人教版八年级上册数学 12.2 第2课时 “边角边” 优秀试题
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
人教版八年级数学上册第12章 全等三角形2 第2课时 “边角边”

方法总结:判断三角形全等的条件时,注意两边与 其中一边的对角分别相等的两个三角形不一定全等. 解题时要根据已知条件的情况来考虑,对于非特殊的 三角形,只具备 SSA 时一般是不能判定三角形全等 的.
D
C
∴∠BAD =∠CAD.
变式2 已知:如图,AB = AC,BD = CD,E 为 AD 上
一点,求证:BE = CE.
证明:在△ABD 和△ACD 中,
A
AB = AC,
BD = CD,∴△ABD≌△ACD(SSS).
AD = AD, ∴∠BAD =∠CAD.
E
在△ABE 和△ACE 中, AB = AC (已知),
探究活动1:SAS 能否判定两个三角形全等?
如图,已知△ABC,用尺规作图画出一个
△A′B′C′,使 A′B′=AB,A′C′=AC,∠A′=∠A (即
两边和它们的夹角分别相等). 把画好的△A′B′C′ 剪下,
放到△ABC 上,它们能重合吗?
C
A
B
C
E
A
B
作法:(1) 画∠DA'E =∠A;
(2) 在射线 A'D 上截取
A
在△ABD 与△CBD 中,
AD = CD (已知),
∠1 = ∠2 (已证),
B
BD = BD (公共边),
1 D
2
∴△ABD≌△CBD (SAS). ∴∠A =∠C.
C
例2 如图,有一池塘,要测池塘两端 A、B 的距离,可
先在平地上取一个可以直接到达 A 和 B 的点C,连接
人教版八年级数学上册《12-2 第2课时 利用“边角边”判定三角形全等》作业同步练习题及参考答案

第 2 课时利用“边角边”判定三角形全等1.如图,使△ABC≌△ADC 成立的条件是( ).A.AB=AD,∠B=∠DB.AB=AD,∠ACB=∠ACDC.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC2.如图,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,则∠CAE 等于( ).A.20°B.30°C.40°D.50°3.如图,点A 在BE 上,AD=AE,AB=AC,∠1=∠2=30°,则∠3 的度数为.4.如图,在△ABC 中,AB=AC,D,E 分别是AC,AB 的中点,且BD=CE,△ACE 与△ABD 全等吗?说明理由.5.如图,点E,F 在BC 上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.6.如图,已知∠BAC=∠DAM,AB=AN,AD=AM.求证:∠B=∠ANM.7.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.★8.在图中,延长△ABC 中AC 边上的中线BE 到点G,使EG=BE,延长AB 边上的中线CD 到点F,使DF=CD,连接AF,AG.(1)按要求补全图形,并标出字母;(2)AF 与AG 的大小关系如何?证明你的结论;(3)F,A,G 三点的位置如何?证明你的结论.答案与解析夯基达标1.D2.C △ABC≌△ABD,△AOC≌△AOD,△BOC≌△BOD.3.30°4.解△ACE 与△ABD 全等.理由如下:因为AB=AC,D,E 分别是AC,AB 的中点,所以AE=AD.A = A,在△ACE 与△ABD 中, ∠�= ∠�,A = A,所以△ACE≌△ABD(SAS).5.证明∵BE=CF,∴BE+EF=CF+EF.∴BF=CE.又AB=DC,∠B=∠C,∴△ABF≌△DCE.∴∠A=∠D.培优促能6.证明∵∠BAC=∠DAM,∴∠BAC-∠DAC=∠DAM-∠DAC,即∠BAD=∠NAM.A = A,在△ABD 和△ANM 中, ∠�A = ∠���,A = ��,∴△ABD≌△ANM(SAS).∴∠B=∠ANM.7.证明∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF.A = ��,在△ABC 和△DEF 中, ∠A�= ∠���,�� = ��,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.创新应用8.解(1)补全的图形如下:(2)AF 与AG 的大小关系是AF=AG.A = ��,证明:在△ADF 与△BDC 中, ∠1 = ∠2,A = ��(已知), ∴△ADF≌△BDC(SAS).∴AF=BC.同理,AG=BC.∴AF=AG.(3)F,A,G 三点共线.证明过程如下:由(2)知△ADF≌△BDC,△AEG≌△CEB, ∴∠FAB=∠ABC,∠GAC=∠ACB.∵∠BAC+∠ABC+∠ACB=180°,∴∠BAC+∠FAB+∠GAC=180°. ∴F,A,G 三点共线.。
三角形全等的判定 试卷(含答案)

拓展训练2020年人教版数学八年级上册12.2 三角形全等的判定基础闯关全练知识点一用“边边边( SSS)”判定两个三角形全等1.如图12-2-1,线段AD与BC相交于点O,连接AB、AC、BD,若AC =BD,AD =BC,则下列结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D2.如图12 -2-2,在△ABC和△FED中,AC= FD,BC =ED,要利用“SSS”来判定△ABC和△FED 全等,下面的4个条件中:①AE= FB;②AB= FE;③AE =BE;④BF= BE,可利用的是( )A.①或②B.②或③C.①或③D.①或④3.如图12-2-3所示,AB =AC,BD= CE,AD =AE,求证:∠AEB= ∠ADC.知识点二用“边角边( SAS)”判定两个三角形全等4.如图12-2-4.OA= OB,OC=OD,若∠O=45°,∠C= 30°,则∠OBD等于( )A.75°B.105°C.90°D.120°5.如图12-2-5.AB =AD,AC=AE.∠BAD=∠CAE.求证:△ABC≌△ADE.知识点三用“角边角( ASA)”判定两个三角形全等6.如图12 - 2-6,点B在AE上,∠CAB=∠DAB,要通过“ASA”判定△ABC≌△ABD,可补充的一个条件是( )A.∠CBA =∠DBAB.∠ACB= ∠ADBC.AC =ADD.BC =BD7.已知:如图12 -2-7,E、F在AC上,AD∥CB且AD= CB,∠D= ∠B.求证:AE= CF.8.如图12 -2-8,AD,BC分别平分∠CAB.∠DBA,且∠1=∠2,试探究AC与BD的数量关系,并说明理由.知识点四用“角角边( AAS)”判定两个三角形全等9.如图12-2-9,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件,则有△AOC ≌△BOD( AAS).10.如图12 -2 - 10,点C是线段BD的中点,∠B= ∠D.∠A= ∠E,求证:AC =EC.11.如图12 -2 -11.AB=AC,AB⊥AC,点D、A、E在同一条直线上,BD⊥DE于点D,CE⊥DE于点E,且BD= 4 cm.CE =2 cm,求△ABD的面积.知识点五用“斜边、直角边( HL)”判定两个三角形全等12.如图12 -2 -12,BE=CF,AE⊥BC,DF⊥BC.要根据“HL”证明Rt△ABE≌Rt△DCF.则还需要添加一个条件是( )A.AE=DFB.∠A = ∠DC.∠B= ∠CD.AB=DC13.如图12-2-13,△ABC中,AB=BC,∠ABC= 90°,F为AB延长线上一点,点E在BC上.且AE= CF.(1)求证:△ABE≌△CBF;(2)若∠BAE= 25°,求∠ACF的度数.14.如图12-2-14,已知AD,AF分别是钝角△ABC和钝角△ABE的高,如果AD=AF,AC =AE.求证:BC=BE.知识点六全等三角形判定方法的灵活应用15.如图12 -2 -15所示.AB=AC,要说明△ADC≌△AEB,需添加的条件不能是( )A.∠B= ∠CB.AD=AEC.∠ADC = ∠AEBD.DC = BE16.如图12 -2 -16,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE= CD.能力提升全练1.如图12 -2 - 17.△ABC中,点A的坐标为(0,1),点C的坐标为(4,3).如果要使以点A、B、D为顶点的三角形与△ABC全等,那么点D的坐标是.2.如图12 -2 -18,过点A的射线上AB,在射线上截取线段AC=AB,过点A的直线m不与射线及直线AB重合,过点B作BD⊥m于点D.过点C作CE⊥m于点E.(1)依题意补全图形;(2)求证:△AEC≌△BDA.3.如图12 -2 -19,在△ACB中,∠ACB= 90°,AC=BC.点C的坐标为(-2,0),点A的坐标为(-6,3),求B点的坐标.三年模拟全练一、选择题1.在△ABC和△DEF中,己知AB =DE,∠B= ∠E,增加下列条件后,不能判定△ABC≌△DEF 的是( )A.BC=EF B.AC= DFC.∠A= ∠DD.∠C= ∠F2.如图12 -2 - 20,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F若AC=BD,AB=ED,BC=BE,则∠ACB等于( )A ,∠EDB B .∠BEDC .21∠AFB D.2∠ABF 3.如图12 -2 - 21,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE= DF ,连接BF ,CE.下列说法:①CE= BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE.其中正确的有 ( )A.1个B.2个C.3个D.4个二、填空题4.如图12-2-22,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,D ,BD=CF ,BE= CD.若∠AFD= 155°,则∠EDF= .三、解答题5.如图12 -2 - 23,点C 在线段AE 上,BC ∥DE ,AC =DE ,BC= CE.求证:AB= CD.6.如图12-2-24,点B 、C 、D 在同一条直线上,且AB=CD ,点A 和点E 在BD 的同侧,且∠ACE= ∠B= ∠D.(1)求证:△ABC ≌△CDE;(2)若BC=2,AB=3,求BD 的长度.7.长方形具有四个内角均为直角,并且两组对边分别平行且相等的特往,如图12-2-25.把一张长方形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF.(1)如果∠DEF= 110°,求∠BAF 的度数;(2)判断△ABF 和△AGE 是否全等,请说明理由.五年中考全练一、选择题1.如图12-2-26,a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是 ( )A .甲和乙B .乙和丙C .甲和丙D .只有丙2.如图12-2- 27,∠ACB=90°,AC=BC.AD ⊥CE .BE ⊥CE ,垂足分别是点D 、E ,AD=3.BE=1,则DE 的长是 ( )A .23 B .2 c .22 D .10 3.如图12 -2 - 28,四边形ABCD 中,AB=AD .AC=5.∠DAB= ∠DCB= 90°,则四边形ABCD 的面积为 ( )A.15B.12.5C.14.5D.17三、填空题4.如图12-2-29,已知AB=BC ,要使△ABD ≌△CBD ,还需添加一个条件,你添加的条件是 .(只需写一个,不添加辅助线)三、解答题5.如图12-2-30,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC =EF.(1)求证:△ABC≌△DEF;(2)若∠A= 55°,∠B= 88°,求∠F的度数.6.如图12 -2 - 31,AB∥CD,AB=CD,CE= BF.请写出DF与AE的数量关系,并证明你的结论.7.如图12 -2 - 32,∠A=∠D= 90°,AC=DB,AC、DB相交于点O.求证:OB= OC.核心素养全练1.如图12-2-33,已知△ABC中.AB=AC= 16 cm,∠B= ∠C,BC= 10 cm,点D为AB的中点,如果点P在线段BC上以2 cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动,当△BPD与△CQP全等时,点Q的运动速度为___cm/s.2.阅读下面材料:学习了三角形全等的判定方法后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究,小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF.∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究,将∠B分为“直角、钝角、锐角”三种情况进行探究.(1)当∠B是直角时,如图12 -2 - 34,在△ABC和△DEF中,AC= DF,BC =EF,∠B= ∠E= 90°,则Rt△ABC≌Rt△DEF(依据:);(2)当∠B是锐角时,如图12 -2 - 35,BC =EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等B.不全等C.不一定全等(3)当∠B是钝角时,如图12 -2 - 36,在△ABC和△DEF中.AC=DF,BC =EF,∠B=∠E>90°,求证:△ABC≌△DEF.12.2 三角形全等的判定基础闯关全练1.C A.根据“SSS”可以证明△ABC≌△BAD,故本选项中结论正确;B.根据全等三角形的对应角相等,得∠CAB= ∠DBA.故本选项中结论正确;C.OB和OC显然不是对应边,故本选项中结论错误;D.根据全等三角形的对应角相等,得∠C= ∠D,故本选项中结论正确.故选C.2.A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定,还需AB= FE,若添加①AE= FB,则可得AE+BE= FB+BE,即AB= FE,故①可以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB= FE,则③④不可以,故选A.3.证明∵BD= CE,∴BD+DE= CE+DE,∴BE= CD,在△ABE和△ACD中,.∴△ABE≌△ACD( SSS),∴∠AEB= ∠ADC.4.B 在△AOC与△BOD中,,∴△AOC≌△BOD( SAS),∴∠D= ∠C= 30°,∴∠OBD =180°-45°-30°=105°,故选B.5.证明∵∠BAD= ∠CAE,∴∠BAC= ∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE( SAS).6.A在△ABC与△ABD中,,∴△ARC≌△ABD( ASA),故选A.7.证明∵AD∥CB,∴∠A= ∠C,在△ADF和△CBE中,,∴△ADF≌△CBE( ASA),∴AF= CE,∴AF+EF= CE+EF.即AE= CF.8.解析AC=BD.理由:∵AD,BC分别平分∠CAB,∠DBA,∴∠CAB=2∠1.∠DBA= 2∠2.又∵∠1= ∠2,∴∠CAB= ∠DBA.在△ABC与△BAD中,,∴AABC≌△BAD( ASA),∴AC=BD.9.答案AC=BD(或CO=BO)解析补充条件:AC=BD(或CO=BO),∵在△AOC和△DOB中,,∴△AOC≌△BOD( AAS).10.证明∵点C是线段B的中点,∴BC= CD,在△ABC和△EDC中,,∴△ABC≌△EDC( AAS),∴AC=EC.11.解析∵AB⊥AC,∴∠BAC= 90°,∴∠BAD+∠CAE= 90°.∵BD⊥DE.CE⊥DE,∴∠D=∠E= 90°,∴∠BAD+∠DBA=90°,∴∠DBA=∠CAE.在△ADB和△CEA中,,∴△ADB≌△CEA(AAS) ,∴AD=CE=2 cm,∴S ABD△=21·BD·AD=21×4×2=4 cm2.12.D 添加条件AB=DC.理由:∵AE⊥BC,DF⊥BC,∴∠CFD= ∠AEB=90°.在Rt△ABE和Rt△DCF中,∵,∴Rt△ARE≌Rt△DCF( HL),故选D.13.解析(1)证明:在Rt△ABE与Rt△CBF中,,∴Rt△ABE≌Rt△CBF( HL).(2)∵△ABE≌△CBF,∴∠BCF= ∠BAE=25°.∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=25°+45°=70°.14.证明∵AD,AF分别是钝角△ABC和钝角△ABE的高,且AC=AE,AD=AF,∵Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AB=AB,AD=AF,∴Rt△ABD≌Rt△ABF( HL).∴BD=BF.∴BD-CD=BF-EF,即BC=BE.15.D A.当∠B= ∠C时,符合ASA的判定条件,故A正确;B.当AD =AE时,符合SAS的判定条件,故B正确;C.当∠ADC= ∠AEB时,符合AAS的判定条件,故C正确;D.当DC= BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误.故选D.16.证明∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB= ∠AEC=90°,在△ADB和△AEC中,,∴△ADB≌△AEC( ASA),∴AB=AC,又∵AD=AE.∴BE=CD.能力提升全练1.答案(4,-1)或(-1,3)或(-1,-1)解析符合题意的点D有3个,如图,∵点A、C的坐标分别为(0,1),(4,3),∴D1的坐标是(4,-1),D2的坐标是(-1,3),D3的坐标是(-1,-1),故答案为(4,-1)或(-1,3)或(-1,-1).2.解析(1)画法不唯一,如图所示.(2)证明:∵⊥AB,∴∠CAB=90°.∴∠CAE+∠DAB=90°,∵BD ⊥m .∴∠ADB= 90°.∴∠DAB+∠B=90°,∴∠CAE= ∠B,∵BD ⊥m 于点D,CE ⊥m 于点E,∴∠CEA= ∠ADB= 90°,在△AEC 和△BDA 中,,∴△AEC ≌△BDA(AAS). 3.解析如图,过A 和B 分别作AD ⊥直线OC 于D,BE ⊥直线OC 于E,∵∠ACB= 90°,AD ⊥OC,∴∠ACD+∠CAD= 90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ADC 和△CEB 中,,∴△ADC ≌△CEB( AAS),∴DC=BE,AD=CE,∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴ OC=2,AD=CE=3,OD=6,∴CD= OD -OC=4,OE= CE -OC=3-2=1,∴BE=4,∴B 点的坐标是(1,4).三年模拟全练一、选择题1. B 如图,A .根据SAS 能推出△ABC ≌△DEF ,故本选项不符合题意;B .根据AB= DE ,∠B= ∠E .AC =DF ,不能推出△ABC ≌△DEF ,放本选项符合题意;C .根据ASA 能推出△ARC ≌△DEF ,故本选项不符合题意;D .根据AAS 能推出△ABC ≌△DEF ,故本选项不符合题意.故选B .2.C 在△ABC 和△DEB 中,∴AABC ≌△DEB( SSS), ∴∠ACB=∠DBE.∵∠AFB 是△BFC 的外角.∴∠ACB+∠DBE= ∠AFB,∴∠ACB= 21∠AFB ,故选c . 3. D ∵AD 是△ABC 的中线,∴BD= CD ,又∠BDF=∠CDE ,DF=DE ,∴△BDF 些△CDE ,故④中的说法正确;由△RDF ≌△CDE ,可知BF= CE ,故①中的说法正确;∵AD 是△ABC 的中线,∴△ABD和△ACD等底同高,∴△ABD和△ACD面积相等,故②中的说法正确;由△BDF≌△CDE,可知∠FBD=∠ECD,∴BF∥CE,故③中的说法正确.故选D.二、填空题4.答案65°解析∵∠AFD= 155°,∴∠CFD= 25°,∵DE⊥AB,DFIBC,∴∠BED= ∠FDC=90°,在Rt△DEB和Rt△FDC中,∴Rt△DEB≌Rt△FDC( HL),∴∠BDE= ∠CFD=25°,∴∠EDF=180°-90°-25°=65°,故答案为65°.三、解答题5.证明∵BC∥DE,∴∠ACB= ∠E,在△ABC和△DCE中,∵,∴△ABC≌△DCE( SAS),∴AB=CD.6.解析(1)证明:∵∠ACE=∠B= ∠D,且∠ACB+ ∠ACE+ ∠ECD= 180°, ∠B+ ∠A+∠ACB= 180°,∴∠A= ∠ECD,在△ABC与△CDE中,,∴△ABC≌△CDE( ASA).(2)∵△ABC≌△CDE,∴CD=AB=3,又BC=2,∴BD=5.7.解析(1)∵四边形ABCD是长方形,∴AD∥BC,AB=CD,∴∠CFE=180°-∠DEF=70°,由折叠知∠AFE=∠CFE= 70°,∴∠AFB=180°-∠AFE-∠CFE=40°,∵∠B= 90°,∴∠BAF=90°-∠AFB=50°.(2)△ABF≌△AGE.理由如下:由折叠知AG=CD,∠G= ∠D=90°,∠DEF=∠GEF,∴∠B=∠G.∵AB=CD.∴AB=AG.∵∠AEF=180°-∠DEF,∴∠AEG= ∠GEF-∠AEF=2∠DEF-180°,又∠AFB=180°-2 ∠CFE=180°-2(180°-∠DEF)=2∠DEF-180°.∴∠AFB= ∠AEG.在△ABF和△AGE中,,∴△ABF≌△AGE( AAS).五年中考全练一、选择题1. B在△ABC和乙三角形中,满足三角形全等的判定方法SAS,所以乙和△ABC全等;在△ABC 和丙三角形中,满足三角形全等的判定方法AAS,所以丙和△ABC全等;不能判定甲与△ABC全等.故选B.2.B ∵BE⊥CE.AD⊥CE,∴∠E= ∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+ ∠ACD-90°.∴∠EBC= ∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC( AAS),∴DC=BE=1,CE=AD=3.∴DE=EC-CD=3-1=2,故选B.3.B如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB= ∠DCB=90°,∴∠D+∠ABC=180°= ∠ABE+∠ABC,∴∠D= ∠ABE,又∵∠DAB= ∠CAE=90°.∴∠CAD= ∠EAB,又∵AD=AB.∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,且四边形ABCD的面积与△ACE的面积相等,∵S ACE△=21×5×5 =12.5,∴四边形ABCD的面积为12.5.故选B.二、填空题4.答案∠ABD= ∠CBD(或AD=CD)解析答案不唯一.①添加∠ABD=∠CBD.在△ABD和△CBD中.∵,∴△ABD≌△CBD( SAS);②添加AD= CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD( SSS).三、解答题5.解析(1)证明.:∵AC=AD+DC,DF=DC+CF,且AD=CF,∴ AC=DF,在△ABC 和△DEF 中,,∴△ABC ≌△DEF( SSS).(2)由(1)可知,∠F= ∠ACB,∵∠A=55°,∠B=88°, ∴∠ACB= 180°-(∠A+∠B)=180°-( 55°+88°)= 37°,∴∠F=∠ACB=37°.6.解析 DF =AE.证明:∵AB ∥CD,∴∠C= ∠B,∵CE=BF,∴CF=BE,∵CD=AB,∴△CDF ≌△BAE,∴DF=AE.7.证明在Rt △ABC 和Rt △DCB 中,∴Rt △ABC ≌Rt △DCB( HL),∴∠OBC= ∠OCB .∴OB= OC.核心素养全练1.答案2或3.2解析∵ AB= 16 cm,点D 为AB 的中点,∴BD=21×16=8 cm ,设点P 、Q 的运动时间为t s , 则BP=2t cm,PC=(10-2t)cm.要使△BPD 与△CQP 全等,由于∠B= ∠C,则需BD =PC,BP= CQ ,或BP= PC,BD= CQ.①当BD=PC,BP=CQ 时,10- 2t=8,∴t=1,∴CQ=2 cm ,∴点Q 的运动速度为2÷1=2( cm/s);②当BP=PC,BD=CQ 时,CQ=8 cm,∵BC= 10cm,∴BP= PC=5 cm.∴t=5÷2= 2.5.故点Q 的运动速度为8÷2.5= 3.2( cm/s).2.解析(1) HL(2)如图,△ABC 与△DEF 不一定全等,应该选择C .(3)如图,过点C 作CM ⊥AB 交AB 的延长线于点M ,过点F 作FN ⊥DE 交DE 的延长线于点N.∵∠CBA=∠FED,∴180°-∠CBA= 180°-∠FED,即∠CBM= ∠FEN,在△CBM和△FEN中,,∴△CBM≌△FEN(AAS),∴CM=FN.在Rt△ACM和Rt △DFN中.,∴Rt △ACM≌Rt△DFN( H∠),∴∠A=∠D.在△ABC和△DEF中,,∴△ABC≌△DEF( AAS).。
人教版八年级数学上册《12-2 利用“角边角”“角角边”判定三角形全等》作业同步练习题及参考答案

第 3 课时利用“角边角”“角角边”判定三角形全等1.如图,已知D 是△ABC 的边AB 上一点,DF 交AC 于点E,DE=EF,FC∥AB,若BD=2,CF=5,则AB 的长为( ).A.1B.3C.5D.72.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD 的条件是( ).A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA3.如图,小聪房子上的一块三角形玻璃碎成了三块,他手头没有测量的工具,于是他想带着玻璃去配一块.同学们想一想,小聪需要带着第块玻璃.(填序号)4.如图,在△ABC 中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE 相交于点H.已知EH=EB=3,AE=4,则CH 的长是.5.如图,EC=AC,∠BCE=∠DCA,∠A=∠E,求证:BC=DC.6.如图,点A,F,C,D 在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.求证:AB=DE.7.如图,已知D 是AC 上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.8.如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC 和△A'B'C'的高.求证:AD=A'D',并用一句话说明你的结论.9.小刚同学在一次智能大赛中,分别画了三个三角形,不料都被墨迹污染了(如图),他想分别画三个与原来一样的三角形,你认为是否可以,说明你的理由.10.如图,在△ABC 与△DBC 中,∠ACB=∠DBC=90°,E 为BC 的中点,EF⊥AB 于点F,且AB=DE.(1)求证:△BCD 是等腰直角三角形;(2)若BD=8 cm,求AC 的长.★11.如图,∠BCA=∠α,CA=CB,C,E,F 分别是直线CD 上的三点,且∠BEC=∠CFA=∠α,请提出对EF,BE,AF 三条线段数量关系的合理猜想,并证明.★12.如图,A,B,C,D,E,F,M,N 是某公园里的八个景点,D,E,B 三个景点间的距离相等,A,B,C 三个景点之间的距离相等,∠EBD=∠ABC=60°.其中D,B,C 三个景点在同一条直线上,E,F,N,C 在同一直线上,D,M,F,A 在同一直线上,游客甲从景点E 出发,沿E→F→N→C→A→B→M 游览,游客乙从景点D 出发,沿D→M→F→A→C→B→N 游览.若两人的速度相同,且在各景点游览的时间相同,甲、乙两人谁先游览完?说明理由.答案与解析夯基达标1.D2.B3.③4.15.证明∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE.即∠BCA=∠DCE.∵AC=EC,∠A=∠E,∴△BCA≌△DCE(ASA).∴BC=DC.6.证明∵AF=DC,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,∠�= ∠�,∴在△ABC 和△DEF 中, A = D,∠A�= ∠D�,∴△ABC≌△DEF,∴AB=DE.7.证明∵DE∥AB,∴∠CAB=∠ADE.∠���= ∠���,在△ABC 与△DAE 中, �� = ��,∠�= ∠���,∴△BAC≌△ADE(ASA),∴BC=AE.培优促能8.解∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B'.∵AD,A'D'分别是△ABC,△A'B'C'的高,∴∠ADB=∠A'D'B'=90°.∠�= ∠�',在△ABD 和△A'B'D'中, ∠���= ∠�'�'�',�� = �'�',∴△ABD≌△A'B'D'(AAS).∴AD=A'D'.结论:全等三角形对应边上的高相等.9.解在三角形(1)中保留了完整的两角与它们的夹边,可以根据“ASA”画出与(1)全等的三角形; 在三角形(3)中保留了完整的两边及三个内角,可以根据“SAS”或“AAS”或“ASA”画出与(3)全等的三角形;在三角形(2)中只保留了一个角,因此不能画出与(2)全等的三角形.10.(1)证明∵DE⊥AB,∠CBD=90°,∴∠EDB+∠DBF=∠ABC+∠DBF=90°.∴∠EDB=∠ABC.∠�A = ∠���,在△ACB 和△EBD 中, ∠A�= ∠��� = 90°,�� = ��,∴△ACB≌△EBD(AAS).∴CB=BD,即△BCD 是等腰直角三角形.(2)解由△ACB≌△EBD,得AC=BE.而 E 为BC 的中点,则EB=1BC=1BD=4 cm.2 2故AC=4 cm.创新应用11.解猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠FCA+∠BCA=180°,∠BCA=∠α=∠BEC, ∴∠CBE=∠FCA.∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.12.解甲与乙同时游览完.理由如下:由题意,得DB=EB,BC=BA.因为∠CBN=∠DBM=60°,所以∠EBC=∠DBA=120°.�� = ��,在△EBC 和△DBA 中, ∠�A = ∠���,A = ��,所以△EBC≌△DBA,所以EC=DA,∠CEB=∠ADB.∠���= ∠���,在△DBM 和△EBN 中, �� = ��,∠���= ∠���,所以△DBM≌△EBN,所以BM=BN.所以EC+AC+AB+BM=DA+AC+BC+BN.所以两人所走的路程相等,故同时游览完.。
【最新】人教版八年级数学上册12.2第2课时“边角边”精选练习2含答案.doc

第2课时边角边一、选择题1.如图,在ABC △和DEF △中,已知AB DE ,BCEF ,根据(SAS )判定ABC DEF △≌△,还需的条件是()A.ADB.BEC.C FD.以上三个均可以2.下面各条件中,能使△ABC ≌△DEF 的条件的是()A.AB =DE ,∠A =∠D ,BC =EF B.AB =BC ,∠B =∠E ,DE =EF C .AB =EF ,∠A =∠D ,AC =DF D.BC =EF ,∠C =∠F ,AC =DF3.如图,AD BC ,相交于点O ,OA OD ,OB OC .下列结论正确的是()第3题第4题A .AOB DOC △≌△. B .ABO DOC △≌△ C .A C D .B D4.如图,已知AB AC ,AD AE ,BAC DAE .下列结论不正确的有().A .BAD CAE B .ABD ACE △≌△ C .AB=BC D .BDCE二、填空题5.如图,已知AB BD ⊥,垂足为B ,ED BD ⊥,垂足为D ,ABCD ,BC DE ,则ACE=___________.第5题第6题6.如图,已知AF BE ,AB ,ACBD ,经分析≌.此时有F.7.如图所示,AB ,CD 相交于O ,且AO =OB ,观察图形,图中已具备的另一相等的条件是________,联想到SAS ,只需补充A DBC EFAEC B DCD ABEFABOCDA EDB CAC OB12条件________,则有△AOC ≌△________.8.如图所示,有一块三角形镜子,小明不小心破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上________块,其理由是__________.第7题第8题三、解答题9.如图,已知在ABC △中,ABAC ,12.求证:AD BC ⊥,BDDC .参考答案:1.B 2.D3.A4.C5.906.△ADF ≌△BCE ,E7.∠AOC=∠BOD ,OC=OD,BOD 8.1,根据SAS 可以确定这个三角形的形状9.在△ABD 和△ACD 中12AB AC ADAD∴△ABD ≌△ACD ∴∠ADB=∠ADC ,BD=CD ∴AD BC ⊥,BD DCABCD21 3 4。
八年级数学上册《三角形全等的判定》精选练习(8份)

23. 如图,已知 AB=AE,BC=ED,AC=AD. (1) ∠B=∠E 吗?为什么? (2)若点 F 为 CD 的中点,那么 AF 与 CD 有怎样的位置关系?请说明理由.
22. 证明:(1)在△EAD 和△FCB 中 AD=CB,AE=CF,DE=BF ∴△EAD≌△FCB(SSS) ∴∠D=∠B (2)由(1)知:△EAD≌△FCB ∴∠DEA=∠BFC ∵∠AEO=180-∠DEA,
∠CFO=180-∠BFC, ∴∠AEO=∠CFO
∴ AE∥CF
23. 解:(1)∠B=∠E 理由如下:在△ABC 和△AED 中 AB=AE,BC=ED,AC=AD. ∴△ABC≌△AED(SSS) ∴∠B=∠E.
∴△EAC≌△EBC(SSS) ∴∠A=∠C(全等三角形的对应角相等)
9 / 47
八年级数学上册《三角形全等的判定》精选练习
21. 解:(1) BD = DC (或点 D 是线段 BC 的中点), FD = ED , CF = BE 中 任选一个即可﹒ (2)以 BD = DC 为例进行证明: ∵CF∥BE, ∴∠FCD﹦∠EBD. 又∵ BD = DC ,∠ FDC﹦∠EDB, ∴△BDE≌△CDF.
B.BC=EC,AC=DC
C.BC=DC,∠A=∠D
D.AC=DC,∠A=∠D
5.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有
()
A.1对
B.2对
C.3对
D.4对
6.在△ABC 和 ∆A′B′C′ 中,∠C= ∠C′ ,b-a= b′ − a′ ,b+a= b′ + a′ ,则这两个三角形( )
人教版八年级数学上册12.2 三角形全等的判定第2课时 用“SAS”证三角形全等

4.如图,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.
解:∵OC 平分∠AOB,∴∠AOC=∠BOC.在△AOC 和
△BOC 中 , O∠AA=OOC=B,∠BOC(已证), ∴ △ AOC ≌ △ OC=OC(公共边),
BOC(SAS)
知识点2:利用“SAS”判定三角形全等证明线段或角相等 5.(2016·泸州)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D =∠E.
知识点3:利用“SAS”判定三角形全等来解决实际问题
7.如图,将两根铜条AA′,BB′的中点O连在一起,使AA′,BB′可以绕着点
O自由转动,就做成了一个测量工件,则AB的长等于内槽宽A′B′,那么判定
△AOB≌△A′OB′的理由是( )
Aቤተ መጻሕፍቲ ባይዱ
A.边角边 B.角边角
C.边边边 D.角角边
8.(例题变式)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上 取一个可以直接到达A,B的点C,连接AC,BC,并分别延长AC,BC至D和 E,使CD=AC,CE=BC,连接DE,若测得DE=40米,则AB=___4_0___米.
13.某大学计划为新生配备如图1所示的折叠凳.图2是折叠凳撑开后的侧 面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们 的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,则由以上信息可推得CB的长度是多少?
解:∵O 是 AB,CD 的中点,∴OA=OB,OD=OC,在△AOD 和△BOC
∠DCA,在△CDA 与△CEB 中∠ACD=CABC=,∠ECB,∴△CDA≌△CEB(SAS) DC=EC,
15.(2016·恩施)如图,四边形ABCD,BEFG均为正方形,连接AG,CE. (1)求证:AG=CE; (2)求证:AG⊥CE.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 边角边
一、选择题
1. 如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD
2. 能判定△ABC ≌△A ′B ′C ′的条件是( ) A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′ B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′ C. AC=A ′C ′, ∠A=∠A ′,BC=B ′C D. AC=A ′C ′, ∠C=∠C ′,BC=B ′C
3. 如图,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A. AB ∥CD B. AD ∥BC C. ∠A=∠C D. ∠ABC=∠
CDA
4.如图,在△ABC
和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )
A .BC=EC ,∠B=∠E
B .BC=E
C ,AC=DC C .BC=DC ,∠A=∠
D D .AC=DC ,∠A=∠D
5.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )
A .1对
B .2对
C .3对
D .4对
6.在△ABC 和C B A '''∆中,∠C =C '∠,b-a=a b '-',b+a=a b '+',则这两个三角形( )
A. 不一定全等
B.不全等
C. 全等,根据“ASA ”
D. 全等,根据“SAS ”
第3题图
第4题图
第5题图
7.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD ≌△ACD 的条件是
( )
A .AB=AC
B .∠BAC=90°
C .BD=AC
D .∠B=45°
8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )
A .22
B .24
C .26
D .28 二、填空题
9. 如图,已知BD=CD ,要根据“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是 .
10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°, 则∠CBO= 度.
11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥
DE ,BF =CE ,请添加一个适当的条件: , 使得AC =DF .
12.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).
第7题图
第8题图
13.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.
14. 如图,若AO=DO ,只需补充 就可以根据SAS 判定△AOB ≌△DOC.
15. 如图,已知△ABC ,BA=BC ,BD 平分∠ABC ,若∠C=40°,则∠ABE 为
度.
16.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,
过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则 AE= cm .
40
D C
B
A
17. 已知:如图,DC=EA ,EC=BA ,DC ⊥AC , BA ⊥AC ,垂足分别是C 、A ,则
BE 与DE 的位置关系是 .
18. △ABC 中,AB=6,AC=2,AD 是BC 边上的中线,则AD 的取值范围是 .
A
B 0
三、解答题
19. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.
求证:∠ACE=∠DBF.
21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.
23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,
过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
第2课时 边角边(SAS)
一、选择题
1. A
2. D
3. B
4. C
5. C
6. D
7. A
8. B
二、填空题
9. ∠CDA =∠BDA 10. 20 11. AB=DE . 12. AE=AC (答案不唯一);
13. 70 14. BO=CO 15. 80 16. 6 17. 垂直 18. 2 < AD < 4 三、解答题
19. 证明:∵AF=DC ,∴AC=DF ,
又∵∠A =∠D ,
∴AB=DE ,∴△ABC≌△DEF, ∴∠ACB=∠DFE,∴BC∥EF.
20. 证明:∵AB =DC
∴AC =DB
∵EA ⊥AD ,FD ⊥AD ∴∠A =∠D =90° 在△EAC 与△FDB 中
⎪⎩
⎪
⎨⎧=∠=∠=DB AC D A FD EA ∴△EAC ≌△FDB ∴∠ACE =∠DBF .
21. 证明:∵∠DCA=∠ECB, ∴∠DCA+∠ACE=∠BCE+∠ACE, ∴∠DCE=∠ACB, ∵在△DCE 和△ACB 中
,
∴△DCE≌△ACB,
∴DE=AB .
22.证明:∵点E、F分别是AB、AC的中点,
∴AE=错误!未找到引用源。
AB,AF=错误!未找到引用源。
AC,∵AB=AC,
∴AE=AF,
在△AFB和△AEC中,
AB=AC,
∠A=∠A,
AE=AF,
∴△AFB≌△AEC.
23.解:AE=EF.
理由如下:
∵四边形ABCD是正方形,
∴AB=BC
又∵BH=BE
∴AH=CE
∵△BHE为等腰直角三角形.
∴∠H=45°
∵CF平分∠DCE
∴∠FCE=∠H=45°
∵AE⊥EF, ∠ABE=90°
∴∠BAE+∠BEH=∠BEH+∠FEM=90°
即:∠BAE=∠FEM
∴∠HAE=∠CEF
在△HAE和△CEF中,
∠H=∠FCE,AH=CE,∠HAE=∠CEF
∴△HAE≌△CEF,
∴AE=EF.。