Methyl modified MOF-5 a water stable hydrogen storage materialw
离子液体中树脂催化转化果糖为5-羟甲基糠醛

不 易被 回收利 用 ,同时对设备 也有很 大腐蚀 .相对 而言 ,固体酸催 化剂 ( 分子筛 和 离子交 换树 脂 ) 如 则
M 一
ts o一
:
c
㈣
HMF
\ H0 2
… \ L u i If i cs e lc l 0 c i vi d m d na a
用 作反 应溶 剂 的主要 有水 , , 、有 机溶 剂 ( D S ) 及水 . 机溶 剂两 相 系统 ,] , 如 M O 有 等.
面对化石 能源 日益减 少及全 球变暖 的趋势 , 发 洁净 的可再 生 资源 成 为 当前发 展 的迫切 需要 … . 开
生物质 ( 纤维 素 、 半纤 维素和木 质素 ) 是一 种可持 续性资源 , 量巨大 , 数 价格 低廉 ,同时可 被生物降解 ,
并且能不 断再生 .以生物 质可再生 资源为原 料制备化 工 中间体 , 经 由这些 化 学 中问体合 成能 源或 再
( B M] 1 中转化 为 5 H [ MI C ) - MF的产 率 为 9 % .这 些 催 化 体 系对 于果 糖 转化 为 5HMF虽 然 都 很 有效 , 6 .
但 金属 氯化物 催化 剂 的使用 , 其是 CC 尤 r1的使 用对人 体及 环境 是有 害 的.另 外 ,这些催 化体 系要 获得
杜 芳 , 新 华 , 英 钊 ,庄 源益 漆 徐
( 南开大学环境科学与工程学 院, 环境污染过程 与基准教育部 重点实验室 , 天津 30 7 ) 00 1 摘要 开发 了以离子液体 1丁基一一 一 3甲基咪唑氯盐 ( B M] 1 为溶剂 ,固体酸离子交换 树脂 N C9为催化 [ MI c ) K一
剂转化果糖为 5羟 甲基糠醛 的绿色工艺 .在此 催化体系 中,10 q 下反应 1 n时 5H F的产率达到 7 . 一 0 C 0mi -M 8 0 , % 其反应 时问远远小于已有文献报道 的长达数小时的反应时间.在此催化 体系中 , 果糖起始浓度 的增加
红毛五加叶水提液对羟自由基清除率的测定

红毛五加叶水提液对羟自由基清除率的测定杨鑫嵎1,杨文宇1*,叶强2(1.西华大学生物工程学院,四川成都610039;2.成都中医药大学药学院,四川成都610075)摘要[目的]测定红毛五加叶水提液对羟自由基的清除率并评价其抗氧化活性。
[方法]利用Fenton 反应产生羟自由基,用二甲亚砜(DMSO )捕获羟自由基并与之反应生成甲醛,甲醛经2,4-二硝基苯肼衍生成相应的苯腙,通过HPLC 检测加或不加样品时该苯腙的峰面积的变化,从而计算红毛五加叶水提液对羟自由基的清除率。
色谱条件:色谱柱为Diamonsil C 18(250mm ˑ4.6mm ,5μm ),流动相为乙腈-水(65ʒ35,V/V ),流速为0.8ml /min ,检测波长为365nm 。
[结果]Fenton 反应体系为2.0mmol /L Fe 2++107.7mmol /L H 2O 2+225.2mmol /L DMSO ;在该反应体系中红毛五加叶水提液清除羟自由基的IC 50为0.67mg /ml (即每1ml 含药材量为0.67mg );红毛五加叶总皂苷是清除羟自由基的活性成分。
[结论]红毛五加叶水提液能够清除Fenton 反应产生的羟自由基,具有较强的抗氧化活性。
关键词红毛五加(Acanthopanax giraldii Harms.);Fenton 反应;HPLC ;抗氧化中图分类号R282.2文献标识码A 文章编号0517-6611(2011)35-21653-04Determination on Scavenging Activity of Acanthopanax giraldii Leaves Aqueous Extract to Hydroxyl Radicals YANG Xin-yu et al (School of Bioengineering ,Xihua University ,Chengdu ,Sichuan 610039)Abstract [Objective ]The aim was to determine the hydroxyl radicals scavenging capacity by the leaves aqueous extract of Acanthopanax giral-dii Harms.for its antioxidant activity evaluation.[Method ]The proposed method employed the reaction between hydroxyl radicals generated by the Fenton system and dimethyl sulfoxid (DMSO )to form formaldehyde ,which then reacted with 2,4-dinitrophenylhydrazine (DNPH )to producethe corresponding hydrazone (HCHO-DNPH ).The hydroxyl radicals scavenging rate was calculated by the HPLC peak areas of HCHO-DNPH in the above reaction system with or without A.giraldii as a scavenger.The chromatographic conditions included a Diamonsil C 18column (250mm ˑ4.6mm ,5μm ),a mobile phase consisting of acetonitrile-water (65ʒ35,V/V ),a flow rate of 0.8ml /min and ultraviolet detection at 365nm.[Result ]The optimized Fenton system for HCHO-DNPH generation was 2.0mmol /L Fe 2++107.7mmol /L H 2O 2+225.2mmol /L DMSO.The half-scavenging concentration (IC 50)of the A.giraldii leaves aqueous extract was 0.67mg /ml (i.e.0.67mg crude leaves to 1ml volumes ).The total saponins of A.giraldii leaves were one part of active ingredients.[Conclusion ]The A.giraldii leaves aqueous extract is a potent hydroxyl radicals scavenger with potential antioxidant activity.Key words Acanthopanax giraldii Harms.;Fenton reaction ;HPLC ;Antioxidation基金项目四川省教育厅科研基金项目(10zc057);西华大学重点科研基金项目(Z0820503)。
金属有机骨架材料MOF-5上噻吩硫化物的吸附分离

金 属 有 机 骨 架 材 料 MoF 5上 噻 吩 硫 化 物 的 吸 附 分 离 .
代
摘
伟 庄海堂 , ,卢信清 ,陈 晓 ,韩敏敏 郑 宇 ,
3 10 2 浙 江 师 范大 学 物 理 化 学 研 究所 ,浙 江 金 华 20 4; . 3 10 ) 20 4
(. 江 师 范 大学 化学 与生 命 科 学学 院 ,浙 江 金 华 1浙
要: 将金 属 有 机 骨 架 材 料应 用 于 燃 油 深 度脱 硫 研 究 。采 用 水 热 法合 成 了金 属 有 机 骨架 材料 MO -, 用 X D、 吸 附 和 F5 利 R N
S M等技术对其结构进行 了表征。通过测定 固定床吸附穿透 曲线 , E 考察 了模型燃油类型对 MO 一 F5吸附分离噻 吩效果的影响 。 结 果表 明 , O - 硫 化 物 的 吸 附 容 量 超 过 了 文 献 报 道 ; 脂 肪 油 中 其 穿 透 容 量 和 饱 和 容 量 质 量 分 数 分 别 为 0 9 % 和 M F5对 在 .0
c a a trz d b a so h r ce e y me n fXRD ,S i EM n a d N,a s r t n.Th e u p u ai n p ro ma e o d opi o e d s l h z t e fr nc fMOF- stse n o 5 wa e td i tr so r a t r u h c r e t h i ltd ol t r o tmp r t r . Th e ut h we h tt e a s r e t e fb e k h o g u v s wih t e smu ae is a o m e e au e m e r s l s o d t a h d o b n s
MOF-5简介

静置直至出现晶体。反应特点为反应时间长,条件温和,易于得到高质量旳晶体。
MOF-5合成措施
• 微波法:将有机配体与金属盐溶解在一定溶剂中或有机配体与金属盐固相均勻混合,
置于微波炉内,合成金属-有机骨架旳措施。
Jung-Sik Choi等_采用微波法,合成了 M0F-5,探讨了微波能量等级、辖射时间、温度、溶剂浓度 对合成M0F-5旳影响,发觉微波福射时间过长会破坏物质旳物理吸附性质;Chun-MeiLu等采用微波 法合成了 M0F-5,研究了不同温度下M0F-5对C02旳吸附能力,成果表白,超出40(rC时,M0F-5开 始热分解,且不再具有吸附C02旳能力。
• 二次生长法:将金属盐、有机配体和溶剂按一定百分比混合成溶液,转入到烧杯中
,静置直至出现晶体。反应特点为反应时间长,条件温和,易于得到高质量旳晶体。
2023年,Zhenxia Zhao等用二次生长措施制成厚约14纳米旳M0F-5膜。 首先将溶剂热法合成M0F-5制成DMF悬浮液,再将悬浮液涂渍在a AI2O3上,将上述a - AI2O3置于溶有Zn(N03>6H20和H2BDC旳DMF溶 剂中,逐滴加入EDIA,剧烈揽祥,在130°C下反应l-4h,即得到M0F-5膜。
• MOFs因具有比表面积大和空隙率大,构造构成多样及热稳定性好等特点,已 成为当今新功能材料研究旳热点。
详细来说, MOFs旳晶体密度为0.21~0.41g/cm3,是目前所报道旳贮氢材料中最 轻旳;它旳比表面积很大,已报道合成旳此类物质中平均表面积>2023m2/g,比 含碳类多孔材料旳还要大数倍;它能够在室温、 安全旳压力(<2MPa )下迅速可 逆地吸收大量旳气体。良好旳热稳定性以及便捷旳改性手段也使得它备受青睐。
金属有机骨架材料MOF-5吸附苯并噻吩性能

金属 有 机 骨 架材 料 MOF 一 5吸 附苯 并 噻吩 性 能
巩 睿 , 周丽梅 , 马 娜 , 胡 珏 , 陈建荣 , 胡 鑫 , 代 伟
3 2 1 0 0 4 ) ( 1 . 浙江师范大学 化学与生命科学学院 ,浙江 金华 3 2 1 0 0 4; 2 . 浙江师范大学 地理与环境科学学院 , 浙江 金华
i nv e s ig t a t e d us i ng b a t c h e x p e r i me n t s . Re s u l t s s h o we d t ha t t h e a d s o pt r i o n ki ne t i c s da t a o f be n z a o t hi o p he n e o n t o
d a t a o f b e n z a o t h i o p h e n e o n t o M OF 一 5 i f t t e d we l l t o t h e L a n g mu i r .F r e u n d l i c h a n d Du b i n i n — Ra d u s h k e v i c h( D. R)
i s ot h e m r mo d e l s (Fr e u n d l i c h>D. R >La n g mu i r) . Th e m o r dy na mi c pa r a me t e r s s h o we d t ha t t h e a ds o pt r i o n o f
Abs t r ac t:Re mo va l o f b e nz o t h i o p he n i c c o mp o un d s f r o m f u e l s pl a y s a ke y r o l e i n d e e p d e s u l f u iz f a t i o n. Th e a ds o r p iv t e p e r f o r ma n c e o f b e nz o t h i o p he n e wi t h t y pi c a l M e t a 1 . Or g a ni c Fr a me wo r ks ma t e r i a l M OF. 5 wa s
合成工艺条件对金属有机骨架MOF-5结构和性能的影响

毕业论文合成工艺条件对金属有机骨架MOF-5结构和性能的影响学生姓名:学号:系部:专业:指导教师:二〇一二年六月082074******材料工程系高分子材料与工程***4)讨论工艺过程对晶结构和性能的影响,找到合适的工艺条件来得到与标准结构和形貌相近的晶体。
3.主要参考文献【l】(a)Czaja,A.U.;Truldaan,N.;Muller,U.Chem.Soc.Rev.2009,38,1284-1293.(b)Prakash,M.J.;Lah,M.S.Chem.Commun.2009,3326-3341.(c)Ferey,G Chem.Soc.Rev.2008,37,191-214.【2】Sub,M.P.;Cheon,Y E.;Lee,E.Y Coord Chem.Rev.2008,252,1007-1026.【3】Ferey,G J.Solid.state.Chem.2000,.152,37-48.【4】Eddaoudi,M.;Kim,J.;Rosi,N.;Vodak,D.;Wachter,J.;0’Kezffe,M.;Yaghi,0.M.Science2002,295,469-472.【5】Zhao,D.;Yuan,D.;Zhou,H.-C.Energy Environ Sci2008,1,222—235.【6】Moil,W.;Takamizawa,S.;Kato,C.N.;Ohmura,T.;Sato,T.Microporous Mesoporous Mater.2004,73,31-46.【7】(a)Moil,W:;Takamizawa,S.;Kato,C.N.;Ohmura,T.;Sato,T.Microporous Mesoporous Mater.2004,73,31-46.(b)Rao,C.N.R;Natarajan,S.;Vaidhyanathan R Angew.Chem.Int.Ed.2004,43,1466-1496.【8】Zhang,Y-B.;Zhang,W.-X.;Feng,E—Y;Zhang,J-P;Chen,X.-M.Angew.Chem int.Ed.2009,48,5287-5290.【9】G-uo,Z.;Li,G;Zhou,L.;Su,S.;Lei,Y;Dang,S.;Zhang,H.Inorg.Chem.2009,48,8069-8071.【10】Fu,J.;Sun,H.J Phys.Chem.C2009,2009,21815-21824.【11】Xue,M.;Liu,Y;Schaffino,R,M.;Xiang,S.;Zhao,X.;Zhu,G-S.;Qiu.S-L.;Chen,B.Inorg.Chem.2009,48,4649-4651.【12】Li,H.;Eddaoudi,M.;Groy,T.L.;Yaghi.M.J Am.Chem.Soc.1998,120,8571-8572.【13】Clausen,H.F.;Poulsen,R D.;Bond,A.D.;Chevallier,M.-A.S.;Iversen,B.B.J,solid State Chem.2005,178,3342-3351.【14】Hawxwell,S.M.;Adams,H.;Brammer,L.Acta.Cryst.B2006,808-814.【15】Braun,M.E.;Steffek,C.D.;Kim,J.;Rasmussen,P.G;Yaghi,0.M.Chem.Commun.2001,2532-2533.【16】Li,Z.一Q.;Qiu L.-G;Wang,W:;Xu,T.;Wu,Y;Jiang,X.Inorg.Chem.Commurt2008,1375-1377.【17】Sun,J.;Zhou,Y;Fang,Q.;Chen,Z.;Weng,L.;Zhu,G;Qiu,S.;Zhao,D.Inorg.Chem.2006,8677-8684.【18】Li,H.;Davis,C.E.;Groy,T.L.;Kelley,D.Q;Yaghi,0.M.J Am.Chem Soc.1998,2186-2187.【19】Williams,C.A.;Blake,A.J.;Hubberstay,P.;Schroder,M.Chem Commun.2005,5435-5437.【20】Burrows,A.D.;Cassar,K.;Friend,R.M.W:;Mahon,M.F;Rigby,S.P.;Warren,J.E.CrysEngComm2005,548—550.【21】Loiseau,T.;Muguerra,H.;Ferey,G;Haouas,M.;Taulelle,F.J Solid state Chem.2005,l78,621—628。
五乙酸葡萄糖酯
物质性质
葡萄糖的结构和性质: 物理性质: 白色晶体 溶于水,微溶于乙醇。 分子式: C6H12O6 (180) 最简式: CH2O (30)分子量 180.1572 熔点83℃。无结晶水熔点146℃ 乙酸酐:是由乙酸衍生出来的酸酐,分子式为(CH3CO)2O,常缩写为Ac2O。它是 最简单的有机酸酐之一,有机合成中常用它作乙酰化试剂或失水剂。在室温下乙 酸酐为无色液体,与空气中的水分反应,从而散发出乙酸的强烈味道。乙酸酐可 由乙酸甲酯的羰基化制得,常以铑和锂的碘化物作催化剂。熔点:-73.1℃沸点: 138.6℃溶解性:溶于苯、乙醇、乙醚;稍溶于水。 碘:无机物-单质-非金属, 常温下为固态, 单质碘呈紫黑色晶体,相对原子质量 126.9。熔点113.5℃,沸点184.35℃。具有金属光泽,性脆,易升华。有毒性和腐蚀 性。易溶于乙醚、乙醇、氯仿和其他有机溶剂,也溶于氢碘酸和碘化钾溶液而呈深 褐色。碘的典型有机反应有:芳香族化合物的亲电子置换,形成芳基碘化物;邻近 羰基官能团的碳原子的碘化作用;碘单质遇淀粉会变蓝色。 碘单质是紫黑色,有光 泽的固体。加热时,碘升华为漂亮的紫色蒸气,这种蒸气有刺激性气味
物质性质
葡萄糖五乙酸酯 中文名称 葡萄糖五乙酸酯 别名 Α-D-葡萄糖五乙酸酯; Α-D-葡萄糖乙酸酯; Α-D-葡糖五乙酸酯; 1,2,3,4,6-O-五乙酰基-Α-D-葡萄糖; ALPHA-D-葡萄糖五乙酸酯; 1,2,3,4,6-五-O-乙酰基-Α-D-吡喃葡萄糖; Α-D-五乙酰基葡萄糖; 英 文名称 Alpha-D-Glucose pentaacetate 分子式 C16H22O11 分子量 390.34 , 熔点 109-113℃ , 水溶性差 自然界中D-(+)-葡萄糖是以环形半缩醛形式存在的有 α、β两种异构体。葡 萄糖上的羟基与乙酸或乙酸酐反应可以使5个羟基都被乙酰化。相应的生成α和β五 乙酸葡萄糖酯。但是使用不同的催化剂时,所生成的主产物不同。如当用无水氯化 锌作催化剂时,α构型为主要产物;当使用无水乙酸钠作催化剂时,β构型为主要产 物。从立体构型来看β异构体比α异构体更稳定,但是在无水氯化锌的作用下β异构 体也能转化为α异构体。 а-D-葡萄糖五乙酸酯:又名а-D-五乙酰葡萄糖(简称PAG) 。化学式为C16 H22 O11 。 在常温下为白色针状晶体, 是一种发展前景很好的表面活性剂。在医疗上, 它有 保护肝脏和促进中枢神经兴奋的作用, 也可治疗肥胖症及酒精中毒。同时, 它可用 于汽油添加剂, 用它来提高汽油的燃烧速度, 使汽油接近完全燃烧, 从而使排放出 气体中的有害成分明显减少。既节约能源, 又减少环境污染。另外, 它还可用于家 用杀菌剂、清洗用的漂白剂、消毒剂、去垢剂、抗氧化剂、发泡剂、制药、制造 香料、废水处理、香烟的填充剂等许多方面
金属有机框架材料MOF-5的合成及其染料吸附性能测试
156Univ. Chem. 2023, 38 (8), 156–163收稿:2022-08-02;录用:2022-10-27;网络发表:2022-11-14*通讯作者,Email:*******************.cn基金资助:2022年教育部产学合作协同育人项目(化学综合创新实验课程混合式教学研究)•化学实验• doi: 10.3866/PKU.DXHX202208016 金属有机框架材料MOF-5的合成及其染料吸附性能测试杨雪苹*,张思贤,赵旭芃,沙贝哈尔滨工业大学(深圳)实验与创新实践教育中心,广东 深圳 518055摘要:本文描述了以配位化学为知识背景,以绿色化学为核心理念的MOF-5合成及其性能测试实验。
实验采用化学合成法,以二水醋酸锌为原料,在有机胺去质子化作用下与对苯二甲酸自组装得到产物。
利用红外光谱分析、热重分析(TGA)、粉末X 射线衍射(PXRD)表征了产物纯度、结构与稳定性,分光光度计测定了产物对常见染料的吸附性能。
通过该实验的学习,学生能强化配位化学理论知识的理解,掌握大型仪器设备的使用,理解吸附原理,树立爱护环境、关爱地球的绿色发展理念。
本实验反应条件温和,产率、原子利用率高,绿色无污染,教学安排节奏紧凑,非常适合作为结构化学、物理化学等课程的实验项目。
关键词:金属有机框架材料;配位化学;染料吸附中图分类号:G64;O6Synthesis of Metal-Organic Frame Material MOF-5 and Testing of Its Dye Adsorption PropertiesXueping Yang *, Sixian Zhang, Xupeng Zhao, Bei ShaExperiment and Innovation Education Center, Harbin Institute of Technology, Shenzhen, Shenzhen 518055,Guangdong Province, China.Abstract: This paper describes an experiment for synthesizing MOF-5 using the principles of coordination chemistry and green chemistry. Zinc acetate dihydrate was used as the starting material, and the product was self-assembled with terephthalic acid by deprotonation of the organic amine. The purity, structure, and stability of the product were characterized by infrared spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The adsorption properties of the product with common dyes were studied by UV-Vis spectrometry. By studying and conducting this experiment, students can strengthen their understanding of coordination chemistry theory, master the use of large-scale instruments and equipment, master the adsorption principle, and gain an understanding of green chemistry regarding caring for the environment. This experiment has mild reaction conditions, high yield, stoichiometric chemistry, and green chemistry and is pollution-free. It allows for a compact teaching schedule, which is very suitable for teaching experiments in structural chemistry, physical chemistry, and other courses.Key Words: Metal-organic frameworks; Coordination chemistry; Dye adsorption1 引言金属有机框架材料(Metal organic frameworks ,MOFs),是指一类由含氮、氧、硫等原子的有机多齿配体与过渡金属离子自组装形成的配位聚合物,具有三维孔道结构,其微观结构主要包括结点和联接桥两部分,一般由金属离子充当结点,有机配体作为连接桥,构成三维空间延伸的网络结No. 8 doi: 10.3866/PKU.DXHX202208016 157 构[1]。
金属-有机骨架材料MOF-5的改进与吸附甲烷的巨正则蒙特卡罗模拟
维普资讯
物理 化学 学报 ( lHux e ub o Wui a u ea ) X
Aug t us
A t h s 一 hm. i. 0 8 2 ()1 9 — 4 7 caP y.C i Sn, 0 , 48 :4 3 1 9 2
柱前衍生化一高效液相色谱法分析木糖结晶母液的单糖组成
可 以看 出, 8个 组 分 的 平 均 回 收 率 为 9 . % ~ 84
50 . l 0 0
.
1 . 50
2 . 00
2 50
1 . 01 0%
表 3 8种 单 糖 组 分 的 回 收 率 ( 5 n= )
t a i /r n
孟海波 , : 等 柱前衍生化 一高效液相 色谱法分 析木糖结 晶母液 的单糖组成
4 7
柱前衍生化 一 高效液相色谱法分析木糖结晶母液的单糖组成
孟 海 波 高绍 丰 张 海 燕 孟 汉 卿
( 济南圣泉唐和唐生物科技有限公 司 , 济南 200 5 24)
摘要
采 用 1苯基.. 一 3 甲基 -一 5吡唑啉 酮( MP 柱前衍 生化 一反相 高效 液相 色谱 ( L 法建立 了 8种 常见单 糖 P ) HP C)
稀释 , 匀 , 混 然后 用 0 4 m 水 性 滤 膜 过 滤 ,0 L .5 1
进样 。
14 色谱 条件 .
色 谱 柱 :y meyC8 ( . m ×10m 5 Sm t 1柱 4 6m r 5 m,
m) 美 国 Wa r 公 司 ; inxU t Ma 0 0色谱 , ts e Do e l t 3 0 i e
量 , 单糖 的 浓度 与 相 应 的峰 高呈 良好 的 线 性 关 系 , 关 系数 r在 0 9 9 0 9 9 范 围 内 , 法检 出限 为 0 0 2l 8种 相 . 8 7~ .9 4 方 .0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cite this:mun .,2011,47,5244–5246Methyl modified MOF-5:a water stable hydrogen storage material wJie Yang,a Anna Grzech,b Fokko M.Mulder b and Theo J.Dingemans*aReceived 22nd February 2011,Accepted 18th March 2011DOI:10.1039/c1cc11054cWater stable methyl modified MOF-5s have been synthesized via a solvothermal route.Methyl-and 2,5-dimethyl-modified MOF-5s show the same topology and hydrogen uptake capability as that of MOF-5.The H 2uptake capacity of MOF-5,however,drops rapidly when exposed to the ambient air,whereas the H 2uptake capacities of the methyl modified MOF-5s remain stable for 4days.Hydrogen,which has an exceptional energy density and little or no harmful emissions,is currently under consideration as a future energy carrier.1However,the emergence of a hydrogen economy requires the development of new materials capable of safely storing hydrogen in a compact and light weight fashion.2Metal–organic frameworks (MOFs)are crystalline materials consisting of metal ions,or metal ion clusters and organic ligands,which are linked together to form extended porous frameworks.Over the last decade,MOFs have attracted considerable interest because of their large surface area,adjustable pore size and controllable properties,as well as their unusual thermal stability.These properties make them interesting candidates for a wide range of applications,including gas sorption,catalysis,drug delivery and sensing.3–6MOFs con-taining Zn,Mn,Cr,and Cu show outstanding hydrogen adsorp-tion behavior at 77K and are among the most promising hydrogen storage materials.7Maybe the best known MOF to date is MOF-5.This three-dimensional network has a crystal structure where metal clusters [Zn 4O]6+are joined to an octa-hedral array of benzene-1,4-dicarboxylate (BDC)groups to form a porous cubic Zn 4O(BDC)3framework.8MOF-5displays an excess H 2uptake capacity of 7.1wt%at 77K and 40bar.At 100bar,the total hydrogen uptake of MOF-5can reach up to 10wt%,corresponding to a record volumetric storage density of 66g L À1.9However,most MOFs,in particular zinc-based MOFs,are moisture-sensitive because the relative weak metal–oxygen coordination allows for attack by water molecules,resulting in the phase transformation and decomposition of the framework.10Structural decomposition,caused by the presence of water,always leads to poor reproducibility and a decrease in gas sorption capacities in MOFs.Discrepancies in hydrogen uptake capacities have been found for MOF-5and are thought to be due to the presence of water.9High quality MOF-5can only be obtained when the exposure to water and ambient air was minimized.9Much care must be taken to avoid the structural collapse of MOFs,since it will limit their potential commercial application.Therefore it is desirable to enhance the structural stability of MOFs towards moisture,but at the same time,the excellent H 2uptake capability of MOFs should remain unaffected.Very recently,researchers have demonstrated that it is possible to build water-stable MOF structures by introducing hydrophobic functional groups into the frame-work structures.11,12Yet,no results have been published on the hydrogen storage capability of such functionalized MOFs.In this communication,the effect of moisture on the hydrogen storage capability of methyl (CH 3)and dimethyl (DiCH 3)modified MOF-5has been investigated.The obtained results suggest that by simply introducing methyl groups the hydrogen uptake capacity of MOF-5remains uncompromised and less sensitive to the presence of moisture,even after 4days exposure to air with a relative humidity of 32–37%.The methyl and 2,5-dimethyl MOF-5analogs were synthesized using a well-known solvothermal route.The samples were activated by immersing them in dried CHCl 3followed by heating at 1601C in vacuum for 24h.The samples thus obtained were denoted as CH 3MOF-5and DiCH 3MOF-5.MOF-5was synthesized for reference purposes according to a literature procedure.13The samples exposed to ambient air for 4days were labelled CH 3MOF-5-4d and DiCH 3MOF-5-4d.The hydrogen uptake capacities of MOF-5,CH 3MOF-5and DiCH 3MOF-5were measured on a homemade Sieverts setup.The elemental analysis of all samples and their hydrogen uptake capacities are summarized in Table 1.The methyl modified MOF-5s show the same topology as that of MOF-5,which is supported by the high degree of correspondence between the PXRD patterns of methyl modified MOF-5and MOF-5(Fig.S1,ESI w ).MOF-5samples were exposed to ambient air and the structural stability under ambient conditions was examined by PXRD.With respect to MOF-5,our findings are in agreement with results reported in the literature.When exposed to ambient air,with a relative humidity of 32–37%,an extra peak at 2y =8.81appears after only 45min.In addition,the intensity of the original peaks decreases dramatically with exposure time and after 1day,aFaculty of Aerospace Engineering,Delft University of Technology,Kluyverweg 1,Delft,The Netherlands.E-mail:t.j.dingemans@tudelft.nl;Fax:+31(0)152784472;Tel:+31(0)152784520bDepartment of Radiation,Radionuclides and Reactors,Faculty of Applied Sciences,Delft University of Technology,Mekelweg 15,2629JB Delft,The Netherlands.E-mail:f.m.mulder@tudelft.nl;Fax:+31(0)152783803;Tel:+31(0)152784870w Electronic supplementary information (ESI)available:Full synthetic procedure and characterization data including PXRD patterns and hydrogen isotherms.See DOI:10.1039/c1cc11054cChemCommDynamic Article Links/chemcommCOMMUNICATIOND o w n l o a d e d o n 09 J a n u a r y 2012P u b l i s h e d o n 30 M a r c h 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C C 11054CView Online / Journal Homepage / Table of Contents for this issuethe structure of MOF-5completely transformed to ZnBDC ÁX H 2O (Fig.S2,ESI w ).9,14Interestingly,the PXRD pattern of CH 3MOF-5remains unchanged even after 4days exposure to air (CH 3MOF-5-4d).Similar results were obtained for DiCH 3MOF-5,as shown in Fig.1.Clearly,the structures of CH 3MOF-5and DiCH 3MOF-5remain stable up to 4days after exposure to ambient air.11,12These results strongly imply that introducing hydrophobic methyl groups enhances the structural stability of MOF-5type framework.TGA curves of CH 3MOF-5and DiCH 3MOF-5both exhibit weight loss events starting at B 4001C,which is due to the decomposition of the organic linkers (Fig.2).Compared to the decomposition temperature of unsubstituted MOF-5,the decomposition temperatures for CH 3MOF-5and DiCH 3MOF-5are decreased by B 501C,suggesting that the thermal stability of MOF-5is reduced somewhat by introducing methyl (CH 3)groups on the terephthalic acid linker.A marginal difference in decomposition behavior was observed between CH 3MOF-5and DiCH 3MOF-5,implying that the thermal stability of the MOF-5framework is insensitive to doubling the concentration of methyl groups present in the framework.Compared with fresh samples,a weight loss of B 3%was observed for CH 3MOF-5-4d at about 1001C (inset Fig.2),which is due to the removal of water.DiCH 3MOF-5-4d,on the other hand,shows a loss of water of B 0.25%,which is the result of the more hydrophobic character of this MOF.Both MOFs show some outgassing above 1001C,which appears to be diethylformamide (DEF).Both outgassing of water and DEF was confirmed by mass spectroscopy.According to molecular dynamics simulation results on the interaction of water and MOF-5,MOF-5is only stable at a very low water content but unstable when exposed to more than 4wt%water.10e These results are in line with our findings:when the concentration of CH 3functionalities increases (DiCH 3MOF-5-4d vs.CH 3MOF-5-4d)the water uptake decreases and stays well below 4wt%.Therefore,introducing hydrophobic CH 3groups is an effective approach towards the design of water-stable metal–organic frameworks.It was demonstrated by us that methyl modified MOF-5,very much like MOF-5,can load hydrogen within several minutes.CH 3MOF-5shows almost the same hydrogen uptake capacity as that observed for MOF-5in the studied pressure range (Fig.3).The hydrogen uptake capacities of CH 3MOF-5and MOF-5are 1.42wt%and 1.44wt%at 1bar and 77K,respectively.DiCH 3MOF-5demonstrates a lower hydrogen uptake capacity of 1.29wt%at 1bar and 77K.Previous studies have shown that chemical modifications of the organic linker have only little impact on the hydrogen uptake capacity of MOF-5.15The same seems to be true for our CH 3MOF-5compound.The methyl group does not affect the hydrogenTable 1Elemental analysis results (calculated values in parentheses)and hydrogen uptake capacitiesSamplesC (%)H (%)SSA BET /m 2g À1V p total /cm 3g À1H 2uptake a (wt%)MOF-537.6(37.5) 1.65(1.56)2750 1.15 1.44CH 3MOF-540.2(40.0) 2.24(2.22)2537 1.03 1.42CH 3MOF-5-4d 38.0b2.47b——0.97DiCH 3MOF-541.0(42.2) 2.89(2.81)19270.82 1.29DiCH 3MOF-5-4d41.0b2.93b——1.25a77K and 1bar.bValues are for reactivated samples.Fig.1PXRD patterns of (Di)CH 3MOF-5before and after exposure to ambient air.Fig.2TGA curves of (Di)CH 3MOF-5before and after exposure to ambient air.MOF-5is included for reference purposes.Fig.3Hydrogen uptake capacities of (Di)CH 3MOF-5before and after 4days exposure to ambient air.D o w n l o a d e d o n 09 J a n u a r y 2012P u b l i s h e d o n 30 M a r c h 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C C 11054Cuptake capacity of MOF-5,even though it was claimed that the presence of a methyl group could have a positive effect on the hydrogen uptake capability of other MOFs.16It is noteworthy,however,that the decrease in hydrogen uptake of DiCH 3MOF-5compared to MOF-5is relatively less than the lowering of surface area and pore volume.Of significant interest is the hydrogen storage uptake capability of the methyl and dimethyl modified MOF-5after exposure to ambient air.It is well documented that MOF-5completely loses its hydrogen storage capability after exposure to ambient air due to a total collapse of the framework structure within 1day (Fig.3).The hydrogen uptake capacities of the methyl modified MOF-5s,on the other hand,can be recovered after exposure to ambient air with a relative humidity of 32–37%.Before each measurement,CH 3MOF-5-4d and DiCH 3MOF-5-4d were reactivated by heating the samples at 1601C in vacuum for 24h.The hydrogen uptake capacity of CH 3MOF-5is reduced to 70%after 4days exposure to ambient air,whereas the hydrogen uptake capacity of DiCH 3MOF-5-4d remains virtually the same.These results,again,imply that methyl substituents can play an important role in designing water-stable MOFs without compromising the hydrogen uptake capacity.According to the C and H elemental analysis results in Table 1,the H content in reactivated CH 3MOF-5-4d is higher than that of a fresh sample,which is due to the absorbed water and corresponds to a water content of about 3.2wt%.This CH 3MOF-5,with strongly adsorbed water,shows a lower H 2uptake capacity as compared to a fresh sample.Although the structure of CH 3MOF-5remains stable at low water concen-trations,distortions in the framework structure might occur as reported in a simulated study for MOF-5.10e Even 0.6wt%of water in the structure may lead to the distortion of the ZnO 4tetrahedron and this will result in a reduced hydrogen uptake capability.Introducing a second methyl group,as is the case for DiCH 3MOF-5,the water uptake is reduced even further,which can be concluded from the constant C/H ratio found for DiCH 3MOF-5and DiCH 3MOF-5-4d.This result confirms that incorporating hydrophobic methyl groups can indeed improve the water stability of MOF-5without seriously compromising the hydrogen uptake capability.Even after a total of 8days exposure to ambient air,the original structures of CH 3MOF-5and DiCH 3MOF-5are still maintained according to the PXRD patterns (see Fig.S3,ESI w ).About 65%of the hydrogen uptake capacities of CH 3MOF-5and DiCH 3MOF-5could be retained (Fig.S4,ESI w ).This exciting result further demonstrates the potential application of methyl modified MOF-5as a hydrogen storage material.In summary,the crystal structure of MOF-5is very sensitive to the presence of (ambient)water and the hydrogen uptake capability becomes compromised.Herein we have demonstrated that by simply introducing one or two hydrophobic methyl (CH 3)functionalities on the BDC moiety,the structure becomes significantly less sensitive to water without impairing the hydrogen uptake capacity.We have shown that the H 2uptake capacities of methyl modified MOF-5s can recover after 4days exposure to ambient air and even after 8days exposure the hydrogen uptake capacity was only reduced by 35%.Since 2-methylterephthalic acid and 2,5-dimethylterephthalic acidare readily available,this opens a route towards commercially available moisture-stable MOFs.We gratefully acknowledge financial support from the NWO ACTS Sustainable Hydrogen Programme.Notes and references1A.W.C.van den Berg and C.Otero Arean,mun.,2008,668.2(a )L.Schlapbach and A.Zuttel,Nature ,2001,414,353;(b )J.L.C.Rowsell and O.M.Yaghi,Angew.Chem.,Int.Ed.,2005,44,4670.3(a )J.R.Li,R.J.Kuppler and H.C.Zhou,Chem.Soc.Rev.,2009,38,1477;(b )L.J.Murray,M.Dinca and J.R.Long,Chem.Soc.Rev.,2009,38,1294;(c )K.Sumida,S.Horike,S.S.Kaye,Z.R.Herm,W.L.Queen, C.M.Brown, F.Grandjean,G.J.Long,A.Dailly and J.R.Long,Chem.Sci.,2010,1,184;(d )S.M.Cohen,Chem.Sci.,2010,1,32.4(a )J.Y.Lee,O.K.Farha,J.Roberts,K.A.Scheidt,S.T.Nguyen and J.T.Hupp,Chem.Soc.Rev.,2009,38,1450;(b )L.Ma,C.Abney and W.Lin,Chem.Soc.Rev.,2009,38,1248.5(a )P.Horcajada,C.Serre,M.Vallet-Reg,M.Sebban,F.Taulelleand G.Ferey,Angew.Chem.,Int.Ed.,2006,45,5974;(b )P.Horcajada, C.Serre,G.Maurin,N. A.Ramsahye,F.Balas,M.Vallet-Regı,M.Sebban,F.Taulelle andG.Ferey,J.Am.Chem.Soc.,2008,130,6774.6(a ) B.L.Chen,L. B.Wang, F.Zapata,G. D.Qian and E. B.Lobkovsky,J.Am.Chem.Soc.,2008,130,6718;(b )B.V.Harbuzaru,A.Corma,F.Rey,P.Atienzar,J.L.Jorda,H.Garcı´a,D.Ananias,L.D.Carlos and J.Rocha,Angew.Chem.,Int.Ed.,2008,47,1080;(c )W.J.Rieter,K.M.L.Taylor and W.Lin,J.Am.Chem.Soc.,2007,129,9852;(d )Z.Xie,L.Ma,K.E.deKrafft,A.Jin and W.Lin,J.Am.Chem.Soc.,2010,132,922.7(a )M.Dinca,A.Dailly,Y.Liu,C.M.Brown,D.A.Neumann and J.R.Long,J.Am.Chem.Soc.,2006,128,16876;(b )A.G.Wong-Foy,A.J.Matzger and O.M.Yaghi,J.Am.Chem.Soc.,2006,128,3494;(c )troche,S.Surble, C.Serre, C.Mellot-Draznieks,P.L.Llewellyn,J.-H.Lee,J.-S.Chang,S.H.Jhung and G.Ferey,Angew.Chem.,Int.Ed.,2006,45,8227;(d )X.S.Wang,S.Ma,P.M.Forster,D.Yuan,J.Eckert,J.J.Lopez,B.J.Murphy,J.B.Parise and H.C.Zhou,Angew.Chem.,Int.Ed.,2008,47,7263.8N.L.Rosi,J.Eckert,M.Eddaoudi, D.T.Vodak,J.Kim,M.O’Keeffe and O.M.Yaghi,Science ,2003,300,1127.9S.S.Kaye,A.Dailly,O.M.Yaghi and J.R.Long,J.Am.Chem.Soc.,2007,129,14176.10(a )M.Dinca,W.S.Han,Y.Liu,A.Dailly,C.M.Brown and J.R.Long,Angew.Chem.,Int.Ed.,2007,46,1419;(b )M.Dinca and J.R.Long,J.Am.Chem.Soc.,2007,129,11172;(c )P.Ku sgens,M.Rose,I.Senkovska,H.Fro de, A.Henschel,S.Siegle and S.Kaskel,Microporous Mesoporous Mater.,2009,120,325;(d )Z.Liang,M.Marshall and A.L.Chaffee,Energy Fuels ,2009,23,2785;(e )J.A.Greathouse and M.D.Allendorf,J.Am.Chem.Soc.,2006,128,10678;(f )K.Schrock,F.Schroder,M.Heyden,R.A.Fischer and M.Havenith,Phys.Chem.Chem.Phys.,2008,10,4732;(g )K.S.Park,Z.Ni,A.P.Cote,J.Y.Choi,R.Huang,F.J.Uribe-Romo,H.K.Chae,M.O’Keeffe and O.M.Yaghi,Proc.Natl.Acad.Sci.U.S.A.,2006,103,10186;(h )L.M.Huang,H.T.Wang,J.X.Chen,Z.B.Wang,J.Y.Sun,D.Y.Zhao and Y.S.Yan,Microporous Mesoporous Mater.,2003,58,105.11T.J.Wu,L.J.Shen,M.Luebbers,C.Hu,Q.M.Chen,Z.Ni and R.I.Masel,mun.,2010,46,6120.12J.G.Nguyen and S.M.Cohen,J.Am.Chem.Soc.,2010,132,4560.13B.Panella,M.Hirscher,H.Puetter and U.Mueller,Adv.Funct.Mater.,2006,16,520.14(a )S.Hausdorf,J.Wagler,R.Mossig and F.O.R.L.Mertens,J.Phys.Chem.A ,2008,112,7567;(b ) B.Chen,X.Wang,Q.Zhang,X.Xi,J.Cai,H.Qi,S.Shi,J.Wang,D.Yuan and M.Fang,J.Mater.Chem.,2010,20,3758.15J.L.C.Rowsell and O.M.Yaghi,J.Am.Chem.Soc.,2006,128,1304.16(a )T.Gadzikwa,B.S.Zhang and J.T.Hupp,mun.,2008,3672;(b )X.Lin,I.Telepeni, A.J.Blake, A.Dailly,C.M.Brown,J.M.Mays,P.Hubberstey,N.R.Champness and M.Schroder,J.Am.Chem.Soc.,2009,131,2159;(c )O.Hubner,A.Gloss,M.Fichtner and W.Klopper,J.Phys.Chem.A ,2004,108,3019.D o w n l o a d e d o n 09 J a n u a r y 2012P u b l i s h e d o n 30 M a r c h 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C C 11054C。