筐杨梅以千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这筐杨梅的总质量是A. 千克B. 千克C. 千克D. 千克7. 如图,数轴上点,,,表示的数中,绝对值相等的两个点是A. 点和点B. 点和点C. 点和点D. 点和点8. 如果,且,那么,,,的大小关系为A. B.C. D.二、填空题(共10小题;共50分)9. 如果规定向东为正,那么向西即为负.汽车向东行驶千米记作千米,向西行驶千米应记作千米.10. 体育委员小金带了元钱去买体育用品,已知一个足球元,一个篮球元.则代数式表示的实际意义是.11. 年,南京将继续推进中小学“校安工程”.截至月底,全市共新建、加固校舍约,将用科学记数法表示为.12. 若与互为相反数,则.13. 已知,则代数式的值是.14. 已知,,且,则.15. 某一个月的月历中成一竖列的连续三个日期的和是,这三天分别是.16. 已知个有理数:,,,,在这个有理数之间用“,,,”连接进行四则运算,每个数只用一次,使其结果等于,你的算法是.17. 计算的结果是.18. 如图所示的运算程序中,若开始输入的值为,我们发现第一次输出的结果为,第二次输出的结果为,则第次输出的结果为.三、解答题(共5小题;共65分)19. 计算与化简:(1);(2);(3);(4)化简:;(5)化简并求值:,其中,.20. 若与一个多项式的差是,试求这个多项式.21. 在数轴上表示下列各数:,,,,,,并用“”号把这些数连接起来.22. 已知在纸面上有一数轴(如图),折叠纸面.(1)若表示的点与表示的点重合,则表示的点与数表示的点重合;(2)若表示的点与表示的点重合,回答以下问题:①表示的点与数表示的点重合;②若数轴上,两点之间的距离为(在的左侧),且,两点经折叠后重合,求,两点表示的数是多少?23. 将正方形(如图)作如下划分:第次划分:分别连接正方形对边的中点(如图),得线段和,它们交于点,此时图中共有个正方形;第次划分:将图左上角正方形按上述方法再作划分,得图,则图中共有个正方形;若每次都把左上角的正方形依次划分下去,则第次划分后,图中共有个正方形.解决问题:继续划分下去,能否将正方形划分成有个正方形的图形?请说明理由.答案第一部分1. D 【解析】本题考查相反数的概念.的相反数为,只有符号不同的两个数互为相反数,的相反数为.2. B3. D4. A5. A6. C 【解析】因为,所以筐杨梅的总质量为(千克).7. C 8. D第二部分9.10. 体育委员买了个足球,个篮球后剩余的经费11.12.13.14. 或15. ,,16. 或17.【解析】设,原式18.第三部分19. (1)原式;(2)原式;(3)原式;(4)原式;(5)当,时,原式20. 由题意知,所求多项式为:21. 如图,用“”号把这些数连接起来.22. (1)(2)①;②,,,所以点表示的数是,点表示的数是.【解析】若表示的点与表示的点重合,则表示的点与数表示的点到表示的点的距离相等,①数轴上数表示的点到表示的点有个单位,而表示的点到表示的点有个单位,所以数轴上数表示的点与数表示的点重合.23. ;因为第一次划分,得出个正方形,所以第次划分,根据图形得出共有个正方形;所以依题意得:第次划分后,图中共有个正方形,所以第次划分后,共有个正方形;因为第次划分后,图中共有个正方形,所以方程没有整数解,所以不能得到个正方形.。
2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)2016-2017学年度第一学期期中教学质量测试七年级数学试卷题号一二三四总分得分一.选择题(每小题3分,共30分) 1. 下列各数中,为负数的是() A、-1 B、0 C、2 D、3.14 2. 如图所示的图形为四位同学画的数轴,其中正确的是()3. 九台全区7年级学生大约有10200人,10200这个数用科学记数法表示为() A、 B、 C、 D、 4.下列各数与相等的()A. B. C. D. 5.将式子3-5-7写成和的形式,正确的是() A.3+5+7 B.-3+(-5)+(-7) C.3-(+5)-(+7) D.3+(-5)+(-7) 6.如果,且m+n<0,则下列选项正确的是() A、m<0, n< 0 B、m>0, n< 0 C、m,n异号,且负数的绝对值大 D、m,n异号,且正数的绝对值大 7.一个数的偶数次幂是正数,这个数是() A.正数 B.负数 C.正数或负数 D.有理数 8.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“ 是最小的正整数,是最大的负整数,是绝对值最小的有理数.”请问:,,三数之和是() A.-1 B.0 C.1 D.2 9. 下列代数式符合书写要求的是() A、 B、 C、 5 D、10.一个两位数,十位数字是,个位数字是,则这个两位数用式子表示为() A、 B、 C、 D、二、填空题(每小题3分,共18分)11. 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差_________kg。
12. 九台区中小学生大约有8.9万人,近似数8.9万精确到_________位 13. 比较大小(填“>”或“<” )_____ 14. 在数-5,-3,-2,2,6中,任意两个数相乘,所得的积中最小的数是________. 15. 观察下面一列数:-,,-,,…,按照这个规律,第2016个数是_________ 16.小明身上带着元钱去商店里买学习用品,付给售货员(<)元,找回元,则小明身上还有_________元(用含有、、来表示)三、计算题(本大题共6小题,共32分) 17.(5分)�D3+(-4)�D(-5)四、解答题(本大题共6小题,共40分) 23.(7分)请将数轴补全,然后把数-4,1,0,,-(-5)表示在数轴上,并按从小到大的顺序,从左到右串个糖葫芦,把数填在“○”内24.(7分)已知:与互为相反数求的值 25.(8分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-14,+4,-2 (1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶10千米耗油0.5升,且最后返回岗亭,这时摩托车共耗油多少升?26.(8分)人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么 (1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少? (2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?27.(10分)如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为(>0)秒(1)点C表示的数是_________ (2)求当等于多少秒时,点P到达点B 处(3)点P表示的数是_________(用含有的代数式表示)(4)求当t等于多少秒时,PC之间的距离为2个单位长度七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B B D A C B A C 二、填空题(每小题3分,共18分) 11、 0.6;12、千;13、>;14、-30;15、;16、- + 。
【中华】2016-2017学年第一学期初一数学期中试卷及答案

① 0 是绝对值最小的有理数; ③数轴上原点两侧的数互为相反数;
A.①②
【答案】B
B.①④
C.①③
D.③④
【解析】某数的绝对值为这个数到数轴上原点的距离.①正确; 相反数等于本身的数是 0 ,②错; 互为相反数的两个数之和为零,1 与 2 位于原点两侧,1 (2) 1 0 ,1 与 2 不互为相反数,③错; 若 a b 0 ,则 a a , b b , ∵ab0, ∴ a b 0 , 即 a b ,故④正确.
南京中小学辅导 1对1、3人班、8人班
18.如图所示的运算程序中,若开始输入的 x 值为 32 ,我们发现第一次输出的结果为 16 ,第二次输出 的结果为 8 , ,则第 2016 次输出的结果为__________.
x为为为 输输x x为为为
【答案】 4 【解析】输出情况如下图: 输出次数 输出结果
1 2
x 输输
x+3
1
2
3 4
4 2
5 1
6 4
7 2
8 1
9 4
10 2
11 1
16
8
输出次数能被 3 整除的,输出结果为 4 ,因为 2016 3 672 ,所以第 2016 次输出结果为 4 . 三、解答题(本大题共 10 小题,共计 64 分)
19. (本题 6 分)
画出数轴,用数轴上的点表示下列各数,并用“ ”把各数从小到大连起来.
∴ a a 不可能是负数. 二、填空题(每小题 2 分,共 16 分)
11. 4 的倒数是__________.
【答案】
1 4
1 【解析】 a 的倒数是 (a 0) . a 12.比较两个数的大小: (2)2 __________ 22 (用“ ”或“ ”或“ ”填空) .
16-17上学期七年级上数学期中试卷含答案
2016-2017学年度第一学期期中考试初一数学一、选择题:(本大题共有10小题,每小题2分,共20分,把答案直接填涂在答题卷相对应的位置)1.-3的相反数为 ( )A .-13B .13C .3D .-3 2.下列各式中,与xy 2是同类项的是 ( ) A .-2xy 2B .2x 2yC .xyD .x 2y 2 3.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为 ( )A .11×106吨B .1.1×107吨C .11×107吨D .1.1×108吨4.下列判断错误的是 ( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,s v都是代数式 D .多项式与多项式的和一定是多项式 5.下列各数:|-3|,-0.5 ,-(-3.14), 0 ,24.5 ,-π,-227,-|-2|,-103其中负数有 ( ) A .3个 B .4个 C .5 个 D .6个6.下列各式中去括号正确的是 ( )A . a 2-4(-a +1)= a 2-4a ﹣4B . -(mn -1)+(m -n )=-mn -1+m -nC . 5x -(2x -1)-x 2= 5x -2x +1-x 2D . x 2-2(2x -y +2)= x 2-4x +y -27.某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -15)元出售,则下列说法中,能正确表达该商店促销方法的是 ( )A .原价降价15元后再打8折B .原价打8折后再降价15元C .原价降价15元后再打2折D .原价打2折后再降价15元8.x 表示一个两位数,y 也表示一个两位数,君君想用x ,y 组成一个四位数,且把x 放在y 的右边,则这个四位数用代数式表示为 ( )A .yxB .x +yC .100x +yD .100y +x 9.已知a +b =5,c -d =-2,则(b -c )-(-d -a )的值为 ( ) A .7 B .-7 C .3D .-3 10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是 ( )A .84B .336C .510D .1326二、填空题:(本大题共10空,每空2分,共20分,把答案直接填在答题卷相对应的位置上)11.绝对值是5的数是 ; -23 的倒数是 .12. 已知x =3是方程2x +m -4=0的一个解,则m ﹣2 = .13.下列式子① x =5,② -52a 7,③ x +y 2,④ 7,⑤ m ,⑥ ab π,⑦ 3a +b ,⑧ 2c 中,是单项式的有 ;是整式的有 .(只填序号)14.若2a x b 2与-5a 3b y 的和为单项式,则y x =______.15.对于有理数a ,b ,定义a ⊙b =3a +2b ,则(x +y )⊙(x -y )化简后得_____ ___.16.已知a -b =4,则14(a -b )2-2(a -b )+2(a -b )2+12(a -b )= 17.甲、乙两人同时同地同向而行,甲每小时走a 千米,乙每小时走b 千米(a >b ).如果从出发到终点的距离为m 千米,那么甲比乙提前 小时到达终点.18.王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A 、B 、C 、D 、E ,每组的人数分别是12、9、11、10、8.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组…如此进行下去,那么当王老师数完2 016后,A 、B 、C 、D 、E 五个组中的人数依次是 .三、解答题:(本大题共9小题,共60分,把解答过程写在答题卷相对应的区域)19.(本题满分12分,每小题3分)计算:①5111 -3417 +4417 -111 ②(112 -34 -16)×(-24)③-34 ―(1―0.5)÷13 ×[2+(-4)2] ④(13 -15 )×52÷|-13|+(0.25)2015×4201620.(本题满分6分,每小题3分)化简:①3x 2+2x -5x 2+3x ②(a 2+2ab +b 2)+2(a 2-ab -3b 2)21. (本题满分8分,每小题4分)解方程:① x +3=3x -1 ② x 3 - x -14=1.22.(本题满分6分)先化简,再求值:3x 2y -[2x 2y -(2xy -3x 2y )]+6xy 2,其中(x -3)2+|y +13|=0.23.(本题满分5分)已知A=2a2+3ab-2a-1,B=-a2+2ab-2.(1)求3A+6B;; (2)若3A+6B的值与a的取值无关,求b的值.24.(本题满分5分)有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c-b0,a+b0,a-c0.(2)化简:|c-b|+|a+b|-2|a-c|.25.(本题满分4分)如图所示:(1) 用含a,b的代数式表示阴影部分的面积;(2) 当a=8,b=3时,求阴影部分的面积(π取3.14).26.(本题满分8分)已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________;用含t的代数式表示点P和点C的距离:PC=_____________.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有__________处相遇,相遇时t=_______________秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)27.(本题满分6分)民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为120元/千克,批发价各不相同.A家规定:当批发数量不超过100千克时,所购蟹均按零售价的92%优惠;当批发数量超过100千克但不超过200千克时,所购蟹均按零售价的90%优惠;当批发量超过200千克时,所购蟹均按零售价的88%优惠.B家的规定如下表:(1家批发需要__ __元,家批发需要元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要__ __元,在B家批发需要_ ___元(用含x的代数式表示);(3)现在他要批发180千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.初一数学期中试卷参考答案一、选择题:(每题2分,共20分)1. C2. A3. B4. D5.C6. C7. B8. D9. A 10. C二、填空题:(每空2分,共20分)11. ±5,-32 ;12.-4;13. ②④⑤⑥,②③④⑤⑥⑦; 14. 8 ;15. 5x +y ;16. 30 ;17. m b -m a;18. 11,8,10,9,12.三、解答题:(共60分)19. (每小题3分)① 6 ; ② 20 ; ③ -2734; ④ 14. 20. (每小题3分)① -2x 2+5x ; ② 3a 2-5b 221. (每小题4分)① x =2 ; ②x =922.化简得:-2x 2y +2xy +6xy 2 ------2分x =3,y =-13--------------------------4分 (代入计算得)=6 -----------------------6分23.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+2ab -2)-------1分=6a 2+9ab -6a -3-6a 2+12ab -12=21 ab -6a -15 ----------------------------------3分(2)b =27----------------------------------5分 24.(1)>,<,< (每空1分)(2)a -2b -c (2分)25.(1)S =ab -12πb 2 (2分) (2)9.87 (2分)26.(1)-26+t ;36-t ; (每空1分)(2)①2处,24秒和30秒 (每空1分)②当16≤t ≤24时 PQ =﹣2t +48当24<t ≤28时 PQ =2t -48当28<t ≤30时 PQ = 120﹣4t当30<t ≤36时 PQ = 4t ﹣120 (每个1分)27.(1)8832; 8760 (每空1分)(2)108x ,90x +2400 (每空1分)(3)选择在B 家批发更优惠理由:A :108×180=19440B :90×180+2400=1860019440>18600∴选择在B 家批发更优惠. (2分)。
2016--2017学年度上期中七年级数学试卷
第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。
2016-2017学年新人教版七年级上册期中数学试卷含答案
2016-2017学年七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.32.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×1044.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±16.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a8.下列图形不能围成正方体的是()A. B.C. D.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.210.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个二、填空题(每小题3分,共30分)11.的相反数是,绝对值是,倒数是.12.单项式﹣的系数为,次数是.13.某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是元.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是℃.15.绝对值不大于4的所有整数的积是,和是.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是.17.x=﹣时,代数式x2﹣x+6的值为.18.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.19.若(a+2)2+|b﹣3|=0,则a+b=.20.对有理数a与b,定义运算a*b=,则3*4=.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?27.观察下列计算:=1﹣,=,,…(1)第n个式子是;(2)从计算结果中找规律,利用规律计算: ++++…+.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.3【考点】有理数大小比较.【分析】根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【解答】解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形【考点】截一个几何体.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.3.扬州市旅游经济发展迅速,据扬州市统计局统计,2005年全年接待境内外游客约11 370 000人次,11 370 000用科学记数法表示为()A.1.137×107B.1.137×108C.0.1137×108D.1137×104【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:11 370 000=1.137×107.故选A.4.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【考点】有理数;相反数;绝对值.【分析】根据有理数的定义和特点,绝对值、互为相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、0的绝对值是0,故选项A错误;B、没有最大的负有理数也没有最小的负有理数,故选项B错误;C、没有最大的有理数,也没有最小的有理数,故选项C错误;D、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D正确.故选D.5.一个数的倒数是它本身,则这个数是()A.1 B.﹣1 C.O D.±1【考点】倒数.【分析】根据倒数的定义分别进行解答即可.【解答】解:一个数的倒数是它本身,则这个数是±1;故选D.6.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和C.2和D.﹣(﹣2)和|﹣2|【考点】绝对值;相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、|﹣2|=2,﹣2的相反数是2,故本选项正确;B、﹣2的相反数是2,故本选项错误;C、2的相反数是﹣2,故本选项错误;D、﹣(﹣2)=2,|﹣2|=2,相等,故本选项错误.故选A.7.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a【考点】列代数式.【分析】根据数的表示,用数位上的数字乘以数位即可.【解答】解:这个两位数是:10a+b.故选C.8.下列图形不能围成正方体的是()A. B.C. D.【考点】展开图折叠成几何体.【分析】根据正方体展开图的常见形式作答即可.【解答】解:由展开图可知:A、C、D能围成正方体;B围成几何体时,有两个面重合,故不能围成正方体.故选B.9.一个数是10,另一个数比10的相反数大2,则这两个数的和是()A.18 B.﹣2 C.﹣18 D.2【考点】有理数的加法;相反数.【分析】根据题意表示出另一个数,相加即可得到结果.【解答】解:根据题意得:10+(﹣10+2)=10﹣10+2=2.故选D10.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成( )A .8个B .16个C .4个D .32个【考点】有理数的乘方.【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.【解答】解:2×2×2×2=24=16.故选B .二、填空题(每小题3分,共30分)11.的相反数是 ,绝对值是 ,倒数是 ﹣6 .【考点】倒数;相反数;绝对值.【分析】根据只有符号不同的两个数互为相反数,负数的绝对值是它的相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:的相反数是,绝对值是,倒数是﹣6,故答案为:,,﹣6.12.单项式﹣的系数为 ﹣ ,次数是 3 .【考点】单项式.【分析】根据单项式系数和次数的概念求解即可.【解答】解:单项式﹣的系数为﹣,次数是3,故答案为:﹣,3.13.某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 2a +10 元.【考点】列代数式.【分析】由已知,本月的收入比上月的2倍即2a ,还多10元即再加上10元,就是本月的收入.【解答】解:根据题意得:本月的收入为:2a +10(元).故答案为:2a +10.14.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是 4 ℃.【考点】有理数的加减混合运算.【分析】气温上升用加,下降用减,列出算式后进行有理数的加减混合运算.【解答】解:根据题意列算式得,﹣2+9﹣3=﹣5+9=4.即这天傍晚北方某地的气温是4℃.故答案为:4.15.绝对值不大于4的所有整数的积是0,和是0.【考点】有理数的乘法;有理数的加法.【分析】根据绝对值的性质列出算式,再根据有理数的乘法和加法运算进行计算即可得解.【解答】解:(﹣4)×(﹣3)×(﹣2)×(﹣1)×0×1×2×3×4=0;(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0.故答案为:0;0.16.有理数2,+7.5,﹣0.03,﹣0.4,0 中,非负数是2,+7.5,0.【考点】有理数.【分析】非负数是指正数和0.【解答】解:故答案为:非负数是2,+7.5,0.17.x=﹣时,代数式x2﹣x+6的值为6.【考点】代数式求值.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=﹣时,原式=++6=6,故答案为:618.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21.【考点】有理数的乘法.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.19.若(a+2)2+|b﹣3|=0,则a+b=1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,计算即可.【解答】解:由题意得,a+2=0,b﹣3=0,解得,a=﹣2,b=3,则a+b=1,故答案为:1.20.对有理数a与b,定义运算a*b=,则3*4=﹣12.【考点】有理数的混合运算.【分析】根据所给的运算,把a、b换成3、4即可.【解答】解:3*4==﹣12.故答案是﹣12.三、解答题21.分别画如图几何体的主视图、左视图、俯视图.【考点】作图-三视图.【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为2,1;从上面看从左往右3列正方形的个数依次为1,2,1.【解答】解:如图所示:22.计算:(1)﹣12+11﹣8+39(2)23÷[(﹣2)3﹣(﹣4)](3)(﹣)×(﹣﹣)×0(4)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(5)(﹣﹣)×(﹣60).【考点】有理数的混合运算.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算括号中的运算,再计算除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式利用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣20+40=20;(2)原式=23÷(﹣4)=﹣;(3)原式=﹣10+2﹣12=﹣20;(4)原式=﹣40+5+16=﹣19.23.在数轴上把下列各数表示出来,并将它们从小到大排列起来.7,﹣,﹣3.5,0,.【考点】有理数大小比较;数轴.【分析】根据数轴可知:负数都在原点的左边,它们比0小,而正数都在原点的右边,它们比0大,正数也比负数大;在数轴上,越向右,数越大,越向左,数越小;据此解答即可.【解答】解:如图所示:从小到大排列:﹣3.5<﹣<0<<7.24.已知x,y互为相反数,a,b互为倒数,|n|=4,求x+y+的值.【考点】代数式求值.【分析】先根据题意得出x+y=0,ab=1,n2=16,再代入代数式进行计算即可.【解答】解:∵x,y互为相反数,a,b互为倒数,|n|=4,∴x+y=0,ab=1,n2=16,∴x+y+=0+=16.25.如图,用代数式表示图中阴影部分的面积,并求当a=4时阴影部分的面积(π取3).【考点】代数式求值;列代数式.【分析】根据阴影部分面积=正方形的面积﹣扇形的面积列式,把a=4代入代数式进行计算即可得解.【解答】解:阴影部分面积=a2﹣πa2;当a=4,π=3时,阴影部分的面积=42﹣×3×42,=16﹣12,=4.26.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?【考点】正数和负数.【分析】(1)由已知,把所有数据相加,如果得数是正数,则A处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【解答】解:(1)根据题意:10+(﹣8)+(+7)+(﹣15)+(+6)+(﹣16)+(+4)+(﹣2)=﹣14,答:A处在岗亭南方,距离岗亭14千米;(2)由已知,把记录的数据的绝对值相加,即10+8+7+15+16+4+2=68,已知摩托车每行驶1千米耗油0.2升,所以这一天共耗油,68×0.2升.答:这一天共耗油13.6升.27.观察下列计算:=1﹣,=,,…(1)第n个式子是=﹣;(2)从计算结果中找规律,利用规律计算: ++++…+.【考点】有理数的混合运算.【分析】(1)根据题中给出的例子找出规律即可;(2)根据(1)中的规律即可进行计算.【解答】解:(1)∵第一个式子为:=1﹣,第二个式子为:=,第三个式子为:,第11页(共12页)第四个式子为:…, ∴第n 个式子为:=﹣.故答案为:=﹣; (2)原式=1﹣+﹣+﹣+…+﹣ =1﹣=.2016年10月25日第12页(共12页)。
江苏省2016-2017学年七年级上学期期中考试数学试卷
2016年秋学期七年级数学期中考试试题(考试时刻:120分 总分值:150分)一、选择题(每题3分,共24分) 1. 12-的倒数是( ▲ ) A .12B .-12C .2D .-22. 以下各数0,3.14159,π,13-中,有理数有( ▲ )A .1个B .2个C .3个D .4个 3.在0、1、2、3中,哪个数是方程3243x x -=-的解( ▲ ) A .0 B .1 C. 2 D .34. 2016年10月17日7时30分,在中国酒泉卫星发射中心成功发射“神州十一号”, “神州十一号”升太空并抵达运行状态后离地球平均393千米,飞行一周大约是42500千米.数据42500用科学记数法表示为 ( ▲ )A .23.9310⨯ B.44.2510⨯ C .54.2510⨯ D .342.510⨯ 5. 以下计算正确的选项是( ▲ )A .2523a a a =+B .134=-x xC . y x yx y x 22223=- D.ab b a 523=+ 6.单项式13xy -的次数是( ▲ ) A.13- B.0 C.1 7. ()m n --去括号得 ( ▲ )A .m n -B .m n -+C .n m --D .m n + 8.在数轴上点A 、B 对应的数为a 、b ,那么a +b +3的和为( ▲ ) A .正数 B .负数 C .0 D .不确信二、填空题(每题3分,共30分)9.若是+3吨表示运入仓库大米的吨数,那么运出大米5吨表示为 ▲ 吨.10. 苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需 ▲ 元11.方程21x -=的解为 ▲12.计算:()23 3.1439.42⨯+⨯-= ▲13.若24a b -=,那么245a b -++= ▲ 14.已知5a =,1a b +=-,则b 的值为 ▲ 15. 若是3927813n ⨯⨯⨯=,那么n = ▲16.如图.正方形ABCD 的边长为a ,假设图中阴影部份的面积分别为S 1、S 2.则S 1﹣S 2= ▲ .17. 观看以下关于x 的单项式,探讨其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…依照上述规律,单项式2017n x 是第 ▲ 个单项式.18.已知:(5)nA m x y =-,2163B x y =-+,假设6A B +=,那么4mn= ▲ . 三、解答题(共96分)19. (每题5分,此题共20分,)计算:(1)2815-+-- (2)113333⎛⎫⎛⎫-⨯÷⨯- ⎪ ⎪⎝⎭⎝⎭(3)2)2()8(3)2(-÷--⨯- (4)(34-156+712)÷(-136)20. (每题4分,此题共8分)计算:(1) 7a +3b +2b -5a (2) 5(-3x +4y )-6(2x -3y )21. (每题5分,此题共15分)解方程(1)213x -= (2)2(3-x )=-4x +5S 1 S 2第16题图第8题图xb a 12–1–2–3–4OA B10987654321(3)x -14=2x +16+122.(此题5分)已知:方程23(1)0x -+=的解与关于x 的方程3222k x k x +--=的解互为倒数,求k 的值23. (每题5分,每此题共10分) 先化简,再求值:(1))4(3)125(23m m m -+--,其中m 是最大的负整数.(2)2227(45)2(23)a b a b c a b c +-+-+,其中1ab =,5a c +=24. (此题6分)已知:A +B =27a -ab 7,且7642++-=ab a B , (1)求A 等于多少? (2)若0)2(12=-++b a ,求A 的值.25.(此题6分)如图,点A 、B 、C 、D 别离表示四个车站的位置.(1)用关于a 、b 的代数式表示A 、C 两站之间的距离是 ▲ ;(最后结果需化简) (2)假设已知A 、C 两站之间的距离是12km ,求C 、D 两站之间的距离.26.(此题8分)学校图书馆上周借书记录如下(超过50册的部份记为正,少于50册的部份记为负):(1)上礼拜五借出图书多少册?(2)上周平均天天借出图书为54册,问礼拜三最多借出多少册图书?27. (此题8分)以下图案是用长度相同的火柴棒按必然规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,(1)按此规律,图案⑦需 ▲ 根火柴棒.(2)用2017根火柴棒能按规律拼搭而成一个图案吗?假设能,说明是第几个图案;假设不能,请说明理由.28. (此题10分)如下图,1925年数学家莫伦发觉的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,其中标注1、2的正方形边长别离为x 、y , 请你计算:(1)第3个正方形的边长= ▲ ;第5个正方形的边长= ▲ ; 第10个正方形的边长= ▲ .(用含x 、y 的代数式表示) (2)当x =2时,第9个正方形的面积= ▲ (3)当x 、y 均为正整数时,求那个完美长方形的最小周长.星期一 星期二 星期三星期四星期五 0+8a b-72016秋学期七年级数学期中试题参考答案 一、选择题 DCBBCDBA 二、填空题9. -5 a +3b 11. x =-12或4 15.10 16.(12π-1)a 217.1009 18. 13三、解答题19.(1)0 (2)19 (3)-4 (4)1820.(1)2a +5b (2)-27x +38y 21. (1) 2 (2) -12 (3)-1722. 123.(1)-4m +13 17 (2)-a 2b -c -5 24.(1)11a 2-13ab -7 (2)30 25.(1)3a -2b (2)5km 26.(1) 43 (2)69 27.(1)51 (2) 第288个28.(1)x +y x +3y 3y -3x (2)100 (3)224。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省南京市溧水区七年级(上)期中数学试卷一、选择题(每小题2分,16分)1.(2分)﹣的绝对值是()A.﹣2 B.C.﹣D.22.(2分)下列各式中,不是同类项的是()A.x2y和x2y B.﹣ab和ba C.﹣abcx2和﹣x2abc D.x2y和xy33.(2分)下列各组数中,互为相反数的是()A.2与B.(﹣1)2与1 C.﹣1与(﹣1)2D.2与|﹣2|4.(2分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.5.(2分)把下列各数中无理数有()﹣4,0,,,2013,﹣0.1010010001…,2.38383838…A.4个B.3个C.2个D.1个6.(2分)实数a、b在数轴上的位置如图所示,则化简|a﹣b|+a的结果为()A.﹣2a+b B.b C.﹣b D.﹣2a﹣b7.(2分)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元8.(2分)我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂分家万事非”,如图:在边长为1的正方形纸板上,依次贴上面积为,,,…,的长方形彩色纸片(n为大于1的整数),请你用“数形结合”的思想,依数形变化的规律,计算+++…+=()A.B.C.D.1﹣二、填空题(每小题2分,共20分)9.(2分)如果收入15元记作+15元,那么﹣20元表示为.10.(2分)比较大小:.11.(2分)钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为.12.(2分)请写出一个只含字母a和b的四次3项式.13.(2分)对于任意有理数a,b,规定运算:a*b=a2﹣b2﹣a.则(﹣3)*5=.14.(2分)气象部门测定,高度每增加1千米,气温大约下降5℃,现在地面气温是15℃,那么4千米高空的气温是℃.15.(2分)如图是一数值转换机的示意图,则输出结果是16.(2分)若a﹣2b=3,则9﹣2a+4b的值为.17.(2分)超市原有(x2﹣2x)桶食用油,上午卖出(7x﹣5)桶,中午购进同样的食用油(x2+6x)桶,下午清仓时发现该食用油只剩下5桶,便民超市下午卖出桶食用油.18.(2分)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是.三、解答题(本大题共7小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(25分)计算与化简:(1)(﹣5)﹣(+3)﹣(﹣7)+(﹣9)(2)(﹣3)3÷2×(﹣)2(3)(﹣+﹣)÷(﹣)(4)8﹣23÷(﹣4)×|2﹣(﹣3)2|(5)化简:4(3x2y﹣xy2)﹣6(﹣xy2+3x2y)(6)化简求值:2(2a2+ab﹣1)﹣2(﹣3a2+ab+1),其中a=﹣4,b=.20.(6分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.21.(6分)观察月历.(1)根据月历中的规律填空:a(2)莉莉国庆假期外出旅行三天,三天日期之和是27,莉莉是号出发的.(3)某月小林连续三周周六外出参加羽毛球比赛并获得冠军,三天日期之和是51.①小林是号夺冠的.②本月1号星期.22.(6分)算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个);、;(2)如图2,如果、表示正,.表示负,J表示11点,Q表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个):.23.(8分)如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1,,+4,﹣3,①第3次滚动周后,Q点回到原点.第6次滚动周后,Q点距离原点4π②当圆片结束运动时,Q点运动的路程共有多少?24.(7分)某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤件(x>30).(1)若该客户按方案①购买需付款元(用含x的式子表示);若该客户按方案②购买需付款元(用含x的式子表示);(2)若x=50时,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)当x=50时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.25.(6分)阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的妙点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的妙点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的妙点,但点D是【B,A】的妙点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是【M,N】的妙点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B 出发向左运动,到达点A停止.P点运动多少个单位时,P、A和B中恰有一个点为其余两点的妙点?2016-2017学年江苏省南京市溧水区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,16分)1.(2分)﹣的绝对值是()A.﹣2 B.C.﹣D.2【解答】解:﹣的绝对值是.故选:B.2.(2分)下列各式中,不是同类项的是()A.x2y和x2y B.﹣ab和baC.﹣abcx2和﹣x2abc D.x2y和xy3【解答】解:A 字母相同,且相同的字母的指数也相同,故A是同类项;B 字母相同,且相同的字母的指数也相同,故B是同类项;C 字母相同,且相同的字母的指数也相同,故C是同类项;D 相同字母的指数不同,故D不是同类项;故选:D.3.(2分)下列各组数中,互为相反数的是()A.2与B.(﹣1)2与1 C.﹣1与(﹣1)2D.2与|﹣2|【解答】解:A、2+=;B、(﹣1)2+1=2;C、﹣1+(﹣1)2=0;D、2+|﹣2|=4.故选C.4.(2分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.5.(2分)把下列各数中无理数有()﹣4,0,,,2013,﹣0.1010010001…,2.38383838…A.4个B.3个C.2个D.1个【解答】解:,﹣0.1010010001…是无理数,故选:C.6.(2分)实数a、b在数轴上的位置如图所示,则化简|a﹣b|+a的结果为()A.﹣2a+b B.b C.﹣b D.﹣2a﹣b【解答】解:根据数轴上点的位置得:a<0<b,∴a﹣b<0,则原式=b﹣a+a=b,故选B7.(2分)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元 B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选A8.(2分)我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂分家万事非”,如图:在边长为1的正方形纸板上,依次贴上面积为,,,…,的长方形彩色纸片(n为大于1的整数),请你用“数形结合”的思想,依数形变化的规律,计算+++…+=()A.B.C.D.1﹣【解答】解:根据公式,+++…+=1﹣,故选D.二、填空题(每小题2分,共20分)9.(2分)如果收入15元记作+15元,那么﹣20元表示为支出20元.【解答】解:收入15元记作+15元,那么﹣20元表示为支出20元,故答案为:支出20元.10.(2分)比较大小:>.【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.11.(2分)钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为 6.344×106.【解答】解:6344000=6.344×106.故答案为:6.344×106.12.(2分)请写出一个只含字母a和b的四次3项式a4+2b+1.【解答】解:由多项式的定义可得只含字母a和b的四次3项式:a4+2b+1.故答案为:a4+2b+1.13.(2分)对于任意有理数a,b,规定运算:a*b=a2﹣b2﹣a.则(﹣3)*5=﹣13.【解答】解:利用题中的新定义得:(﹣3)*5=9﹣25+3=﹣13.故答案为:﹣13.14.(2分)气象部门测定,高度每增加1千米,气温大约下降5℃,现在地面气温是15℃,那么4千米高空的气温是﹣5℃.【解答】解:根据题意得:15﹣4×5=15﹣20=﹣5,则4千米高空的气温是﹣5℃.故答案为:﹣515.(2分)如图是一数值转换机的示意图,则输出结果是【解答】解:根据数值转换机中的运算得:输出结果是=,故答案为:16.(2分)若a﹣2b=3,则9﹣2a+4b的值为3.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.17.(2分)超市原有(x2﹣2x)桶食用油,上午卖出(7x﹣5)桶,中午购进同样的食用油(x2+6x)桶,下午清仓时发现该食用油只剩下5桶,便民超市下午卖出(2x2﹣3x)桶食用油.【解答】解:根据题意得:(x2﹣2x)﹣(7x﹣5)+(x2+6x)﹣5=x2﹣2x﹣7+5+x2+6x﹣5=2x2﹣3x,则便民超市下午卖出(2x2﹣3x)桶食用油,故答案为:(2x2﹣3x)18.(2分)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是74.【解答】解:0+2=2 2+2=4 4+2=6,所以第四个正方形左下角的数为,6+2=80+4=4 2+4=6 4+4=8,所以第四个正方形右上角的数为,6+4=10.8=2×4﹣0 22=4×6﹣2 44=6×8﹣4 所以m=8×10﹣6=74.故答案为:74.三、解答题(本大题共7小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(25分)计算与化简:(1)(﹣5)﹣(+3)﹣(﹣7)+(﹣9)(2)(﹣3)3÷2×(﹣)2(3)(﹣+﹣)÷(﹣)(4)8﹣23÷(﹣4)×|2﹣(﹣3)2|(5)化简:4(3x2y﹣xy2)﹣6(﹣xy2+3x2y)(6)化简求值:2(2a2+ab﹣1)﹣2(﹣3a2+ab+1),其中a=﹣4,b=.【解答】解:(1)解:原式=﹣5﹣3+7﹣9=﹣17+7=﹣10(2)原式=(﹣27)××=﹣(3)原式=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+20=26(4)解:原式=8﹣8÷(﹣4)×7=22(5)原式=4(3x2y﹣xy2)﹣6(3x2y﹣xy2)=﹣2(3x2y﹣xy2)=﹣6x2y+2xy2(6)原式=4a2+3ab﹣2+6a2﹣2ab﹣2=10a2+2ab﹣4当a=﹣4,b=时,原式=15420.(6分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.【解答】解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y•2.5x+3y•0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.21.(6分)观察月历.(1)根据月历中的规律填空:a﹣1 aa+6a+7(2)莉莉国庆假期外出旅行三天,三天日期之和是27,莉莉是8号出发的.(3)某月小林连续三周周六外出参加羽毛球比赛并获得冠军,三天日期之和是51.①小林是24号夺冠的.②本月1号星期四.【解答】解:(1)观察日历可知:同行的数从左往右依次+1,同列的数从上往下依次+7,∴a左边的数为a﹣1,a下面的数为a+7,a+7左边的数为a+6.故答案为:a﹣1;a+6;a+7.(2)设莉莉是x号出发的,根据题意得:x+(x+1)+(x+2)=27,解得:x=8.故答案为:8.(3)①设小林是y号夺冠的,根据题意得:y+(y﹣7)+(y﹣14)=51,解得:y=24.故答案为:24.②∵24=3×7+3,∴3号为周六,∴1号为周四.故答案为:四.22.(6分)算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个);3×4+2×6、2×4×(6﹣3);(2)如图2,如果、表示正,.表示负,J表示11点,Q表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个):(﹣5)2﹣12﹣(﹣11).【解答】解:(1)根据题意得:3×4+2×6、2×4×(6﹣3);(2)根据题意得:(﹣5)2﹣12﹣(﹣11).故答案为:(1)3×4+2×6、2×4×(6﹣3);(2)(﹣5)2﹣12﹣(﹣11)23.(8分)如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是﹣2π(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1,﹣2,+4,﹣3,1或﹣3①第3次滚动﹣2周后,Q点回到原点.第6次滚动1或﹣3周后,Q点距离原点4π②当圆片结束运动时,Q点运动的路程共有多少?【解答】解:(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是﹣2π;故答案为:﹣2π;(2)①∵+3﹣1=2,2﹣2=0,∴第3次滚动﹣2周后,Q点回到原点;∵+3﹣1﹣2+4﹣3=1,1+1=2或1﹣3=﹣2,∴第6次滚动1或﹣3周后,Q点距离原点4π故答案为﹣2,1或﹣3;②根据题意列得:3+1+2+4+3+1=14,14×2π=28π,或3+1+2+4+3+3=16,6×2π=32π.当圆片结束运动时,Q点运动的路程共有28π或32π.24.(7分)某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤件(x>30).(1)若该客户按方案①购买需付款1500+50x元(用含x的式子表示);若该客户按方案②购买需付款2400+40x元(用含x的式子表示);(2)若x=50时,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)当x=50时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.【解答】解:(1)1500+50x,2400+40x,故答案为:1500+50x;(2)当x=50,按方案①购买所需费用=1500+50×50=4000(元);按方案②购买所需费用═2400+40×50=4400(元),所以按方案①购买较为合算;(3)先按方案①购买夹克30件,再按方案②购买T恤20件更为省钱.理由如下:先按方案①购买夹克30件所需费用=3000,按方案②购买T恤20件的费用=50×80%×20=800,所以总费用为3000+800=3800(元),小于4400元,所以此种购买方案更为省钱.25.(6分)阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的妙点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的妙点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的妙点,但点D是【B,A】的妙点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数2所表示的点是【M,N】的妙点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B 出发向左运动,到达点A停止.P点运动多少个单位时,P、A和B中恰有一个点为其余两点的妙点?【解答】解:(1)设所求数为x,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;(2)设点P表示的数为y,分四种情况:①P是【A,B】的妙点.由题意,得y﹣(﹣40)=2(20﹣y),解得y=0,20﹣0=20;②P是【B,A】的妙点.由题意,得20﹣y=2[y﹣(﹣40)],解得y=﹣20,20﹣(﹣20)=40;③B是【A,P】的妙点.由题意,得20﹣(﹣40)=2(20﹣y),解得y=﹣10,20﹣(﹣10)=30;④A为【B,P】的妙点,由题意得20﹣(﹣40)=2[y﹣(﹣40)]y=﹣10,20﹣(﹣10)=30.综上可知,当P点运动20或40或30个单位时,P、A和B中恰有一个点为其余两点的妙点.故答案为:2.。