【数学】浙江省2019-2020学年高二下学期期中考试试题

合集下载

浙江金兰教育合作组织2023-2024学年高二下学期期中考试数学试题

浙江金兰教育合作组织2023-2024学年高二下学期期中考试数学试题

浙江金兰教育合作组织2023-2024学年高二下学期期中考试数学试题一、单选题1.“笑靥踏青行,不负好韶光”,4月初某学校组织安排了高二年段的研学踏青活动,现要求5个班级分别从3个景点中选择一处游览,则不同的选法有( )种 A .53B .35C .35A D .353C2.()2024x y -的二项展开式中,第m 项的二项式系数是( )A .2024C mB .12024C m +C .12024C m -D .()1120241C m m ---3.下列说法正确的是( )A .线性回归分析中决定系数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好B .两个随机变量的线性相关性越强,则相关系数r 的值越接近于1C .正态分布()2,N μσ的图象越瘦高,σ越大D .残差平方和越小的模型,拟合的效果越好4.从7男3女共10名学生干部中随机选出5名学生干部,抽到的女生人数的均值为( ) A .32B .65C .95D .25.某医院对该院历年来新生儿体重情况进行统计,发现新生儿体重X 服从正态分布()23.5,N σ,若()0.3P X t >=,则()7P X t >-=( )A .0.2B .0.7C .0.8D .0.96.2023年9月23日至10月8日,第19届亚运会在杭州成功举办,组委会将篮球、网球、排球、空手道、击剑、摔跤6个项目安排在3个不同的体育场馆比赛,每个场馆安排2个项目,其中排球、空手道必须安排到同一场馆,则不同的排法共有( ) A .12种B .18种C .36种D .54种7.为了考查一种新疫苗预防某X 疾病的效果,研究人员对一地区某种动物进行试验,从该试验群中随机进行了抽查,已知抽查的接种疫苗的动物数量是没接种疫苗的2倍,接种且发病占接种的16,没接种且发病的占没接种的13,若本次抽查得出“在犯错误的概率不超过0.05的前提下认为接种该疫苗与预防某X 疾病有关”的结论,则被抽查的没接种动物至少有( )只()()()()()22n ad bc a b c d a c b d χ-=++++A .35B .36C .37D .388.已知随机变量ξ的分布列为则下列说法不正确的是( ) A .a ∀,()0,1b ∈,()12E ξ≤ B .a ∀,()0,1b ∈,()()()22D E E ξξξ=-⎡⎤⎣⎦C .a ∃,()0,1b ∈,()13D ξ>D .a ∃,()0,1b ∈,()()13D E ξξ>二、多选题9.下列说法中正确的有( )A .将一枚硬币抛掷3次,记正面向上的次数为X ,则X 服从二项分布B .已知随机变量X 服从二项分布(),B n P ,若()30E X =,()20D X =,则23P = C .设随机变量()2~3,2X N ,则15122E X ⎛⎫+= ⎪⎝⎭,1122D X ⎛⎫+= ⎪⎝⎭D .以模型e kx y c =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.43z x =+,则c ,k 的值分别是3e 和0.410.已知()()()()()72701272111f x x m a a x a x a x =-=+-+-++-L ,若712027128222a a a a ++++=L ,则正确的是( ) A .1m = B .3160a =C .()3f 除以6所得余数为5D .123456723456714a a a a a a a -+-+-+=11.甲、乙两个罐子均装有2个红球,2个白球和1个黑球,除颜色外,各个球完全相同.先从甲罐中随机取出2个球放入乙罐中,再从乙罐中随机取出1个球,记事件A i (0i =,1,2)表示从甲罐中取出的2个球中含有i 个红球,B 表示从乙罐中取出的球是红球,则正确的是( )A .()135P A =B .()247P B A =C .()1235P A B =D .()25P B =三、填空题12.某工厂为研究某种产品的产量x (吨)与所需某种原材料的质量y (吨)的相关性,在生产过程中收集了4组对应数据(),x y ,如表所示.根据表中数据,得出y 关于x 的经验回归方程为$$0.7y x a=+.据此计算出在样本()3,2处的残差为.13.在722x x y ⎛⎫+- ⎪⎝⎭的展开式中,63x y 的系数为.14.每年的3月5日是学雷锋活动纪念日,某学校团委推荐甲、乙、丙、丁、戊、己六名同学参加四个乡镇的志愿者服务,每个乡镇至少安排一人,且甲、乙两人安排在同一个乡镇,丙、丁两人不安排在同一个乡镇,则不同的分配方法总数为.四、解答题15.2022年,华为公司持续加大研发投入,2022年研发投入达到1615亿元,占全年收入的25.1%均处于历史高位,十年累计投入的研发费用超过9773亿元.为进一步突破卡脖子的技术,解决芯片制造的难题,以保持面向未来的持续创新能力,华为某高科技企业对某核心技术加大研发投资力度,持续构建面向未来的竞争力.现得到一组该技术研发投入x (单位:亿元)与收益y (单位:亿元)的数据如下表所示:(1)已知可用一元线性回归模型$$y bx a =+$拟合y 与x 的关系,求此经验回归方程; (2)该高科技企业主要研发了一类新产品,已知该产品的品质达到世界超一流水平的概率为23,现随机抽取5件产品,求至少有3件产品的品质到达世界超一流水平的概率. (附:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其经验回归直线$$y bxa =+$的斜率和纵截距的最小二乘法估计公式分别为:()121ni ii ni i x y nxybx x==-=-∑∑$,$a y bx =-$;81683i i l x y ==∑.)16.2024龙年春节档新片《热辣滚烫》是一部充满正能量,讲述感人故事的电影,影片通过主人公杜乐莹的成长历程,让我们感受到了奋斗和坚持的力量,激励着每个人在面对困难时勇敢向前.现有4名男生和2名女生相约一起去观看该影片,他们的座位在同一排且连在一起.(列出算式,并计算出结果) (1)女生互不相邻的坐法有多少种?(2)若甲不坐最左端,乙不坐最右端,则不同排列方式共有多少种? (3)若甲不坐在两端,乙和丙相邻,则不同排列方式共有多少种? 17.在二项式2nx ⎫⎪⎭的展开式中,(1)若第4项的系数与第6项的系数比为5∶6,求展开式中的有理项; (2)若展开式中只有第5项的二项式系数最大,求展开式中系数最大的项.18.某校高三年级有750人,某次考试不同成绩段的人数()~125,64N ξ,且所有得分都是整数.(1)求该校高三年级本次考试的平均成绩及标准差; (2)计算本次考试得分超过141的人数;(精确到整数)(3)本次考试中有一类多项选择题,每道题的四个选项中有两个或三个选项正确,全部选对得6分,部分选对得部分分(正确答案有三个选项的,则每个选项................2.分;正确答案是.......2.个选..项的,则每个选项为.........3.分.),有选择错误的得0分.小明同学在做多项选择题时,选择一个选项的概率为13,选择两个选项的概率为12,选择三个选项的概率为16.已知某个多项选择题有三个选项是正确的,小明在完全不知道四个选项正误的情况下,只好根据自己的经验随机选择,记小明做这道多项选择题所得的分数为ξ,求ξ的分布列及数学期望.参考数据:若()2~,X N μσ,则()0.6827P X μσμσ-<≤+≈;()220.9545P X μσμσ-<≤+≈;()330.9973P X μσμσ-<≤+≈.19.一个航空航天的兴趣小组,随机对学校100名学生关于航空航天是否感兴趣的话题进行统计,其中被选取的男女生的人数之比为11∶9.(1)请补充完整列联表,并依据小概率值,判断是否有99.9%的把握认为对航空航天感兴趣的情况与性别相关联.(2)一名兴趣小组成员在试验桌上进行两艘飞行器模型间的“交会对接”游戏,已知左右两边均有2艘“Q 2运输船”和1艘“M 1转移塔”.游戏规则是每次在左右两边各任取一艘飞行器交换,假设“交会对接”重复了n 次,记左边剩余“M 1转移塔”的艘数为n X ,左边恰有1艘“M 1转移塔”的概率为n a ,恰有2艘“M 1转移塔”的概率为n b ,求 ①求X 的分布列; ②求n a ;③试判断()n E X 是否为定值,并加以证明. 附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.。

2019-2020学年浙江省9+1联盟高二下学期期中考试数学试卷及解析

2019-2020学年浙江省9+1联盟高二下学期期中考试数学试卷及解析

2019-2020学年浙江省9+1联盟高二下学期期中考试数学试卷★祝考试顺利★(解析版)一、选择题(本大题共10题,每小题4分,共40分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选,错选均不得分)1.设集合{}1,2,3,4A =,,m n A ∈,则方程221x y m n+=表示焦点位于x 轴上的椭圆有( ) A. 6个B. 8个C. 12个D. 16个【答案】A【解析】 根据m n >,对A 中元素进行分析即可求解.【详解】因为椭圆焦点在x 轴上,所以m n >,当2m =时,1n =;当3m =时,1,2n =;当4m =时,1,2,3n =,一共有6个符合要求的椭圆,故选:A2.设,x y R ∈,则11()()22x y >是22log log x y <成立的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】 根据指数函数的单调性、对数函数的单调性,可得出结论. 【详解】因为1()2x y =为R 上的减函数,2log y x =是(0,)+∞上的增函数, 所以由11()()22x y >可得x y <(,x y R ∈)22log log x y <,由22log log x y <可得x y <(,x y R +∈)⇒11()()22x y >, 故11()()22x y >是22log log x y <成立的必要不充分条件, 故选:B3.下列函数中是偶函数,且在0∞+(,)上单调递增的是()A. 3y x =B. 2y lgx =-C. 2x y =D. y =【答案】D【解析】根据各函数的性质与单调性逐个判断即可.【详解】.A 函数为奇函数,不满足条件. B .函数的定义域为{|0}x x ≠,函数为偶函数,当0x >时,22y lgx lgx =-=-为减函数,不满足条件.C .2x y =为增函数,为非奇非偶函数,不满足条件.D .令()f x =定义域为R ,()()f x f x -===,该函数为偶函数,当0x >时,y =,满足条件,故选:D .4.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( ) A.12(1)k + B. 112122k k +++ C. 11121221k k k +-+++ D. 1111212212k k k k +--++++ 【答案】C【解析】分别代入,1n k n k ==+,两式作差可得左边应添加项.【详解】由n=k 时,左边为11112k k k k+++++, 当n=k+1时,左边为11111231(1)(1)k k k k k k k k +++++++++++++。

浙江省学军中学紫金港校区2023-2024学年高二下学期期中数学试题

浙江省学军中学紫金港校区2023-2024学年高二下学期期中数学试题

浙江省学军中学紫金港校区2023-2024学年高二下学期期中数学试题一、单选题1.直线10x +=的倾斜角是 A .30︒B .60︒C .120︒D .150︒2.直线1l 的方向向量()1101ν=-r ,,,直线2l 的方向向量()2202ν=-r,,,则不重合直线1l 与2l 的位置关系是( ) A .相交B .平行C .垂直D .不能确定3.已知正态分布()21,N σ的正态密度曲线如图所示,()2~1,X N σ,则下列选项中,不能表示图中阴影部分面积的是( )A .()102P X -≤B .()122P X -≥C .()1122P X -≤≤D .()()112022P X P X ≤-≤4.若二项式()*nx n⎛∈ ⎝N 的展开式中第5项与第6项的系数相同,则其常数项是( ) A .9B .36C .84D .1265.若直线:30l kx y k -+=与曲线1C y =-有两个不同的交点,则实数k 的取值范围是( ) A .13,24⎛⎤⎥⎝⎦B .13,24⎡⎫⎪⎢⎣⎭C .30,4⎛⎫ ⎪⎝⎭D .30,4⎛⎤ ⎥⎝⎦6.设抛物线2:4T y x =的焦点为F ,A 为抛物线上一点且A 在第一象限,4AF =,若将直线AF 绕点F 逆时针旋转45︒得到直线l ,且直线l 与抛物线交于,C D 两点,则CD =( )A .32-B .32-C .16-D .16-7.设n 为偶数,则112217C 7C 7C 7n n n n n n n ---++++⋅L 被9整除的余数是( )A .0B .1C .2D .1-8.设函数()()()1ln xf x ax m e ax x ⎡⎤⎣⎦=-+- (其中e 为自然对数的底数),若存在实数a 使得()0f x <恒成立,则实数m 的取值范围是( )A .211,e ⎛⎫-+∞ ⎪⎝⎭B .11,e ⎛⎫-+∞ ⎪⎝⎭C .()21,e -+∞D .21,1e ⎛⎫-∞- ⎪⎝⎭二、多选题9.已知由样本数据(),(1,2,3,,10)i i x y i =⋯组成的一个样本,得到回归直线方程为ˆ2yx =-+,且4x =.剔除一个偏高直线较大的异常点()14,2--后,得到新的回归直线经过点()7,4-.则下列说法正确的是( )A .相关变量x ,y 具有正相关关系B .剔除该异常点后,样本相关系数的绝对值变大C .剔除该异常点后的回归直线方程经过点()6,2-D .剔除该异常点后,随x 值增加相关变量y 值减小速度变小 10.已知函数()(1)e x f x x =+的导函数为()f x ',则( )A .函数()f x 的极小值点为21e - B .(2)0f '-=C .函数()f x 的单调递减区间为(,2)-∞-D .若函数()()g x f x a =-有两个不同的零点,则21(,0)e a ∈-11.设一组样本的统计数据为:12,,,n x x x L ,其中*12N ,,,,R n n x x x ∈∈L ,已知该样本的统计数据的平均数为x ,方差为2s ,设函数()()12,R ni i f x x x x ==-∈∑,则下列说法正确的是( )A .设R b ∈,则12,,,n x b x b x b +++L 的平均数为x b +B .设R a ∈,则12,,,n ax ax ax L 的方差为22a sC .当x x =时,函数()f x 有最小值中22n sD .()()()2212n f x f x f x n s ++⋯+≥三、填空题12.设,A B 是一个随机试验中的两个事件,且()()1126P A P A B =⋂=,,则()P A B ⋂=.13.我们把形如()22122:10,0x y C a b a b -=>>和()22222:10,0y x C a b b a-=>>的两个双曲线叫做共轭双曲线设共轭双曲线12,C C 的离心率分别为12,e e ,则1212e e +的最大值是.14.已知函数()44,4x f x f x x ≤<=-≥⎪⎩,若对于正数()*n k n ∈N ,直线n y k x =与函数()f x 的图像恰好有21n +个不同的交点,则22212n k k k +++=L .四、解答题15.为深入学习贯彻党的二十大精神,推动全市党员干部群众用好“学习强国”学习平台,激发干事创业热情.某单位组织“学习强国”知识竞赛,竞赛共有10道题目,随机抽取3道让参赛者回答.已知小明只能答对其中的6道,试求: (1)抽到他能答对题目数X 的分布列; (2)求X 的期望和方差16.已知数列{}n a 的前n 项和为n S,且关于x 的方程2*10,nx n n +++=∈N 有两个相等的实数根.(1)求{}n a 的通项公式;(2)若()12n an n b a =+⋅,数列{}n b 的前n 项和为n T ,且4n n T λ≥对任意的*n ∈N 恒成立,求实数λ的最大值.17.某商场在开业当天进行有奖促销活动,规定该商场购物金额前100名的顾客,均可获得3次抽奖机会.每次中奖的概率为102p p ⎛⎫<≤ ⎪⎝⎭,每次中奖与否相互不影响.中奖1次可获得100元奖金,中奖2次可获得300元奖金,中奖3次可获得500元奖金. (1)已知13p =,求顾客甲获得了300元奖金的条件下,甲第一次抽奖就中奖的概率; (2)已知该商场开业促销活动的经费为2万元,问该活动是否会超过预算?请说明理由.18.已知椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点P ⎛ ⎝⎭在椭圆C 上.且离心率为(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于A ,B 两点,A ,B ,F 三点不共线,且直线AF 和直线BF 关于PF 对称.(i )证明:直线l 过定点; (ⅱ)求ABF △面积的最大值.19.将2024表示成7个正整数1234567,,,,,,x x x x x x x 之和,得到方程12345672024x x x x x x x ++++++=①,称七元有序数组()1234567,,,,,,x x x x x x x 为方程①的解,对于上述的七元有序数组()1234567,,,,,,x x x x x x x ,当1,7i j ≤≤时,若()()max i j x x t t -=∈N ),则称()1234567,,,,,,x x x x x x x 是t -密集的一组解.(1)方程①是否存在一组解()1234567,,,,,,x x x x x x x ,使得()11,2,3,4,5,6i i x x i +-=等于同一常数? 若存在,请求出该常数,若不存在,请说明理由; (2)方程①的解中共有多少组是1-密集的?(3)记721i i S x ==∑,问S 是否存在最小值?若存在,请求出S 的最小值:若不存在,请说明理由.。

2023-2024学年浙江省宁波市高二下学期期中数学试题(含答案)

2023-2024学年浙江省宁波市高二下学期期中数学试题(含答案)

2023-2024学年浙江省宁波市高二下册期中数学试题一、单选题1.已知集合{}2N 340A x x x =∈--<,{}N 12B x x =∈-<≤,则A B = ()A .{}0,1,2B .{}0,1,2,3C .∅D .()1,2-【正确答案】A【分析】计算{}0,1,2,3A =,{}0,1,2B =,再计算交集得到答案.【详解】{}{}{}2N 340N 140,1,2,3A x x x x x =∈--<=∈-<<=,{}{}N 120,1,2B x x =∈-<≤=,故{}0,1,2A B = .故选:A2.设,R x y ∈,则“x y <”是()2“0x y x -⋅<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】根据给定条件,利用充分条件、必要条件的定义直接判断作答.【详解】x ,R y ∈,若0,0x y =>满足x y <,则()20x y x -⋅=,即()20x y x -⋅<不成立;若()20x y x -⋅<,即有0x ≠,必有20x >,从而得0x y -<,即x y <成立,所以x y <是()20x y x -⋅<成立的必要不充分条件.故选:B3.已知随机变量()2~20,2X N ,则(16)P X <=()(附:若()2~,X N μσ,则()0.6827P μσξμσ-≤≤+≈,()220.9545P μσξμσ-≤≤+≈)A .0.02275B .0.1588C .0.15865D .0.34135【正确答案】A【分析】根据题意结合正态分布的对称性运算求解.【详解】由题意可得:20,2μσ==,则()16240.9545P ξ≤≤≈,所以()1(16)1160.02274522P X P ξ≤≤≈<=-⎡⎤⎣⎦.故选:A.4.如表为某商家1月份至6月份的盈利y (万元)与时间x (月份)的关系,其中123 6.5t t t ++=,其对应的回归方程为 0.7y x a=+,则下列说法正确的是()x123456y0.31t 2.22t 3t 4.5A .y 与x 负相关B . 0.2a=C .回归直线可能不经过点()3.5,2.25D .2023年10月份的盈利y 大约为6.8万元【正确答案】D【分析】0.70>,y 与x 正相关,A 错误,计算中心点带入计算得到B 错误,回归直线一定经过中心点,C 错误,带入数据计算得到D 正确,得到答案.【详解】对选项A :回归方程为 0.7y x a=+,0.70>,y 与x 正相关,错误;对选项B :1234563.56x +++++==,1235 0.3 2.2 2.64.25y t t t +==++++,故 2.250.7 3.5a=⨯+,解得0.2a =-,错误;对选项C :回归直线一定经过点()3.5,2.25,错误;对选项D : 0.70.2y x =-,当10x =时, 6.8y =,正确.故选:D5.函数21()|1|21f x x x x =---+的部分图像大致是()A .B .C .D .【正确答案】C【分析】分析函数的定义域排除A ,利用()()11f x f x +=-判断函数对称性排除D ,再代入特殊点,计算(0)0f =,排除B.【详解】由函数解析式可得,函数()21()|1|1f x x x =---,定义域为()(),11,x ∈-∞+∞ ,所以排除A ;因为()2211(1)|11|11f x x x x x -=---=---,()()2211(1)|11|111f x x x f x x x +=+---=-+-所以函数图像关于直线1x =对称,故排除AD ;又因为()21(0)|01|001f =--=-,所以排除B.故选:C6.我们把各个数位上的数字之和为8的三位数称为“幸运数”,例如“170,332,800”都是“幸运数”.问“幸运数”的个数共有()A .35个B .36个C .37个D .38个【正确答案】B【分析】按照首位数字为18 进行分类,相加得到答案.【详解】当首位数字为1时,后两位相加为7,共有8种;当首位数字为2时,后两位相加为6,共有7种;当首位数字为3时,后两位相加为5,共有6种;当首位数字为4时,后两位相加为4,共有5种;当首位数字为5时,后两位相加为3,共有4种;当首位数字为6时,后两位相加为2,共有3种;当首位数字为7时,后两位相加为1,共有2种;当首位数字为8时,后两位相加为0,共有1种;故共有1234567836+++++++=个数.故选:B7.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则()A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ>D .()()D D ηξ<【正确答案】D【分析】根据题意,列表求得随机变量ξ及η的分布列,可知均为两点分布.由两点分布的均值及方差表示出()(),E D ξξ和()E η()D η,根据01p <<比较大小即可得解.【详解】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.则随机变量ξ的分布列为:ξ1P1p-p所以()()(),1E p D p p ξξ==-随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E pηξξ=-=-所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):ηp1p-P1p-p则()()()()1121E p p p p p pη=-+-=-()()()()22211121D p p p p p p p pη=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误.()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确故选:D本题考查了随机变量的分布列,两点分布的特征及均值和方差求法,属于中档题.8.设()f x 是定义在D 上的函数,如果12,x x D ∀∈,当12x x <时,都有12()()f x f x ³,则称()f x 为D 上的“非严格递减函数”,已知集合12345{,,,,}A a a a a a =,其中12345a a a a a <<<<,集合*110{N |C 45}n B n +=∈≥,则满足定义域是A ,值域是B 的子集的非严格递减函数有()个A .56B .126C .252D .462【正确答案】D【分析】计算17n ≤≤得到1,2,3,4,57{},6,B =,转化为1234511()4()3()2()1()1f a f a f a f a f a ≥+>+>+>+>>,计算得到答案.【详解】281010C C 45==,110C 45n +≥,故218n ≤+≤,17n ≤≤,故集合1,2,3,4,57{},6,B =,由12345a a a a a <<<<,则123457()()()()()1f a f a f a f a f a ≥≥≥≥≥≥,即有1234511()4()3()2()1()1f a f a f a f a f a ≥+>+>+>+>≥,则共有511C 462=个函数,故选:D.二、多选题9.下列命题正确的是()A .命题“存在0x >,使得不等式210x x ++<成立”的否定是“任意0x ≤,都有不等式210x x ++≥成立”.B .若事件A 与B 相互独立,且()01P A <<,()01P B <<,则()()P A B P A =.C .已知24a b <+<,02a b <-<,则3311a b <+<.D .在回归分析中,对一组给定的样本数据1122(,),(,),,(,)n n x y x y x y 而言,若残差平方和越大,则模型的拟合效果越差;反之,则模型的拟合效果越好.【正确答案】BD【分析】对于A :根据特称命题的否定分析判断;对于B :根据独立事件的概率乘法公式结合条件概率公式分析运算;对于C :以,a b a b +-为整体表示3a b +,结合不等式的性质分析运算;对于D :根据残差的定义分析判断.【详解】对于A :“存在0x >,使得不等式210x x ++<成立”的否定是“任意0x >,都有不等式210x x ++≥成立”,故A 错误;对于B :由条件概率可知:()()()P AB P A B P B =,∵事件A 与B 相互独立,则()()()P AB P A P B =⋅,∴()()()()()()()P AB P A P B P A B P A P B P B ⋅===,故B 正确;对于C :∵()()32a b a b a b +=++-,由24a b <+<,02a b <-<,可得()428a b <+<,∴4310a b <+<,故C 错误;对于D :根据残差的定义可知:残差平方和越大,则模型的拟合效果越差;反之,则模型的拟合效果越好,故D 正确;故选:BD.10.已知关于x 的函数:2()21f x ax ax =-+,其中a ∈R ,则下列说法中正确的是()A .当1a =时,不等式()4f x >的解集是(1,3)-.B .若不等式()0f x ≤的解集为空集,则实数a 的取值范围为(0,1).C .若方程()0f x =的两个不相等的实数根都在()0,2内,则实数a 的取值范围为()1,+∞.D .若方程()0f x =有一正一负两个实根,则实数a 的取值范围为(),0∞-.【正确答案】CD【分析】对于A :解一元二次不等式即可;对于B :分析可得原题意等价于2210ax ax -+>恒成立,结合恒成立问题运算求解;对于C 、D :整理可得212x x a-=-,根据题意结合图象分析运算.【详解】对于A :当1a =时,不等式2()214f x x x =-+>,即2230x x -->,解得3x >或1x <-,即不等式()4f x >的解集是()(),13,-∞-⋃+∞,故A 错误;对于B :若不等式()0f x ≤的解集为空集,等价于2210ax ax -+>恒成立,当0a =时,则10>恒成立,符合题意;当0a ≠时,则2Δ440a a a >⎧⎨=-<⎩,解得01a <<;综上所述:实数a 的取值范围为[)0,1,故B 错误;若方程2()210f x ax ax =-+=有根,则有:当0a =时,则10=不成立,不符合题意;当0a ≠时,则212x x a -=-,即22y x x =-与1=-y a有交点,结合图象,对于C :若方程()0f x =的两个不相等的实数都在()0,2内,则22y x x =-与1=-y a有交点横坐标均在()0,2内,可得110a-<-<,解得1a >,所以实数a 的取值范围为(1,)+∞,故C 正确;对于D :若方程()0f x =有一正一负两个实根,则22y x x =-与1=-y a有交点横坐标一个为正数一个为负数,可得10a->,解得a<0,所以实数a 的取值范围为(),0∞-,故D 正确;故选:CD.11.已知正数x 、y ,满足2x y +=,则下列说法正确的是()A .xy 的最大值为1.B 的最大值为2.C .21x y+的最小值为3.D .2211x y x y +++的最小值为1.【正确答案】ABD【分析】对于AB ,利用基本不等式及其推论即可判断;对于CD ,利用换元法与基本不等式“1”的妙用即可判断.【详解】对于A ,因为0,0,2x y x y >>+=,所以2x y =+≥1xy ≤,当且仅当x y =且2x y +=,即1x y ==时,等号成立,所以xy 的最大值为1,故A 正确;对于B ,因为()2222222()2()0a b a b a b ab a b +-+=+-=-≥,所以()222()2a b a b +≤+,当且仅当a b =时,等号成立,所以()222224x y ⎡⎤≤+=+=⎣⎦2≤,=且2x y +=,即1x y ==时,等号成立,2,故B 正确;对于C ,211213()313222212y x x y x y y y x x ++⎛⎫⎛⎫⎛⎫=+=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当2y xx y=且2x y +=,即42x y =-=-时等号成立,所以21x y +的最小值为32,故C 错误;对于D ,令1s x =+,1t y =+,则1x s =-,1y t =-,24s t x y +=++=,0,0s t >>,所以()()22221111112211s t x y s t x y s t s t s --+=+=-++-+=+++()11111221444ts s t s t s t ⎛⎛⎫⎛⎫=++=++≥+= ⎪⎪ ⎝⎭⎝⎭⎝,当且仅当s t =且4s t +=,即2s t ==,即1x y ==时,等号成立,所以2211x y x y +++的最小值为1,故D 正确.故选:ABD.12.已知()f x 为非常值函数,若对任意实数x ,y 均有()()()()()1f x f y f x y f x f y ++=+⋅,且当0x >时,()0f x >,则下列说法正确的有()A .()f x 为奇函数B .()f x 是()0,∞+上的增函数C .()1f x <D .()f x 是周期函数【正确答案】ABC【分析】令0x y ==,代入()()()()()1f x f y f x y f x f y ++=+⋅,即可得到()0f 再由()00f =,分别应用函数的奇偶性,单调性,值域和周期性判断A,B,C,D 选项即可【详解】对于A:由题意()()()()()1f x f y f x y f x f y ++=+⋅,令0x y ==,()()()202100f f f =+,解得:()00f =或()01f =±当()01f =时,令0y =,则()()()()()()()1==11100f x f f x f x f x f f x ++=+⋅+恒成立,又已知()f x 为非常值函数故舍去,当()01f =-时,令0y =,则()()()()()()()1==11100f x f f x f x f x f f x +-=-+⋅-恒成立,又已知()f x 为非常值函数故舍去,∴()00f =,令y x =-,则()()()()()=010f x f f f x f x x -+⋅-+=,所以()()=0f x f x +-,即()()=f x f x --,所以()f x 为奇函数,故A 正确;对于C :令2x x y ==,()2222112222x x f f f f x x x x f f x f ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为212,22x x f f ⎛⎫⎛⎫+≥ ⎪ ⎪⎝⎭⎝⎭若12x f ⎛⎫= ⎪⎝⎭,则()222112x f f x x f ⎛⎫⎪⎝⎭==⎛⎫+ ⎪⎝⎭,又()f x 为非常值函数故舍去,所以12x f ⎛⎫≠ ⎪⎝⎭,所以212,22x x f f ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭所以()222112x f f x x f ⎛⎫ ⎪⎝⎭=<⎛⎫+ ⎪⎝⎭,故C 正确:对于B:设任意的12,R x x ∈且120x x <<令21,x x y x ==-所以()()()()()2121211f x f x f x x x x f f +-+⋅--=,又因为()f x 为奇函数,所以()()()()()1122121f x f x f x x f x x f --=-⋅,()()121,1,f x f x <<()()()()11221,10x f x f f x f x ⋅<-⋅>又因为当0x >时,()0f x >,所以()()210,0f x f x >>,210x x ->,()()()()()21212101f x f x f x x f x f x --=>-⋅,即()()21f x f x >,所以()f x 是()0,∞+上的增函数,故B 正确;对于D:因为()f x 是()0,∞+上的增函数,又因为()f x 为奇函数且()00f =,所以()f x 是(),-∞+∞上的增函数,故()f x 不是周期函数,故D 错误.故选:ABC.三、填空题13.已知条件:11p k x k -<<+,3:21x q x -≥+,p 是q 的充分条件,则实数k 的取值范围是_______.【正确答案】[]4,2--【分析】先根据分式不等式求出q ,设条件p 对应的集合为A ,条件q 对应的集合为B ,由p 是q 的充分条件,可得A B ⊆,进而可得出答案.【详解】由321x x -≥+,得501x x +≤+,解得51x -≤<-,设{}{}11,51A x k x k B x x =-<<+=-≤<-,因为p 是q 的充分条件,所以A B ⊆,所以1511k k -≥-⎧⎨+≤-⎩,解得42k -≤≤-,所以实数k 的取值范围是[]4,2--.故答案为.[]4,2--14.已知:8290129(2)(1)(1)(1)x x a a x a x a x -=+-+-++- ,则4a =______.【正确答案】14【分析】变换()()()8881211(11)x x x x x =----+--,再利用二项式定理得到()()3434488C 1C 1a =-+-,计算得到答案.【详解】()()()()()888811111111)1(2x x x x x x x =-+--=---+---,()811x --展开式的通项为()()818C 11rrrr T x -+=--,()()3434488C 1C 1567014a =-+-=-+=.故1415.若函数2(2)3,14(),142,4a x a x f x x x x ax x -+≤⎧⎪⎪<≤⎨⎪-+>⎪⎩是R 上的单调函数,则实数a 的取值范围为_______.【正确答案】17(2,]8【详解】因为()22,4f x x ax x =-+>,是开口向下的二次函数,故只能是在4x >上单减,故要求整个函数在R 上都是减的,每一段都是减的,则要求20,17234281816a a a a a -<⎧⎪-+≥⇒<≤⎨⎪≥-⎩,故答案为172,8⎛⎤⎥⎝⎦.点睛:这个题目考查了,已知分段函数的单调性求参的问题,一般这类题目要满足两个条件,一是分段函数每一段都是单调的,且要求在定义域上函数是上台阶或下台阶的,即每段的连接点处必须是连接起来的或者都是向下或向上的趋势,不能错位.16.将1,2,3,……,9,10这10个整数分别填入图中10个空格中,样本空间Ω为满足“每一行的最大数比上一行的最大数要大”的所有样本点构成的集合,事件A 为“第四行有一个数字是1”,事件B 为“第三行有一个数字是2”,则在事件A 发生的条件下,事件B 发生的概率为_______.【正确答案】310/0.3【分析】利用排列组合的性质和条件概率公式即可求解.【详解】假设每一行数字由小到大排列(最后再乘每一行的排列数),那么当每一行最后一个数字给定,只需挑出每一行的前几个数字即可,且10在第四行第4个数.当1在第四行时,第四行前3个数字选法28C ,第三行前2个数字选法25C ,第二行第1个数字选法12C .当1在第四行,2在第三行时,第四行前3个数字选法27C ,第三行前2个数字选法14C ,第二行第1个数字选法12C .所以2114321742432122143218524321C C C A A A A ()3(|)()C C C A A A A 10P AB P B A P A ⨯⨯⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯,故答案为.310四、解答题17.在21nx ⎛⎫+ ⎪⎝⎭(n 为正整数)二项展开式中,若012C C C C 64nn n n n ++++= ,求:(1)展开式中所有项的系数之和;(2)展开式中含21x 的项的系数.【正确答案】(1)729(2)240【分析】(1)根据题意结合二项式系数的性质求得=6n ,再令1x =,求所有项的系数之和;(2)利用二项展开式的通项公式运算求解.【详解】(1)由题意可得0122=C C C C 64n n n n n n ++++= ,可得=6n ,故二项式为621x ⎛⎫ ⎪⎝⎭,令1x =,可得661237291⎛⎫+== ⎪⎝⎭,所以展开式中所有项的系数之和为729.(2)设621x ⎛⎫ ⎪⎝⎭的通项为(6521662661C 2C rr rrr r rT x x -+--⎛⎫⋅==⋅ ⎪⎝⎭,令6522r -=-时,则2r =,此时2236422C 240T x x --⋅=⋅=,故展开式中含21x 的项的系数为240.18.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场,得到天数与直播间人数的数据如下表所示:日期第一天第二天第三天第四天第五天第六天第七天日期代码x 1234567直播间人数y (万人)4122123252728(1)求直播间人数y 和与日期代码x 的样本相关系数(精确到0.01);(2)若使用ln y c d x =+作为y 关于x 的回归方程模型,计算该回归方程(结果保留1位小数),并预测至少要到哪一天直播间人数可以超过30万人.参考公式和数据:相关系数ni ix y nx yr -⋅=∑,其中711ln ,7i i i i u x u u ===∑,回归直线方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y n x yb a y b xxn x ==-⋅⋅==-⋅-⋅∑∑【正确答案】(1)0.93(2)ˆ5.212.3ln y x =+,第8天【分析】(1)根据题意可求得4,20x y ==,结合题中数据和公式运算求解;(2)根据题意令ln u x =,可得y c du =+,结合题中数据和公式求,cd ,进而根据回归方程运算求解.【详解】(1)由题意可得:777117722111114,2140,30,268666,77i i i i i i i i i i i x y x y x x y y ============∑∑∑∑∑,则ni i x ynx yr -⋅=∑530.932.65210.8≈≈⨯⨯,故直播间人数y 和与日期代码x 的样本相关系数为0.93.(2)∵ln y c d x =+,由题意令ln u x =,则y c du =+,可得77211213.20, 1.2,206.4,i i i i i u y u y u ===≈≈≈∑∑,则717221206.47201.2ˆ12.313.27 1.21.2i i ii i u yn u y dunu==-⋅⋅-⨯⨯=≈≈-⨯⨯-∑∑,ˆˆ2012.31.2 5.2cy d u =-⋅≈-⨯≈,所以ˆ 5.212.3yu =+,故y 关于x 的回归方程为 5.212.3ln y x =+⨯$,令 5.212.3ln 30y x =+>$,整理得ln 2.0x >,则2e 7.39x >≈,且*x ∈N ,所以8x ≥,故至少要到第8天才能超过30万人.19.对飞机进行射击,按照受损伤影响的不同,飞机的机身可分为Ⅰ,Ⅱ,Ⅲ三个部分.要击落飞机,必须在Ⅰ部分命中一次,或在Ⅱ部分命中两次,或在Ⅲ部分命中三次.设炮弹击落飞机时,命中Ⅰ部分的概率是16,命中Ⅱ部分的概率是13,命中Ⅲ部分的概率是12,射击进行到击落飞机为止.假设每次射击均击中飞机,且每次射击相互独立.(1)求恰好在第二次射击后击落飞机的概率;(2)求击落飞机的命中次数X 的分布列、数学期望和方差.【正确答案】(1)14(2)分布列见解析,()83E X =,19()18D X =【分析】(1)恰好在第二次射击后击落飞机存在两种情况,一种是连续命中Ⅱ部分两次,另一种情况是第一次击中Ⅱ部分或Ⅲ部分,第二次命中Ⅰ部分,根据这两种情况即可求出概率;(2)根据题意可知,击落飞机的次数可为1,2,3,4四种取值情况,根据四种取值情况求出对应概率即可求出分布列、数学期望和方差.【详解】(1)设恰好在第二次射击后击落飞机为事件A ,满足事件A 的情况有连续命中Ⅱ部分两次,或者第一次击中Ⅱ部分或Ⅲ部分,第二次命中Ⅰ部分,则25111()()6634P A =⨯+=.(2)依题意,X 的可能取值为1,2,3,4,1(1)6P X ==,1(2)4P X ==,12211111111(3)C ()()()32632623P X ==⨯⨯⨯++⨯+=,123111(4)C ()1324P X ==⨯⨯⨯=,所以X 的分布列为:X1234P16141314X 的数学期望()11118123464343E X =⨯+⨯+⨯+⨯=.2X 14916P16141314()21111491491664346E X =⨯+⨯+⨯+⨯=X 的方差()22496419()(())6918D XE XE X =-=-=20.已知()224ax bx cf x x ++=+是定义在[]22-,上的函数,若满足()()0f x f x +-=且()115f =.(1)求()f x 的解析式;(2)判断函数()f x 在[]22-,上的单调性(不用证明),并求使()()22110f t f t ++-<成立的实数t的取值范围;(3)设函数2()24(R)g x x mx m =-+∈,若对任意12,[1,2]x x ∈,都有21()()g x f x <恒成立,求m 的取值范围.【正确答案】(1)()24x f x x =+(2)单调递增,302t -≤<(3)125m >【分析】(1)确定函数为奇函数,()00f =,()115f =,()115f -=-,代入数据计算得到答案.(2)确定函数单调递增,根据函数的奇偶性得到222212212211t t t t -≤+≤⎧⎪-≤-≤⎨⎪+<-⎩,解得答案.(3)只要2max 1min ()()g x f x <,最小值为1(1)5f =,题目转化为max 1925m x x ⎛⎫>+ ⎪⎝⎭,根据单调性计算最值得到答案.【详解】(1)[]2,2x ∈-,且()()0f x f x +-=,所以()f x 为奇函数,将0x =代入()()0f x f x +-=可得()00f =,即04c=,所以0c =,即()224ax bxf x x +=+,因为()115f =,所以()115f -=-,代入可得155155a b a b +⎧=⎪⎪⎨-⎪=-⎪⎩,解得01a b =⎧⎨=⎩,故()24xf x x =+;()24x f x x =+,()()24xf x f x x -==-+,函数为奇函数,满足,故()24x f x x =+.(2)设1222x x -≤<≤,则()()()()()()211221212222212144444x x x x x x f x f x x x x x ---=-=++++,1222x x -≤<≤ ,211200,4x x x x ∴-->>,()()210f x f x ∴->,即()()21f x f x >,故函数()24x f x x =+在[]22-,上单调递增,因为()24xf x x =+为奇函数,所以()()22110f t f t ++-<,即()()()222111f t f t f t +<--=-,根据单调性及定义域可得:222212212211t t t t -≤+≤⎧⎪-≤-≤⎨⎪+<-⎩,解得312220t t t ⎧-≤≤⎪⎪⎪≤≤⎨⎪-<<⎪⎪⎩302t -≤<.(3)只要2max 1min ()()g x f x <,函数()f x 在[]1,2上单调递增,最小值为1min 1()(1)5f x f ==.法一:21()245g x x mx =-+<在[]1,2上恒成立,只要max 1925m x x ⎛⎫>+ ⎪⎝⎭,195y x x =+在1,5⎡⎢⎥⎣⎦上单调递减,在,25⎛⎤ ⎥ ⎝⎦上单调递增,当1x =时,192455x x +=,当2x =时,1939245105x x +=<,故当1x =时,max 192455x x ⎛⎫+= ⎪⎝⎭,所以125m >.法二:222()24()4g x x mx x m m =-+=-+-,[]1,2x ∈,当32m ≤时,max 1()(2)5g x g =<,14445m -+<,解得3920m >,舍去;当32m >时,max 1()(1)5g x g =<,11245m -+<,解得125m >,因此125m >,综上所述.125m >21.数学兴趣小组为研究本校学生数学成绩与语文成绩的关系,采取有放回的简单随机抽样,从学校抽取样本容量为200的样本,将所得数学成绩与语文成绩的样本观测数据整理如下:语文成绩合计优秀不优秀数学成绩优秀503080不优秀4080120合计90110200(1)根据0.010α=的独立性检验,能否认为数学成绩与语文成绩有关联?(2)根据22⨯列联表的信息,A 表示“选到的学生语文成绩不优秀”,B 表示“选到的学生数学成绩不优秀”,求()|P B A 的值;(3)现从数学成绩优秀的样本中,按分层抽样的方法选出8人组成一个小组,从抽取的8人里再随机抽取3人参加数学竞赛,求这3人中,语文成绩优秀的人数X 的概率分布列及数学期望.附.()()()()22()n ad bc a b c d a c b dχ-=++++α0.0500.0100.001x α3.8416.63510.828【正确答案】(1)能(2)311(3)分布列见解析,158【分析】(1)计算216.498 6.635χ≈>,得到答案.(2)()(|)()P AB P B A P A =,计算得到答案.(3)根据分层抽样比例关系得到人数,确定随机变量X 的所有可能取值为0,1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】(1)零假设0H :数学成绩与语文成绩无关,则22200(50803040)16.498 6.6359011012080χ⨯⨯-⨯=≈>⨯⨯⨯,根据小概率值0.010α=的2χ的独立性检验,我们推断0H 不成立,故认为数学成绩与语文成绩有关;(2)()(|)()30311110P AB P B A P A ===,(3)按分层抽样,语文成绩优秀的5人,语文成绩不优秀的3人,随机变量X 的所有可能取值为0,1,2,3.()3338C 10C 56P X ===,()125338C C 151C 56P X ===,()215338C C 30152C 5628P X ====,()3538C 1053C 5628P X ====,故X 的概率分布列为:X0123P15615561528528数学期望()11515510515012356562828568E X =⨯+⨯+⨯+⨯==.22.设0a >,0b >,函数2()f x ax bx a b =--+.(1)求不等式()(1)f x f <的解集;(2)若()f x 在[]0,1上的最大值为b a -,求ba的取值范围;(3)当[0,]x m ∈时,对任意的正实数a ,b ,不等式()(1)|2|f x x b a ≤+-恒成立,求m 的最大值.【正确答案】(1)答案见解析(2)[)1,+∞(3)1【分析】(1)变换得到(1)()0x ax a b -+-<,考虑1b a a ->,1b a a -<,1b aa-=三种情况,解不等式得到答案.(2)确定函数对称轴为2b x a=,考虑1022b a <<和122b a ≥两种情况,计算最值得到范围.(3)注意分类讨论的思想,分当2b a ≥时和当2b a <时两种情况进行讨论,当2b a ≥时2310b b x x a a ⎛⎫---≤ ⎪⎝⎭注意用换元法把b a 换成t ,得到()2310x t x x +--≥又由题意对任意的12t ≥不等式恒成立,而310x +>,只要12t =时不等式成立即可从而解出m 的取值范围,同理可求另一种情况【详解】(1)()(1)f x f <即()0f x <,即(1)()0x ax a b -+-<,()()10x ax a b -+-=的两根为1和b aa-当1b a a ->,即20b a >>时,解集为1,b a a -⎛⎫⎪⎝⎭;当1b a a -<,即02b a <<时,解集为,1b a a -⎛⎫⎪⎝⎭;当1b aa-=,即20b a =>时,解集为∅.综上所述:当20b a >>时,解集为1,b a a -⎛⎫⎪⎝⎭;当02b a <<时,解集为,1b a a -⎛⎫ ⎪⎝⎭;当20b a =>时,解集为∅.(2)因为0a >,0b >,所以0ba >,2()f x ax bx ab =--+的对称轴为2b x a=,当1022b a <<时,即b a <时,()()max 10f x f b a ==>-,不合题意;当122b a ≥时,即b a ≥时,()()max 0f x f =,而(0)0(1)f b a f =-≥=,符合题意.故ba取值范围为[)1,+∞.(3)①当2b a ≥时,不等式即为:()222ax bx a b b a x b a --+≤-+-,整理得:()230ax b a x b ---≤即:2310b b x x a a ⎛⎫---≤ ⎪⎝⎭,令bt a=,则12t ≥,所以不等式即()2310x t x t ---≤,即:()2310x t x x +--≥,由题意:对任意的12t ≥不等式恒成立,而310x +>,∴只要12t =时不等式成立即可,211022x x ∴--≤,112x ∴-≤≤而[]0x m ∈,,01m ∴<≤;②当2b a <时,同理不等式可整理为:23120b b x x a a ⎛⎫---+≤ ⎪⎝⎭,令b t a =,则102t <<,所以不等式即()21230x t x t ---+≤,即:()2320x t x x ++--≤,由题意:对任意的102t <<不等式恒成立,而30x +>,∴只要12t =时不等式成立即可,211022x x ∴--≤,112x ∴-≤≤而[]0x m ∈,,01m ∴<≤;综上,m 的最大值为1关键点睛:本题考查了解不等式,不等式恒成立问题,意在考查学生的计算能力,转化能力和综合应用能力。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

浙江省杭州2023-2024学年高二下学期期中考试数学试题含答案

浙江省杭州2023-2024学年高二下学期期中考试数学试题含答案

2023学年第一学期杭州二中高二期中考试数学(答案在最后)注意事项:1.本试卷共4页,满分150分,考试用时120分钟.2.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.3.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,多选、错选或不选都给不分.1.两条平行直线1l :3450x y +-=与2l:6850x y +-=之间的距离是()A.0 B.12C.1D.32【答案】B 【解析】【分析】利用平行线间距离公式进行求解即可.【详解】345068100x y x y +-=⇒+-=,12=,故选:B2.已知圆()()()2122292:x m y m m C -+-=-与圆22288340:x y x C y m +--+-=,则“4m =”是“圆1C 与圆2C 外切”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】利用两圆相切圆心距与两半径之和相等,分别证明充分性和必要性是否成立即可得出答案.【详解】根据题意将圆2C 化成标准方程为()()22442x y m -+-=-;易知20m ->,所以可得圆心()12,2C m m,半径为1r =,圆心()24,4C,半径为2r =可得122C C =-,两半径之和12r r +=若4m =,圆心距12C C =,两半径之和12r r +=,此时1212C C r r =+=,所以圆1C 与圆2C 外切,即充分性成立;若圆1C与圆2C外切,则2-=4m =或2m =(舍),所以必要性成立;即“4m =”是“圆1C 与圆2C 外切”的充分必要条件.故选:C3.已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A.1±B. C. D.2±【答案】C 【解析】【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d=,则弦长为||MN =,则当0k =时,MN 取得最小值为2=,解得m =.故选:C.4.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP 面积的取值范围是A.[]26,B.[]48, C. D.⎡⎣【答案】A 【解析】【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB = 点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABP S AB d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.5.已知正方形ABCD 的边长为2,点M 在以C 为圆心,1为半径的圆上,则2MB MD +的最小值为()A.2B.C.172D.【答案】D 【解析】【分析】建立直角坐标系,取点1(0,)2E ,探讨满足条件||2||M D M E ''=的点M '的轨迹,再结合已知,求出两条线段长度和的最小值作答.【详解】依题意,以点C 为原点,直线,CB CD 分别为,x y 轴建立平面直角坐标系,则(2,0),(0,2)B D ,如图,取点1(0,)2E ,设(,)M x y ',当||2||M D M E ''==化简整理得221x y +=,即点M '的轨迹是以C 为圆心,1为半径的圆,而点M 在以C 为圆心,1为半径的圆上,因此||2||MD ME =,显然点B 在圆C :221x y +=外,则22||2||2(||||)2||MB MD MB ME MB ME BE +=+=+≥,当且仅当M 为线段BE 与圆C 的交点时取等号,而||2BE ==,所以2MB MD +的最小值为2||BE =故选:D【点睛】关键点睛:建立坐标系,取点1(0,2E 并求出满足条件||2||M D M E ''=的点M '的轨迹是解题的关键.6.设椭圆()222210x y a b a b+=>>的左焦点为F ,O 为坐标原点,过F 且斜率为1的直线交椭圆于A ,B 两点(A 在x 轴上方).A 关于x 轴的对称点为D ,连接DB 并延长交x 轴于点E ,若DOF S ,DEF S △,DOE S △成等比数列,则椭圆的离心率e 的值为()A.12B.2C.2D.12【答案】D 【解析】【分析】根据DOF S ,DEF S △,DOE S △成等比数列,得到2EFOF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++--,与椭圆方程联立,再设直线BD 的方程为:()122221x x cy x c x x x x ++--=--,令0y =结合韦达定理,得到点E 的坐标,代入2EF OF OE =⋅求解.【详解】解:如图所示:设,,DOF DEF DOE 分别以OF ,EF ,OE 为底,高为h ,则111,,222DOF DEF DOE S OF h S EF h S OE h === ,因为DOF S ,DEF S △,DOE S △成等比数列,所以2DEF DOF DEF S S S =⋅ ,即2EFOF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++--,联立22221x y a b y x c ⎧+=⎪⎨⎪=+⎩,消去y 得()2222222220a b x a cx a c a b +++-=,由韦达定理得:2121222222222,2x x x x a c a c a b a b a b-+=-=++⋅,直线BD 的方程为:()1222212x x cy x c x x x x ++--=--,令0y =得,()12121222E x x c x x x x x c ⋅++=++,则()22121212222222222222222222E x x c x x a x c a c a b a c a b a b a b x x c c c a ⋅-⋅++===-++-++-++,则2EF OF OE =⋅,即为222a a c c c c ⎛⎫⋅=- ⎪⎝⎭,则()22222c a a c =-,即422430a c a c -+=,即42310e e -+=,解得232e =,则512e =,故选:D7.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF △的内切圆的圆心为I ,若23450++=IB IA IF ,则该椭圆的离心率是()A.5B.23C.4D.12【答案】A 【解析】【分析】对23450++= IB IA IF 变形得到2351882IB IF IA +=-,进而得到以22::3:4:5AF BF AB =,结合椭圆定义可求出2AF a =,245,33BF a AB a ==,1AF a =,由余弦定理求解,a c 关系式,求出离心率.【详解】因为23450++= IB IA IF ,所以2351882IB IF IA +=-,如图,在2BF 上取一点M ,使得2:5:3BM MF =,连接IM ,则12IM IA =-,则点I 为AM 上靠近点M 的三等分点,所以22::3:4:5IAF IBF IBA S S S = ,所以22::3:4:5AF BF AB =,设23AF x =,则24,5BF x AB x ==,由椭圆定义可知:224AF BF AB a ++=,即124x a =,所以3a x =,所以2AF a =,245,33BF a AB a ==,1AF a =故点A 与上顶点重合,在2ABF △中,由余弦定理得:222222222222516399cos 52523a a a AB F A F B BAF AB F A a +-+-∠===⋅⨯,在12AF F △中,2222243cos 25a a c BAF a +-∠==,解得:5c a =,所以椭圆离心率为故选:A【点睛】对于求解圆锥曲线离心率问题,要结合题目中的条件,直接求出离心率或求出,,a b c 的齐次方程,解出离心率,本题的难点在于如何将23450++=IB IA IF 进行转化,需要作出辅助线,结合内心的性质得到三角形2ABF 三边关系,求出离心率.8.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (0p >)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为FAB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM ON ⋅的取值范围是()A.63,925⎡⎤-⎢⎥⎣⎦B.[]3,21- C.63,2125⎡⎤⎢⎥⎣⎦D.[]3,27【答案】B 【解析】【分析】由已知及抛物线的定义,可求p ,进而得抛物线的方程,可求A ,B ,F 的坐标,直线AF的方程,可得圆的半径,求得圆心,设N 的坐标,求得M 的坐标,结合向量数量积的坐标表示,以及辅助角公式和正弦函数的值域,可得所求范围.【详解】解:由题意,设(A ,所以||342pAF =+=,解得2p =,所以抛物线的方程为24y x =,(3,A ,(3,B -,(1,0)F ,所以直线AF的方程为1)y x =-,设圆心坐标为0(x ,0),所以2200(1)(3)12x x -=-+,解得05x =,即(5,0)E ,∴圆的方程为22(5)16x y -+=,不妨设0M y >,设直线OM 的方程为y kx =,则0k >,4=,解得43k =,由2243(5)16y x x y ⎧=⎪⎨⎪-+=⎩,解得912,55M ⎛⎫ ⎪⎝⎭,设(4cos 5,4sin )N θθ+,所以364812cos sin 9(3cos 4sin )9555OM ON θθθθ⋅=++=++ ,因为[]3cos 4sin 5sin()5,5θθθϕ+=+∈-,所以OM ON ⋅∈[]3,21-.故选:B .【点睛】关键点点睛:本题解题的关键点是:首先求出圆的方程为22(5)16x y -+=,然后利用直线OM 与圆E 切于点M ,求出M 点的坐标,引入圆的参数方程表示N 点坐标,再根据向量数量积的坐标表示及辅助角公式,可得所求范围..二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l :230ax y a ++=和直线2l :()3170x a y a +-+-=,下列说法正确的是()A.当25a =时,12l l ⊥B.当2a =-时,12l l ∥C.直线1l 过定点()3,0-,直线2l 过定点()1,1-D.当1l ,2l平行时,两直线的距离为【答案】AD 【解析】【分析】A 选项:把a 的值分别代入两直线,根据直线垂直时,斜率相乘为1-,直接判断即可;B 选项,把a 的值分别代入两直线,根据直线平行时,斜率相等判断即可;C 选项,把直线的方程变形,根据直线过定点的定义判断即可;D 选项,由直线平行时,斜率相等,可求得a 得值,排除重合情况,再利用平行直线的距离公式直接求解即可.【详解】对于A ,当25a =时,那么直线1l 为262055x y ++=,直线2l 为3237055x y -+-=,此时两直线的斜率分别为115k =-和25k =,所以有121k k ×=-,所以12l l ⊥,故A 选项正确;对于B ,当2a =-时,那么直线1l 为30x y -+=,直线2l 为30x y -+=,此时两直线重合,故B 选项错误;对于C ,由直线1l :230ax y a ++=,整理可得:()320a x y ++=,故直线1l 过定点()3,0-,直线2l :()3170x a y a +-+-=,整理可得:()1370a y x y -+-+=,故直线2l 过定点()2,1-,故C 选项错误;对于D ,当1l ,2l 平行时,两直线的斜率相等,即213a a --=-,解得:3a =或2a =-,当2a =-时,两直线重合,舍去;当3a =时,直线1l 为3290x y ++=,2l 为3240x y ++=,此时两直线的距离13d ==,故D 选项正确.故选:AD .10.已知椭圆2222:1(0)x y C a b a b+=>>的左,右两焦点分别是12,F F ,其中12||2F F c =.直线()():R l y k x c k =+∈与椭圆交于,A B 两点,则下列说法中正确的有()A.2ABF △的周长为4aB.若AB 的中点为M ,则22OMb k k a⋅=C.若2124AF AF c ⋅=,则椭圆的离心率的取值范围是6565⎣⎦D.若1k =时,则2ABF △的面积是222ca b +【答案】ACD 【解析】【分析】根据椭圆定义可知2ABF △的周长为4a ,可判断A 正确;联立直线和椭圆方程求出点M 的坐标,表示出斜率公式即可得22OMb k k a⋅=-,可得B 正确;由2124AF AF c ⋅= 易知A 点在以()0,0为圆心,半径为的圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,需满足b a ≤≤,可得离心率,65e ∈⎣⎦,可知C 正确;将1k =代入联立的方程可得2ABF △的面积22212S c x c b x a ==+-,可得D 正确.【详解】由12||2F F c =可知,()()12,0,,0F c F c -;显然直线()():R l y k x c k =+∈过点()1,0F c -,如下图所示:由椭圆定义可知2ABF △的周长为2212214AB AF BF AF AF BF BF a ++=+++=,所以A 正确;设()()1122,,,A x y B x y ,中点()00,Mxy ;将直线和椭圆方程联立()22221x y a b y k x c ⎧+=⎪⎨⎪=+⎩,消去y 整理可得()2222222222220b a k x a k cx a k c a b +++-=;由韦达定理可得22122222a k c x x b a k +=-+,所以221202222x x a k cx b a k +==-+,代入直线方程解得20222b cky b a k =+,即222222222,a k c b ck M b a k b a k ⎛⎫- ⎪++⎝⎭;所以2222222222222200OMb ckb ck b b a k k a kc a k c a k b a k -+==-=---+,可得2222OMk b k a k b k a⋅-==⋅-,所以B 错误;根据B 选项,由2124AF AF c ⋅= 可得()()2222111111,4,c x y c x y x c y c -⋅=+--=---,可得222115x y c +=,即A 点在以()0,0为圆心,半径为的圆上;又A 点在椭圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,根据对称性可知b a ≤≤,即22256c a c ≤≤,所以可得离心率,65e ∈⎥⎣⎦,即C 正确;若1k =时,由选项B 可知联立直线和椭圆方程可得()2222222220b axa cx a c ab +++-=;所以可得22222121222222,a c a c a b x x x x b a b a-+=-=++;所以21222ax x b a -=+易知2ABF △的面积21211221212221122S F F y a F F y cc y y c x b x =+=-=+=-即可得2ABF△的面积是222ca b+,故D 正确.故选:ACD【点睛】方法点睛:在求解圆锥曲线与直线的位置关系时,特别是在研究跟焦点三角形有关的问题时,经常将直线和圆锥曲线联立并利用韦达定理求解,注意变量间的相互转化即可.11.已知斜率为k 的直线交抛物线()220y px p =>于()11,A x y 、()22,B x y 两点,下列说法正确的是()A.12x x 为定值B.线段AB 的中点在一条定直线上C.11OA OBk k +为定值(OA k 、OB k 分别为直线OA 、OB 的斜率)D.AF BF为定值(F 为抛物线的焦点)【答案】BC 【解析】【分析】分析可知,0k ≠,设直线AB 的方程为y kx m =+,将直线AB 的方程与抛物线的方程联立,利用韦达定理可判断A 选项;求出线段AB 中点的纵坐标,可判断B 选项;利用斜率公式结合韦达定理可判断C 选项;利用抛物线的焦半径公式可判断D 选项.【详解】若0k =,则直线AB 与抛物线()220y px p =>只有一个交点,不合乎题意,则0k ≠,设直线AB 的方程为y kx m =+,联立22y kx m y px=+⎧⎨=⎩可得()222220k x km p x m +-+=,()2222224480km p k m p kmp ∆=--=->,对于A 选项,2122m x x k=不一定是定值,A 错;对于B 选项,设线段AB 的中点为()00,P x y ,则12022x x p kmx k +-==,00p km p y kx m m k k-=+=+=为定值,故线段AB 的中点在定直线py k =上,B 对;对于C 选项,()121212122222111222OA OB p kmmk x x m x x y y k k k y y p p p k -+++++=+====为定值,C 对;对于D 选项,21222222222p km pp x x AF k p p BF x x -+-+==++不一定为定值,D 错.故选:BC.12.已知圆22:(2)1M x y +-=,点P 为x 轴上一个动点,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP 交于点C ,则下列结论正确的是()A.四边形PAMB 周长的最小值为2B.||AB 的最大值为2C.若(1,0)P ,则三角形PAB 的面积为85D.若(,0)4Q ,则||CQ 的最大值为94【答案】CD 【解析】【分析】首先设||MP t =,对于选项A,根据题意,表达四边形PAMB 周长关于t 的函数,由t 的取值范围求函数的最小值可判断A 错误;对于选项B,根据等面积法,求出||AB 关于t 的函数关系,由t 的取值范围求函数的最大值可判断B 错误;对于选项C,根据题意,计算PAB 的底和高,求出面积判断C 正确;对于选项D,设动点(,0)P m ,求出切线AB 的方程与直线PM 的方程,二者联立消去m 得到二者交点C 的轨迹是圆,||CQ 的最大值为圆心1O 与Q 距离加半径,可判断D 正确.【详解】对于选项A,设||MP t =,则||||BP AP ===则四边形PAMB 周长为2,则当t 最小时周长最小,又t 最小值为2,所以四边形PABM 周长最小为2+,故A 错误;对于选项B,12||||2MAP PAMB S S MP AB ==△四边形,即1121||22t AB ⨯⨯=,所以||AB ==,因为2t ,所以)||AB ∈,故B 错误;对于选项C,因为(1,0)P ,所以||MP =t =,所以||AB ==,1||||2AC AB ==,||2AP ==,||PC ==所以三角形PAB 的面积为18||||25AB PC =,故C 正确;对于选项D,设(,0)P m ,()11,A x y ,则切线PA 的方程为()()11221x x y y +--=,又因为直线PA 过点(,0)P m ,代入可得()()112021x m y +--=化简得11230mx y -+=设()22,B x y ,同理可得22230mx y -+=,因此点,A B 都过直线230mx y -+=,即直线AB 的方程为230mx y -+=,MP 的方程为22y x m=-+,二者联立得,22230y x mmx y ⎧=-+⎪⎨⎪-+=⎩①②,由①式解出22x m y =-,代入②式并化简得227302x y y +-+=,配方得2271(416x y +-=,2y ≠,所以点C 的轨迹是以(70,4)为圆心,14为半径的圆,设其圆心为1O ,所以||CQ的最大值为1119||2444O Q R +==+=,故D 正确.故选:CD.【点睛】本题综合性较强,难度较大,具备运动变化的观点和函数思想是解题的关键,对于AB 选项,设变量||MP t =,用t 分别表达周长函数和距离函数求最值,对于D 选项,设出动点(),0P m ,分别表达直线AB 和MP 的方程,联立消去m ,得到动点C 的轨迹,进一步求解答案.三、填空题:本题共4小题,每小题5分,共20分.13.已知实数0,0a b ><的取值范围是______.【答案】[)2,1--【解析】【分析】根据题意,设直线l :0ax by +=的几何意义为,点(1,到直线l 的距离,即可求出取值范围.【详解】根据题意,设直线l :0ax by +=,设点(1,A那么点(1,A 到直线l的距离为:d =,因为0,0a b ><,所以d =l 的斜率0ak b=->,当直线l的斜率不存在时,1d ==,所以1d >,当OA l ⊥时,max 2d OA ===,所以12d <≤,即12<≤,=21-≤<-,故答案为:[)2,1--.14.形如()0b y ax b x =+≠的函数图象均为双曲线,则双曲线4135y x x=-的一个焦点坐标为______.【答案】,515⎛⎫- ⎪ ⎪⎝⎭或,515⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】先确定双曲线的渐近线、对称轴方程,确定焦点位置及实半轴a ,最后由渐近线与对称轴夹角正切值确定b ,利用双曲线性质求出焦点.【详解】由4135-x y =x 知,其两条渐近线分别为403xx =,y =,所以双曲线4135-x y =x 的两条对称轴为403xx =,y =的夹角平分线,令43x y =的倾斜角为0,2πθ⎛⎫∈ ⎪⎝⎭,则4tan 3θ=,且一条对称轴倾斜角为42πθ+,而22tan42tan 31tan 2θθθ==-,则22tan 3tan 2022θθ+-=,解得tan 22θ=-(舍去),1tan 22θ=,所以11tan122tan 31421tan 122θπθθ++⎛⎫+=== ⎪⎝⎭--,即一条对称轴为3y x =,故另一条对称轴为13y x =-,显然13y x =-与4135-x y =x有交点,,,515515⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即为双曲线的顶点,则双曲线的实半轴长3015a ==,而渐近线0x =与对称轴13y x =-夹角的正切值为3,3b a =,又因为3015=a ,所以303033155⨯=b =a =,由2222641553+=c =a +b =,设焦点为1,3m m ⎛⎫- ⎪⎝⎭,则221433m m ⎛⎫+-= ⎪⎝⎭,所以305m =±,所以焦点坐标为,,,515515⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.故答案为:,515⎛⎫- ⎪⎪⎝⎭或,515⎛⎫- ⎪ ⎪⎝⎭.15.在椭圆2213x y +=上有点31,22P ⎛⎫ ⎪⎝⎭,斜率为1的直线l 与椭圆交于不同的A ,B 两点(且不同于P ),若三角形ABO 的外接圆恰过点P ,则外接圆的圆心坐标为______.【答案】71,88⎛⎫- ⎪⎝⎭【解析】【分析】根据题意得到():0AB y x b b =+≠,联立直线AB 与椭圆方程,利用韦达定理求得12x x +,12x x ,12y y +,12y y ;法一:先利用点斜式求得,OP AB 的中垂线方程,联立两者方程即可求得圆心C ,再由半径相等得到2222AC BC OC +=,利用两点距离公式,代入上述式子得到关于b 的方程,解之即可;法二:根据题意得到圆的方程,联立直线AB 与圆的方程,利用韦达定理求得12x x +,12x x ,进而得到,D E 关于b 的表达式,又由点P 在圆上得到关于b 的方程,解之即可.【详解】依题意,设()11,A x y ,()22,B x y ,直线():0AB y x b b =+≠,联立2213y x bx y =+⎧⎪⎨+=⎪⎩,消去y ,得2246330x bx b ++-=,所以1232x x b +=-,()212314b x x -=,则121212y y x b b b x ++=+=+,()()2121234b y y x b b x =+-=+,.法一:因为31,22P ⎛⎫⎪⎝⎭,所以1123302OP k -==-,OP 的中点坐标为3,414⎛⎫ ⎪⎝⎭,OP 中垂线的斜率为3-,所以OP 中垂线方程为113:344l y x ⎛⎫-=-- ⎪⎝⎭,即532y x =-+,因为AB 的斜率为1,AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,即31,44b b ⎛⎫- ⎪⎝⎭,所以AB 中垂线的斜率为1-,则AB 中垂线方程213:44l y b x b ⎛⎫-=-+ ⎪⎝⎭,即12y x b =--,联立53212y x y x b ⎧=-+⎪⎪⎨⎪=--⎪⎩,解得54354b x b y +⎧=⎪⎪⎨+⎪=-⎪⎩,则圆心坐标535,44b b C ++⎛⎫- ⎪⎝⎭,因为22222AC BC OC AC +==,所以222222112253515355354424444b b b b b b x y x y ++++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎥⎫⎛⎫+=-+++-++ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎭⎡⎤⎢⎥⎢⎣⎦⎝,整理得()()22221212121253522044b b x x x x y y y y ++⎛⎫⎛⎫+-+++++=⎪ ⎪⎝⎭⎝⎭,因为1232x x b +=-,()212314b x x -=,1212y y b +=,21234b y y -=,所以()22222112123624x x x x b x x +=+-+=,()2222211212624y b y y y y y -+=+-+=,则2203563614242532244b b b b b b ++⎛⎫⎛⎫⎛⎫-++= ⎪⎪- ⎪+⎝⎭⎝+-⨯⎭⎝⎭,整理得22530b b ++=,解得32b =-,1b =-,当1b =-时,直线:1AB y x =-,显然直线AB 过P 点,舍去,当32b =-时,()2299361633361633044b b ⎛⎫∆=--=⨯-⨯-> ⎪⎝⎭,直线3:2AB y x =-,满足题意,又535,44b b C ++⎛⎫-⎪⎝⎭,所以此时圆心坐标71,88C ⎛⎫- ⎪⎝⎭.法二:因为圆过原点()0,0O ,所以设圆的方程为220x y Dx Ey +++=()220D E +>,联立22y x b x y Dx Ey =+⎧⎨+++=⎩,消去y ,得()22220x b D E x b Eb +++++=,所以1222b D E x x +++=-,2122b Ebx x =+,又1232x x b +=-,()212314b x x -=,所以3222b D E b ++-=-,()223142b b Eb -+=,所以1322D b b =+,1322E b b=-,因为P 点在圆上,所以913104422D E +++=,即530D E ++=,所以13135302222b b b b ⎛⎫⎛⎫+++-=⎪ ⎪⎝⎭⎝⎭,整理得22530b b ++=,解得32b =-,1b =-,当1b =-时,直线:1AB y x =-,显然直线AB 过P 点,舍去,当32b =-时,1332722234D ⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭,1332122234E ⎛⎫⎛⎫=⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭,对于方程2246330x bx b ++-=,有()2299361633361633044b b ⎛⎫∆=--=⨯-⨯-> ⎪⎝⎭,对于方程()22220x b D E x b Eb +++++=,即29152028x x -+=,有2915Δ42028⎛⎫=--⨯⨯> ⎪⎝⎭,满足题意,又因为外接圆的圆心坐标为,22D E ⎛⎫-- ⎪⎝⎭,所以圆心为71,88⎛⎫- ⎪⎝⎭.故答案为:71,88⎛⎫-⎪⎝⎭.【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.16.已知直线l 过抛物线C :24y x =的焦点F ,与抛物线交于A 、B 两点,线段AB 的中点为M ,过M 作MN 垂直于抛物线的准线,垂足为N ,则2324NF AB +的最小值是______.【答案】【解析】【分析】设直线:1AB x my =+,()11,A x y ,()22,B x y ,联立抛物线方程得到关于y 的一元二次方程,得到韦达定理式,求出,M N 坐标,利用弦长公式和两点距离公式得到AB 和NF 的表达式,再利用基本不等式即可得到答案.【详解】显然当直线AB 斜率为0时,不合题意;故设直线:1AB x my =+,()11,A x y ,()22,B x y ,联立抛物线方程有2440y my --=,则216160m ∆=+>,124y y m +=,124y y =-,则1222M y y y m +==,111x my =+,221x my =+,则()21221224221222M m y y x x m x m ++++====+,则()221,2M m m +,准线方程为=1x -,()1,0F ,则()1,2N m -,()212||41AB y m =-=+,()()()22222||1124441||[4,)NF m m m AB =++-=+=+=∈+∞,所以232||32||||4||4NF AB AB AB +=+=,当且仅当32||||4AB AB =,即()2||41AB m =+=时等号成立,此时m =故答案为:【点睛】关键点点睛:本题的关键是采取设线法联立抛物线方程得到韦达定理式,再利用中点公式得到,M N 点坐标,最后利用弦长公式和两点距离公式得到相关表达式,最后利用基本不等式即可得到答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知点()1,0A -和点B 关于直线l :10x y +-=对称.(1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,求直线1l 的方程;(2)若直线2l 过点A 且与直线l 交于点C ,ABC 的面积为2,求直线2l 的方程.【答案】(1)30x y +-=(2)0y =或=1x -【解析】【分析】根据对称先求出B 点坐标(1)过点B 到点A 距离最大的直线与直线AB 垂直,从而求出直线方程;(2)画出图像,可求出点C 到直线AB 的距离,又点C 在直线l 上,可设出C 点的坐标,利用点到直线的距离公式求出C ,又直线过点A ,利用两点A 、C 即可求出直线2l 的方程.【详解】解:设点(),B m n 则1102211m n n m -+⎧+-=⎪⎪⎨⎪=⎪+⎩,解得:12m n =⎧⎨=⎩,所以点()1,0A -关于直线l :10x y +-=对称的点的坐标为()1,2B (1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,则直线1l 与过点AB 的直线垂直,所以1k =-,则直线1l 为:()21y x -=--,即30x y +-=.(2)由条件可知:22AB =,ABC 的面积为2,则ABC 的高为22222h ⨯==,又点C 在直线l 上,直线l 与直线AB 垂直,所以点C 到直线AB 的距离为2.直线AB 方程为1y x =+,设(),C a b ,则有122a b -+=,即1b a =-或3b a =+又1b a =-,解得:10a b =⎧⎨=⎩或12a b =-⎧⎨=⎩则直线2l 为:0y =或=1x -【点睛】本题考查求点关于直线的对称点,考查直线与直线相交的综合应用..方法点睛:(1)设出交点坐标(2)两点的中点在直线上,两点连线与原直线垂直,列方程组;(3)解出点坐标.18.已知圆221:(1)5C x y +-=,圆222:420C x y x y +-+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.【答案】(1)(2)22317222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)将两圆方程作差可求出公共弦的方程,然后求出圆心1C 到公共弦的距离,再利用弦心距,半径和弦的关系可求得答案,(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,求出圆心坐标代入241x y +=中可求出λ,从而可求出圆的方程,解法二:将公共弦方程代入圆方程中求出两圆的交点坐标,设所求圆的圆心坐标为(),a b ,然后列方程组可求出,a b ,再求出圆的半径,从而可求出圆的方程.【小问1详解】将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即()()222242240x y x y x y y +-+-+--=,化简得10x y --=,所以圆1C 的圆心()0,1到直线10x y --=的距离为d ==,则22215232AB r d ⎛⎫=-=-= ⎪⎝⎭,解得AB =所以公共弦长为【小问2详解】解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,则2242240,1111x y x y λλλλλλ-+-+-=≠-+++;由圆心21,11λλλ-⎛⎫- ⎪++⎝⎭在直线241x y +=上,则()414111λλλ--=++,解得13λ=,所求圆的方程为22310x y x y +-+-=,即22317222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.解法二:由(1)得1y x =-,代入圆222:420C x y x y +-+=,化简可得22410x x --=,解得22x ±=;当22x +=时,2y =;当22x -=时,2y =-;设所求圆的圆心坐标为(),a b ,则2222222222241a b a b a b ⎧⎛⎛⎛⎛-⎪-+-=-++ ⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎝⎭⎪+=⎩,解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩;所以222321722222r ⎛⎛+=-+--= ⎪ ⎪⎝⎭⎝⎭;所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭19.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.20.已知双曲线22:154x y Γ-=的左右焦点分别为1F ,2F ,P 是直线8:9l y x =-上不同于原点O 的一个动点,斜率为1k 的直线1PF 与双曲线Γ交于A ,B 两点,斜率为2k 的直线2PF 与双曲线Γ交于C ,D 两点.(1)求1211k k +的值;(2)若直线OA ,OB ,OC ,OD 的斜率分别为OA k ,OB k ,,OC k ,OD k ,问是否存在点P ,满足0OA OB OC OD k k k k +++=,若存在,求出P 点坐标;若不存在,说明理由.【答案】(1)94-;(2)存在98(,)55P -或98(,55P -满足题意.【解析】【分析】(1)设出(9,8)P λλ-,然后计算1211k k +即可得;(2)假设存在,设设00(9,8)P x x -,写出直线AB 方程,设1122(,),(,)A x y B x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,同理设3344(,),(,)C x y D x y ,直线CD 方程代入双曲线方程,应用韦达定理,代入计算OC OD k k +,然后由条件0OA OB OC OD k k k k +++=求得0x 得定点坐标.【小问1详解】由已知1(3,0)F -,2(3,0)F ,设(9,8)P λλ-,(0)λ≠,∴1839k λλ=--,2893k λλ-=-,121139939884k k λλλλ---+=+=--;【小问2详解】设00(9,8)P x x -,(00x ≠),∴010893x k x -=+,∴直线AB 的方程是008(3)93x y x x -=++,设11(,)A x y ,22(,)B x y ,008(3)93x y x x -=++代入双曲线方程得2220203204(69)20(93)x x x x x -++=+,即222200000(549)480(112527045)0x x x x x x x ++--++=,2012200480549x x x x x +=++,20012200112527045549x x x x x x ++=-++,00121212012012883()33(2)[29393OA OB x x y y x x k k x x x x x x x x ++=+=-++=-+++2200002200000083480832(2))93112527045932561x x x x x x x x x x ⋅=-+=--+---+++2000220000082(31)16(31)9325612561x x x x x x x x -+-+=⋅=+++++,同理CD 的方程为008(3)93x y x x -=--,设33(,)C x y ,44(,)D x y ,仿上,直线方程代入双曲线方程整理得:222200000(549)4801125270450x x x x x x x -++-+-=,2034200480549x x x x x +=--+,20034200112527045549x x x x x x -+-=-+,∴2303400423403400083()83480[2](2)9393112527045OC OD y x x x x x y k k x x x x x x x x -+-⋅+=+=-=----+20000220000083216(31)(2)9325613(2561)x x x x x x x x x ---=-=--+-+.由0OA OB OC OD k k k k +++=得00022000016(31)16(31)025613(2561)x x x x x x x -+--+=++-+,整理得200(251)0x x -=,∵00x ≠,∴015x =±,∴存在98(,)55P -或98(,)55P -满足题意.【点睛】方法点睛:是假设定点存在,题中设00(9,8)P x x -,写出直线方程,设出直线与双曲线的交点坐标如1122(,),(,)x y x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,最后利用已知条件求得0x ,若求不出结果说明不存在.本题考查了学生的逻辑能力,运算求解能力,属于困难题.21.抛物线2:2(0)C x py p =>的焦点为F ,准线为,l A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点,(1)若90,BFD ABD ∠= 的面积为p 的值及圆F 的方程(2)若直线y kx b =+与抛物线C 交于P ,Q 两点,且OP OQ ⊥,准线l 与y 轴交于点S ,点S 关于直线PQ 的对称点为T ,求||FT 的取值范围.【答案】(1)2p =,圆F 的方程为()2218x y +-=(2)(],4p p 【解析】【分析】(1)由焦半径和圆的半径得到2A p y FA FD +===,结合ABD △面积求出2p =,圆F 的方程为()2218x y +-=;(2)表达出0,2p S ⎛⎫- ⎪⎝⎭关于直线PQ 的对称点的坐标,利用垂直关系列出方程,求出2b p =,从而利用两点间距离公式表达出(],2FT p p ==.【小问1详解】由对称性可知:90,BFD FS BS DS p ∠=︒===,设(),A A A x y ,由焦半径可得:2A p y FA FD +===,112222ABD A p S BD y p ⎛⎫=⋅⋅+=⨯= ⎪⎝⎭ ,解得:2p =圆F 的方程为:()2218x y +-=【小问2详解】由题意得:直线PQ 的斜率一定存在,其中0,2p S ⎛⎫- ⎪⎝⎭,设0,2p S ⎛⎫- ⎪⎝⎭关于直线PQ 的对称点为(),T m n ,则12222p n m k p n m k b ⎧+⎪=-⎪⎪⎨⎪-⎪=⋅+⎪⎩,解得:221212b p m k k b p p n k +⎧=-⎪+⎪⎨⎪+=-⎪+⎩,联立y kx b =+与22x py =得:2220x pkx pb --=,设()()1122,,,P x y Q x y ,则12122,2x x pk x x pb +==-,则()()()2212121212y y kx b kx b k x x kb x x b =++=+++,则()()22121212121x x y y k x x kb x x b+=++++()222221220pb k pk b b pb b -+++=-+=,解得:0b =(此时O 与P 或Q 重合,舍去)或2b p =,所以FT =(],4p p ==,【点睛】圆锥曲线相关的取值范围问题,一般思路为设出直线方程,与圆锥曲线联立,得到两根之和,两根之积,由题干条件列出方程,求出变量之间的关系,再表达出弦长或面积等,结合基本不等式,导函数,函数单调性等求出最值或取值范围.22.如图,已知点P 是抛物线24C y x =:上位于第一象限的点,点()20A -,,点,M N 是y 轴上的两个动点(点M 位于x 轴上方),满足,PM PN AM AN ⊥⊥,线段PN 分别交x 轴正半轴、抛物线C 于点,D Q ,射线MP 交x 轴正半轴于点E .(1)若四边形ANPM 为矩形,求点P 的坐标;(2)记,DOP DEQ △△的面积分别为12S S ,,求12S S ⋅的最大值.【答案】(1)(2,P(2)192【解析】【分析】(1)根据矩形性质,可得对角线互相平分,即AP 的中点在y 轴上,然后点P 在抛物线,即可得(2,P ;(2)联立直线PQ 方程与抛物线C ,根据韦达定理求得,P Q 两点的纵坐标关系,再根据,PM PN AM AN ⊥⊥条件判断MOE △与DON △相似,进而求得,D E 两点的坐标关系,再表示并化简12S S ⋅为关于m 的函数,根据,D E 两点的位置关系,以线段DE 为直径的圆K 与抛物线C 有交点得出关于m 的约束,即可确定12S S ⋅中m 取值范围,最后可得12max ()(4192S S g ⋅=-=-【小问1详解】当四边形ANPM 为矩形时,AP 的中点在y 轴上,则有:2P A x x =-=故(2,P -【小问2详解】设点(,0)D m ,直线PQ 方程:x m ty -=,显然有0,0m t >≠联立直线PQ 与抛物线C ,得:24x m ty y x-=⎧⎨=⎩消去x 得:2440y ty m --=则有:4P Q y y m⋅=-由AM AN ⊥,得:2||||||4OM ON OA ⋅==又由PM PN ⊥,可得:△MOE ∽△DON 则有:||||||||OM OE OD ON =从而||||||||4OE OD OM ON ⋅=⋅=,即4E D x x ⋅=所以4E x m =,进而有:4||E D DE x x m m=-=-结合||,4P Q OD m y y m =⋅=-(注:由E D x x >,得4m m >,故有02m <<)可得:12111(||||)(||||)||||||224P Q P Q S S OD y DE y OD DE y y ⋅=⋅⋅⋅⋅⋅=⋅⋅⋅314()444m m m m m m=⋅⋅-⋅=-+又由题意知,存在抛物线上的点P 满足条件,即以线段DE 为直径的圆K 与抛物线C 有交点,且易得圆K 方程:24()()0x m x y m-⋅-+=联立抛物线C 与圆K ,得224()()04x m x y m y x⎧-⋅-+=⎪⎨⎪=⎩消去y 得:24(4)40x m x m-+-+=由0∆≥,结合02m <<,可解得:04m <≤-令3()4g m m m =-+,求导可知()g m在上单调递增又43-≤=故有:()g m在(0,4-上单调递增因此,12max ()(4192S S g ⋅=-=【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系;在求解相关最值问题时,通常是先建立目标函数,然后应用函数的知识来解决问题;。

浙江省金华市2023-2024学年高二下学期5月期中联考数学试卷(含解析)

浙江省金华市2023-2024学年高二下学期5月期中联考数学试卷(含解析)

浙江省金华市2023-2024学年高二下学期5月期中联考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.若集合,,则( )A.或 B.C. D.2.已知复数( )A.-2B.2C.D.3.若a ,,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法错误的个数为( )①已知,若,则②已知,则A.0B.1C.2D.35.科学家从由实际生活得出的大量统计数据中发现以1开头的数出现的频率较高,以1开头的数出现的频数约为总数的三成,并提出定律:在大量进制随机数据中,以开头的数出现的概率为.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.若,则k 的值为( )A.14B.15C.24D.256.袋中装有5个大小相同的球,其中有2个白球,2个黑球,1个红球,现从袋中每次取出1球,取出后不放回,取得白球得1分,取得黑球得2分,取得红球得3分,直到取到的球的总分大于{ln 0}M x x =>01xN xx ⎧⎫=>⎨⎬+⎩⎭M N = {1x x <-0}x >{1x x -<1}>{}01x x <<{}1x x >z =z z -=4i -4i0b >a b >3ln 3ln a b b a ->-()210X N σ~,()809P X ≥=.()81208P X ≤≤=.153X B ⎛⎫~ ⎪⎝⎭,()()5093E X D X ==,.b n ()log b bP n =()()*165ln6ln2ln2ln8kn p n k =-=∈+∑N ()*4k k ∈>N ,或等于4分时终止,用X 表示终止取球时所需的取球次数,则( )7.体积为1的正三棱雉的外接球的半径与底面正三角形的边长比的最小值为( )8.已知函数,当大值为M ,有,则实数k 的最大值为( )二、多项选择题9.下列选项中正确的有( )A.已知在,则C.若非零向量,D.已知,,且与夹角为锐角,则的取值范围是10.下列命题错误的是( )A.线性相关模型中,决定系数越大相关性越强,相关系数r 越大相关性也越强B.回归直线至少会经过其中一个样本点C.已知一系列样本点的经验回归方程为,若样本点与的残差相等,则D.以模型去拟合某组数据时,为了求出回归方程,设,将其变换后得到线性方程,则a,b 的值分别为3,411.如图,已知圆台的下底面直径,母线,且,P 是下底面圆周上一动点,则( )()3P X ==()()322111432f x x x a x b a b ⎛⎫=-+-+≥∈ ⎪⎝⎭R ,0x ∈[,(M k ≥ab 5252a b ⋅=)b c a b c⋅≤ a b b = 2b += ()12a = ,()23b = ,a a b λ+ λ58⎛⎫-+∞ ⎪⎝⎭2R ()i i x y ,()()i 123i i x y =⋯,,,ˆ2ˆy x a =+()2m ,()3n ,28m n +=e bx y a =ln z y =4ln3z x =+OO '4AB =2BC =AC BC ⊥A.圆台的侧面积为B.圆台C.当点P 是弧中点时,三棱雉的内切球半径D.的最大值为三、填空题12.的展开式中的常数项为____________.13.在锐角三角形中,边长为1,且,则边的长度取值范围是___________.14.某学校举办校庆,安排3名男老师和2名女老师进行3天值班,值班分为上午和下午,每班次一人,其中女老师不在下午值班,且每个人至少要值班一次,则不同的安排方法共有____________种(用数字作答).四、解答题15.设函数,其中,已知.(1)求的解析式;(2)已知,求的单调递增区间及值域.16.在如图所示的直三棱柱中,,,D ,E 分别是线段,上的动点.(1)若平面,,求的值;OO '6πOO πAB A BCP -23r >2PA PC +922x x ⎛⎫- ⎪⎝⎭ABC BC 2B A =AC ()cos f x x x ωω=-()0,3ω∈π26f ⎛⎫-=- ⎪⎝⎭()f x π0,2x ⎡⎤∈⎢⎥⎣⎦()f x 111ABC A B C -2AB BC ==12AA =BC 11A B //DE 11ACC A 1132B E EA =::CD BD :(2)若三棱柱是正三棱柱,D 是的中点,求二面角余弦值的最小值.17.已知函数,.(1)求曲线在点处的切线方程;(2)讨论的单调性;(3)证明:当时,.18.某超市为促进消费推出优惠活动,为预估活动期间客户投入的消费金额,采用随机抽样统计了200名客户的消费金额,分组如下:,,,,(单位:元),得到如图所示频率分布直方图:表示)(2)若把消费金额不低于800元的客户,称为“活跃客户”,经数据处理,现在列联表中得到一定的相关数据,求列联表中x,y 的值,并根据列联表判断是否有的把握认为“活跃客户”与性别有关?(3)为感谢客户,该超市推出免单福利,方案如下:从“活跃客户”中按分层抽样的方法抽取12人,从中抽取2人进行免单,试写出总单金额YBC D BE A --()()212ln 22f x x x a x =+++a ∈R ()y f x =()()11f --,()f x 2a <-()234a f x a a ae ++>-[)0200,[)200400,[)400600, []10001200,95%的分布列及其期望.(每一组消费金额按该组中点值估计,期望结果保留至整数.)附:19.已知①设函数的值域是C ,对于C 中的每个y ,若函数在每一处都等于它对应的,这样的函数叫做函数的反函数,记作,我们习惯记自变量为x ,因此可改成即为原函数的反函数.易知与互为反函数,且.如的反函数是可改写成即为的反函数,与互为反函数.②是定义在D 且取值于D 的一个函数,定义,,,,则称是函数在D 上的n 次迭代.例如,则.对于一些相对复杂的函数,为求出其n 次迭代函数,我们引入如下一种关系:对于给定的函数和,若函数的反函数存在,且有,称与关于相似,记作,其中称为桥函数,桥函数满足以下性质:(1)若,则(2)若为的一个不动点,即,则为的一个不动点.(i )若函数,求(写出结果即可)(ii )证明:若,则.(iii )若函数,求(桥函数可选取),若,试选取恰当桥函数,计算.()()()()()2n ad bc a b c d a c b d χ-=++++()()y f x x A =∈()g y ()g y x ()()x g y y C =∈()()y f x x A =∈()()1x f y y C -=∈()()1x f y y C -=∈()()1y f x x C -=∈()()1y f x x C -=∈()()y f x x A =∈()()1f f x x -=2x y =2log x y =2log y x =2x y =2log y x =2x y =()f x ()()0f x x =()()()1f x f x =()()()()2f x f f f f x =- ⋯()()()n f x f f f ff f x == ()()n f x ()f x ()f x x a =+()()n f x x na =+()f x ()g x ()x ϕ()1x ϕ-()()1f xg x ϕϕ-= ()f x ()g x ()x ϕf g ϕ~()x ϕf g ϕ~1g fϕ-~0x ()f x ()00f x x =()0x ϕ()g x ()22f x x =()()n f x f g ϕ~()()n n fg ϕ~()22f x x x =+()()n f x ()1x x ϕ=+()2612c x x x =-+()()n c x参考答案1.答案:D解析:,,所以,所以或,所以 或, 所以.故选:D.2.答案:C 解析:,所以.故选:C.3.答案:C解析:由可得,令,,所以 在上单调递增,所以由,即,当时,因为 在 上单调递增, 所以 ,当 ,因为 在 上单调递增,所以 ,所以 “”是“ ”的充要条件.故选:C.4.答案:B 解析:5.答案:A解析:即,{ln 0}{1}M x x x x =>=>∣∣0>(1)0x x +>0x >1x <-{1N x x =<-∣0}x >{1}M N x x => ∣2i12i iz -==--12i =-+4i z z -=-3ln 3ln a b b a ->-3ln 3ln a b a b +>+()3ln (0)x F x x x =+>1()3ln 30x F x x'=+>()F x (0,)+∞3ln 3ln a b a b +>+()()F a F b >a b >()F x (0,)+∞()()F a F b >()()F a F b >()F x (0,)+∞a b >a b >3ln 3ln b a b a ->-161616161656781()log log log log 567kn k p n k=+=++++∑ ()*ln 6ln 2,4ln 2ln 8k k -=∈>+N 16161log log 35k +=,解得.故选: A.6.答案:B解析:由题意,时, 取球的情况为:白白红,白白黑, 白黑白, 白黑黑, 白黑红, 黑白白,黑白黑, 黑白红,所以故选:B.7.答案:D解析:如图, 设正三棱锥的底面边长为,高为,外接球半径为.因为体积为1 ,所以,所以不论外接球的球心在正三棱锥的内部(图1),外部(图2)还是与G 重合(图3),其外接球半径均满足,将当且仅当即故选:D.8.答案:C 解析:3=14k =3X =21122211122111(3)54335433354333P X ⎛⎫⎛⎫⎛⎫==⨯⨯++⨯⨯+++⨯⨯++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭AB BC AC a ===GS h =OA OS R ==211132V h =⨯=2a h =2222()3h R R ⎛⎫-+= ⎪ ⎪⎝⎭2a h ===≥==312a =a =9.答案:BC 解析:10.答案:AB 解析:11.答案:ABD 解析:12.答案:5376解析:的展开式的通项为:,,令,解得: ,所以 的展开式中的常数项为:.故答案为:5376 .13.答案:解析:因为 , 所以 ,由正弦定理得, ,因为,所以 ,因为是锐角三角形,所以,解得,所以,即边的长度取值范围是.故答案为:.14.答案:252解析:若上午值班均为女教师, 则不同的安排方法共有 种,可知下午值班均为男教师,则不同的安排方法共有 种,则不同的安排方法共有 种;922x x ⎛⎫- ⎪⎝⎭()921831992C C (2)rr r r r rr T x x x --+⎛⎫=-=- ⎪⎝⎭0,19r =⋯1830r -=6r =922x x ⎛⎫- ⎪⎝⎭669C (2)5376-=2B A =sin sin 22sin cos B A A A ==2cos b a A =1a =2cos b A =ABC △π0,2π20,2ππ30,2A B A C A ⎧⎛⎫∈ ⎪⎪⎝⎭⎪⎪⎛⎫=∈⎨ ⎪⎝⎭⎪⎪⎛⎫=-∈⎪ ⎪⎝⎭⎩ππ,64A ⎛⎫∈ ⎪⎝⎭2cos b A =∈AC3226-=33A 6=6636⨯=若上午值班有男教师, 则不同的安排方法共有种,①当上午值班的男教师不下午值班时,则不同的安排方法共有 种;②当上午值班的男教师也下午值班时, 则不同的安排方法共有 种;则不同的安排方法共有种;综上所述:不同的安排方法共有种.15.答案:(1)(2)解析:(1)可化为,所以所以,又所以,所以(2)令解得又所以故的单调递增区间为所以所以1333C A 18=3226-=33A 6=18(66)216⨯+=36216252+=()π2sin 26f x x ⎛⎫=- ⎪⎝⎭()[]12f x ∈-,()f x ()π2sin 6f x x ω⎛⎫=- ⎪⎝⎭2ππsin 2666πf ω⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭πππ2k π662ω--=-+212k ω=-k ∈Z ()03ω∈,0k =2ω=()π2sin 26f x x ⎛⎫=- ⎪⎝⎭()111πππ2π22π262k x k k -≤-≤+∈Z ()111ππππ63k x k k -≤≤+∈Z π02x ⎡⎤∈⎢⎥⎣⎦,10k =()f x π03x ⎡⎤∈⎢⎥⎣⎦,π02x ⎡⎤∈⎢⎥⎣⎦,ππ5π2666x ⎡⎤-∈-⎢⎥⎣⎦,()[]12f x ∈-,解析:方法1.(1)过点E 作,交于M ,连接,如图,由平面,平面,则平面又平面,,且,平面,故平面平面又平面平面,平面平面,所以方法2过点D 作,可得,所以四点共面四边形是平行四边形1//EM A A AB DM 1AA ⊂11AA C C ME ⊄11AA C C //EM 1ACC A 32BM AM ==//DE 11ACC A DE EM E = DE EM ⊂DEM //DEM 11ACC A DEM ABC DM =11A ACC ABC AC =//DM ACBD CD ==23=//MD AB //MD AE 1MDEA 11111111////A ED AA C C AA C C EA MD A M ED A M ED E MD⎧⎪=∴⎨⎪⊂⎩平面平面平面,平面∴1EA MD 1A E MD ∴=25DM CD AB CB ===23=(2)过D 作,垂足为G ,正三棱雉可得平面,再过作,垂足为N ,连接,则即为二面角的平面角.当E 位于时故二面角方法2:取的中点O 由正三棱锥得平面如图建立空间直角坐标系,,,设平面的法向量令平面法向量DG AB⊥DG ⊥11A ABB GGN BE ⊥DN ,EB NG EB DG EB DGN EB ND NG DG G ⊥⊥⎧⇒⊥⇒⊥⎨=⎩平面 DNG ∠B AE D --cos GN DNG DN ∠===1A min DG =min DNG ∠==B AE --BA OC ⊥11AA B B()2,,0E t ()0,1,0B -[]10112D t ⎛-∈- ⎝,,()21,0BE t =+ ,102BD ⎛= ⎝ ,DEB ()n x y z =,, ()102210BD n y z BE n x t y ⎧⋅=+=⎪⎨⎪⋅=++=⎩y =)11t ⎛⎫=+- ⎪ ⎪⎝⎭11AA B B ()001m =,,当时取到17.答案:(1)(2)时增区间为,当时单调递增区间为,单调递减区间为(3)见解析解析:(1)令又过点直线方程为可化为(2)当,在上恒成立,故在上单调递增;当时,令得令得故在上单调递增,在上单调递减综上所述:时增区间为当时单调递增区间为,单调递减区间为(3)证明:不等式可化为恒成立由(2)知,当时,,令,cos cos ,m n θ== 1t =min cos θ=()112ya x a =++-0a ≥()2,-+∞0a <()2-++∞(22--,()()()222222x a a f x x x x x '++=++=>-++()111x k f a='=--=+,31,2⎛⎫- ⎪⎝⎭-()()3112y a x +=++()112y a x a =++-()()()2222x af x x x ++=+'>- 0a ≥()0f x '>()2,x ∈-+∞()f x ()2,-+∞0a <()0f x '>2x >-+()0f x '<22x -<<-()f x ()2-++∞(2,2--+0a ≥()2,-+∞0a <()2-++∞(22--,()2340a f x a a ae ++-+>2a <-()(()min 112ln 222f x f a a a =-+=-+--()()()222min 154343ln 222a a a f x a ae a f x a ae a a a a ae a ++-+≥++-+=-+-++()()215ln 222a g a a a a ae a =-+-++则.令则.因为,所以所以在上单调递增.所以,所以,所以在上单调递减.因为,所以,所以,即当时,.18.答案:(1)620(2)有的把握与性别有关(2)列联表如下因此有的把握与性别有关.(3)可视作抽出消费900元8人,消费1100元4人()()12ln 32a a g a a a e ae =+---+'()()12ln 32a a h a a a e ae =+---+()()1222a h a e a a=+-+'2a <-()0h a '>()h a ()2∞--,()()2121ln202h a h e -<-=-++<()0g a '<()g a ()2-∞-,()22ln2210g e --=-++>()()20g a g >->()()()22min 43430a a f x a ae a f x a ae a g a ++-+≥++-+=>2a <-()234a f x a a ae ++>-95%100013000155000270002590002110001620=⨯+⨯+⨯+⨯+⨯+⨯=......()2220012003200952410010060140χ⨯-==⨯⨯⨯.23841χ>.95%19.答案:(1)(2)成立(3)见解析解析:(1)(2)因为,有,即所以有,即由数学归纳法或递推法可知成立.(3)根据相似函数不动点也相似,桥函数选取时可令不动点为一解,当,可选取桥函数(不唯一),易得由(2)可知,即有.当,选取桥函数,.易得由(2)可知,,即有.()141611800200022001933333311E Y =⨯+⨯+⨯≈2122n n x -⋅()()n n f g ϕ~()()2122n n n f x x -=⋅f g ϕ~1f g ϕϕ-= f g ϕϕ= 1f f g f g g g g ϕϕϕϕϕϕ-=== ()()22fg ϕ~()()n n f g ϕ~()22f x x x =+()1x x ϕ=+()()()211121,11211x x g f f x x x ϕϕϕϕ---=-==+=-+-+= ()2n n g x =()()n n fg ϕ~()()()()2n 1111nn n f g g x ϕϕϕ-==-=+- ()2612c x x x =-+()3x x ϕ=-()1123x x g f x ϕϕϕ--=+==, ()2n n g x =()()n n f g ϕ~()()()2133n n n f g x ϕϕ-==-+。

专题04 恒成立问题(文理通用)(含详细答案)

专题04 恒成立问题(文理通用)(含详细答案)

专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0a f f a e>2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为14.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .16.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+ D .21cos 12x x ≥-1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________. 2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________.6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________. 14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________.1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________.3.已知函数1()ln (0)f x ax x a x=+>.(1)当1a =时,()f x 的极小值为___________;(2)若()f x ax ≥在(0,)+∞上恒成立,则实数a 的取值范围为___________. 4.已知函数()()221xf exx x =-+,则()f x 在点()()0,0f 处的切线方程为___________,若()f x ax ≥在()0,∞+上恒成立,则实数a 的取值范围为___________.5.设函数()32f x ax bx cx =++(a ,b ,R c ∈,0a ≠)若不等式()()2xf x af x '-≤对一切R x ∈恒成立,则a =___________,b ca+的取值范围为___________. 6.已知函数()()x x f x x ae e -=-为偶函数,函数()()xg x f x xe -=+,则a =___________;若()g x mx e >-对()0,x ∈+∞恒成立,则m 的取值范围为___________. 五、解答题1.已知函数()sin f x x ax =-,()=ln 1xg x x x e -+,2.71828e =⋅⋅⋅为自然对数的底数. (1)当()0,x π∈,()0f x <恒成立,求a 的取值范围;(2)当0a =时,记()()()h x f x g x =+,求证:对任意()1,x ∈+∞,()0h x <恒成立. 2.已知函数()1x f x ae x =--(1)若()0f x ≥对于任意的x 恒成立,求a 的取值范围 (2)证明:1111ln(1)23n n++++≥+对任意的n N +∈恒成立 3.若对任意的实数k 、b ,函数()y f x kx b =++与直线y kx b =+总相切,则称函数()f x 为“恒切函数”.(1)判断函数()2f x x =是否为“恒切函数”;(2)若函数()()ln 0f x m x nx m =+≠是“恒切函数”,求实数m 、n 满足的关系式;(3)若函数()()1x xf x e x e m =--+是“恒切函数”,求证:104m -<≤. 4.已知函数()(ln )sin x f x e x a x =+-.(1)若()ln sin f x x x ≥⋅恒成立,求实数a 的最大值; (2)若()0f x ≥恒成立,求正整数a 的最大值.专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【分析】当1x <时,求导,得出导函数恒小于零,得出()f x 在(),1-∞内是增函数.再由()()2f x f x -=+得()f x 的图象关于直线1x =对称,从而得()f x 在()1,+∞内是减函数,由此可得选项.【解析】当1x <时,'1()0xx f x e -=->,则()f x 在(),1-∞内是增函数. 由()()2f x f x -=+得()f x 的图象关于直线1x =对称,所以()f x 在()1,+∞内是减函数, 所以()()350f f ->.故选C .2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef【试题来源】2020届福建省仙游县枫亭中学高三上学期期中考试(理) 【答案】B【分析】构造函数()()xf x F x e =,求出'()0F x >,得到该函数为R 上的增函数,故得(0)(1)F F <,(0)(2018)F F <,从而可得到结论.【解析】设()()x f x F x e =,x R ∈(),所以'()()[]xf x F x e '==()()xf x f x e '-, 因为对于()(),x R f x f x ∀∈<',所以'()0F x >,所以()F x 是R 上的增函数,所以(0)(1)F F <,(0)(2018)F F <,即(1)(0)f f e <,2018(2018)(0)f f e <, 整理得()()10f ef >和()20182018(0f ef >).故故选B .3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 【试题来源】浙江省杭州市萧山中学2019-2020学年高三下学期返校考试 【答案】D【解析】对于A ,不妨令01a <≤,1b ≥,则1aab bb a aa a ab a b a b ⎛⎫⎛⎫⋅=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,所以1baa b ⋅=即11b aaab-=,由10b a -≥可知101b aa -<≤,则101ab <≤,所以1≥ab ,2a b +≥,故A 正确; 对于B ,若a b ≤,则0a b e e -≤,320b a ->,故32ab e e b a -≠-即23a b e a e b +≠+,与已知矛盾,故B 正确;对于C ,()ln ln ln 1b b a a b a b a a-≥-⇔-≥-, 令0b x a =>,()()ln 10f x x x x =-->,则()1x f x x-'=, 则()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()10f x f ≥=,所以ln 10b b a a --≥即ln 1b ba a-≥-,故C 正确; 对于D ,设()()ln 0h x x x x =>,()()0x xg x x e=>, 则()ln 1h x x '=+,()1xxg x e -'=, 所以()h x 在()10,e -上单调递减,在()1,e -+∞上单调递增,则()()11h x h e e --≥=-,()g x 在()0,1上单调递增,在()1,+∞上单调递减,则()()11g x g e -≤=,所以()()110h e g e --+<,即当1a b e -==时ln 0bba a e +<,故D 错误.故选D . 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010【试题来源】新疆维吾尔自治区2021届高三第二次联考数学(理)能力测试试题 【答案】D【分析】由极值点得数列的递推关系,由递推关系变形得数列1{}n n a a +-是等比数列,求得1n n a a +-,由累加法求得n a ,计算出n b ,然后求和122311202020202020n n b b b b b b ++++,利用增函数定义得此式的最小值,从而得出n S 的最小值,再由不等式恒成立可得t 的最大值. 【解析】3212()43n n n f x a x a x a '++=--,所以12(1)430n n n f a a a '++=--=, 即有()2113n n n n a a a a +++-=-,所以{}1n n a a +-是以2为首项3为公比的等比数列, 所以1123n n n a a -+-=⋅,1201111221123232313n n nn n n n n n n a a a a a a a a a a --++---=-+-+-++-+=⋅+⋅++⋅+=所以31log n n b a n +==,所以12231120202020202011120201223(1)n n b b b b b b n n +⎛⎫+++=+++⎪⨯⨯+⎝⎭1111120202020122311n n n n ⎛⎫=-+-++-=⎪++⎝⎭, 又20201ny n =+为增函数,当1n =时,1010n S =,10102020n S ≤<, 若n S t ≥恒成立,则t 的最大值为1010.故选D .【名师点睛】本题考查函数的极值,等比数列的判断与通项公式,累加法求通项公式,裂项相消法求和,函数新定义,不等式恒成立问题的综合应用.涉及知识点较多,属于中档题.解题方法是按部就班,按照题目提供的知识点顺序求解.由函数极值点得数列的递推公式,由递推公式引入新数列是等比数列,求得通项公式后用累加法求得n a ,由对数的概念求得n b ,用裂项相消法求和新数列的前n 项和,并利用函数单调性得出最小值,然后由新定义得n S 的最小值,从而根据不等式恒成立得结论. 二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0af f a e>【试题来源】江苏省扬州中学2019-2020学年高二下学期6月月考 【答案】BD【分析】根据()()'0f x f x +>,设()()xh x e f x =,()()()()xh x ef x f x ''=+,得到()h x 在R 上是增函数,再根据a 是正实数,利用单调性逐项判断.【解析】设()()xh x e f x =,()()()()xh x ef x f x ''=+,因为()()'0f x f x +>,所以()0h x '>,()h x 在R 上是增函数, 因为a 是正实数,所以2a a <,所以()()22aae f a e f a <,因为21a a e e >>, ()(),2f a f a 大小不确定,故A 错误, 因为a a -<,所以()()aa ef a e f a --<,即()()2a f a e f a >-,故B 正确.因为0a >,所以()()()000a e f a e f f >=, 因为1a e >,()(),0f a f 大小不确定.故C 错误.()()()000a e f a e f f >=,因为1a e >,所以()()0af f a e>,故D 正确.故选BD. 【名师点睛】本题主要考查导数与函数单调性比较大小,还考查了运算求解的能力,属于中档题.2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->【试题来源】江苏省盐城市伍佑中学2019-2020学年高二下学期期中 【答案】BCD【分析】构造出函数()()xxf x F x e =,再运用求导法则求出其导数,借助导数与函数单调性之间的关系及题设中()()()f x xf x xf x '+<,从而确定函数()()xxf x F x e =是单调递减函数,然后可判断出每个答案的正误. 【解析】构造函数()()xxf x F x e =, 因为2[()()]()()()()()0()x x x xe f x xf x xe f x f x xf x xf x F x e e '+-+-=='<', 故函数()()xxf x F x e=在R 上单调递减函数, 因为21>,所以212(2)(1)(2)(1)f f F F e e <⇒<,即2(2)(1)f f e<,故A 正确,B 错误; 因为()(1)0F F <,即()10f e<,所以()10f <,故C 错误; 因为()(1)0F F ->,即()110f e--->,所以()10f -<,故D 错误,故选BCD. 【名师点睛】解答本题的难点所在是如何依据题设条件构造出符合条件的函数()()xxf x F x e=,这里要求解题者具有较深的观察力和扎实的基本功,属于较难题. 3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1【试题来源】山东省肥城市2019-2020学年高二下学期期中考试 【答案】BCD【分析】先对函数求导,根据022f ππ⎛⎫'=-≠⎪⎝⎭,排除A ;再由导数的方法研究函数单调性,判断出B 选项;构造函数()sin xg x x=,由导数的方法研究其单调性,即可判断C 选项;根据()sin x g x x =的单调性,先得到sin 2x x π>,再令()sin h x x x =-,根据导数的方法研究其单调性,得到sin 1xx<,即可判断D 选项. 【解析】因为()cos sin f x x x x =-,所以()cos sin cos sin f x x x x x x x '=--=-, 所以022f ππ⎛⎫'=-≠⎪⎝⎭,所以2x π=不是函数的极值点,故A 错; 若[]0,x π∈,则()sin 0f x x x '=-≤,所以函数()cos sin f x x x x =-在区间[]0,π上单调递减;因此()()00≤=f x f ,故B 正确; 令()sin x g x x =,则()2cos sin x x x g x x -'=, 因为()cos sin 0f x x x x =-≤在[]0,π上恒成立,所以()2cos sin 0x x xg x x -'=<在()0,π上恒成立,因此函数()sin xg x x=在()0,π上单调递减;又120x x π<<<,所以()()12g x g x >,即1212sin sin x x x x >,所以1122sin sin x x x x <,故C 正确;因为函数()sin x g x x =在()0,π上单调递减;所以0,2x π⎛⎫∈ ⎪⎝⎭时,函数()sin x g x x =也单调递减,因此()sin 22x g x g x ππ⎛⎫=>= ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭上恒成立;令()sin h x x x =-,0,2x π⎛⎫∈ ⎪⎝⎭,则()1cos 0h x x '=-≥在0,2π⎛⎫⎪⎝⎭上恒成立,所以()sin h x x x =-在0,2π⎛⎫⎪⎝⎭上单调递增, 因此()sin 0h x x x =->,即sin 1xx <在0,2π⎛⎫ ⎪⎝⎭上恒成立; 综上,2sin 1x x π<<在0,2π⎛⎫⎪⎝⎭上恒成立,故D 正确.故选BCD . 【名师点睛】本题主要考查导数的应用,利用导数的方法研究函数的极值,单调性等,属于常考题型.4.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 【试题来源】冲刺2020高考数学之拿高分题目强化卷(山东专版) 【答案】ACD【分析】对选项A ,()f x 在[]1,2上的最小值小于a 即可;对选项B ,()g x 的最小值大于0即可;对选项C ,()f x 在[]1,2上的最小值大于()g x 的最大值即可;对选项D ,[]11,2x ∀∈,[]20,1x ∃∈,()min min ()g x f x ≤,()max max ()g x f x ≥即可.【解析】对选项A ,只需()f x 在[]1,2上的最小值小于a ,()f x 在[]1,2上单调递增,所以min 2()(1)111f x f ==-=-,所以1a >-,故正确; 对选项B ,只需()g x 的最小值大于0,因为[]πcos,2x a a a∈-,所以min ()52530g x a a a =-+-=->,所以503a <<,故错误; 对选项C ,只需()f x 在[]1,2上的最小值大于()g x 的最大值,min ()1f x =-,max ()525g x a a a =+-=-,即15a ->-,6a >,故正确;对选项D ,只需()min min ()g x f x ≤,()max max ()g x f x ≥,max 2()(2)212f x f ==-=,所以[]11,2x ∈,[]1()1,1f x ∈-, []0,1x ∈时,π0,22x π⎡⎤∈⎢⎥⎣⎦,所以()g x 在[]0,1上单调递减, ()min (1)52a g x g ==-,()max (0)5a g x g ==-,所以()[]52,5g x a a ∈--,由题意,52151a a -≤-⎧⎨-≥⎩⇒34a ≤≤,故正确.故选ACD .【名师点睛】本题主要考查不等式恒成立和存在性问题,考查学生的分析转化能力,注意恒成立问题和存在性问题条件的转化,属于中档题.5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .1【试题来源】江苏省南京市2020-2021学年高三上学期期中考前训练 【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立,令()()3ln ln 1x F x x x x x =++>,利用导数法研究其最小值即可.【解析】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x =++>,则()222131ln 2ln x x x F x x x x x---'=-+=.令()ln 2x x x ϕ=--,因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=,将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数,所以713,34t ⎛⎫∈ ⎪⎝⎭,即()min1713,41216F x ⎛⎫∈ ⎪⎝⎭. 因为k 为整数,所以0k ≤.故选ABC . 6.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+D .21cos 12x x ≥-【试题来源】广东省中山市2019-2020学年高二下学期期末 【答案】ACD 【分析】令10tx ,()1ln 1f t t t=+-,导数方法求出最小值,即可判定出A 正确;令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >,导数方法研究单调性,求出范围,即可判定B 错; 令()1xf x e x =--,导数的方法求出最小值,即可判定C 正确;令()21cos 12f x x x =-+,导数的方法求出最小值,即可判定D 正确. 【解析】A 选项,因为1x >-,令10t x ,()1ln 1f t t t=+-,则()22111t f t t t t -'=-=,所以01t <<时,()210t f t t-'=<,即()f t 单调递减;1t >时,()210t f t t -'=>,即()f t 单调递增; 所以()()min 10f t f ==,即()1ln 10f t t t=+-≥,即1ln t t t -≥,即()ln 11x x x +≥+,1x >-恒成立;故A 正确;B 选项,令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >, 则()()2222211112110222x x x f x x x x x ---⎛⎫'=-+==-≤ ⎪⎝⎭显然恒成立, 所以()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭在0x >上单调递减, 又()10f =,所以当()0,1x ∈时,()()10f x f >=,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,故B 错; C 选项,令()1xf x e x =--,则()1xf x e '=-,当0x >时,()10xf e x ='->,即()f x 单调递增;当0x <时,()10xf e x ='-<,所以()f x 单调递减;则()()00f x f ≥=,即1x e x ≥+恒成立;故C 正确; D 选项,令()21cos 12f x x x =-+,则()sin f x x x '=-+, 所以()cos 10f x x ''=-+≥恒成立,即函数()sin f x x x '=-+单调递增, 又()00f '=,所以当0x >时,()0f x '>,即()21cos 12f x x x =-+单调递增; 当0x <时,()0f x '<,即()21cos 12f x x x =-+单调递减; 所以()()min 00f x f ==,因此21cos 12x x ≥-恒成立,故D 正确;故选ACD . 三、填空题1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________.【试题来源】【全国区级联考】江苏省徐州市铜山区下学期高二数学(文)期中试题 【答案】2c ≥【解析】由()()f x g x ≥,即32ln 1x x c x -+≥+,即32ln 1c x x x ≥-+++.令()()32ln 10h x x x x x =-+++>,()()()21331x x x h x x'-++=-,故函数()h x 在区间()0,1上递增,在()1,+∞上递减,最大值为()12h =,所以2c ≥.【名师点睛】本题主要考查利用分析法和综合法求解不等式恒成立,问题,考查利用导数研究函数的单调性,极值和最值等知识.首先根据()()f x g x ≥,对函数进行分离常数,这里主要的思想方法是分离常数后利用导数求得另一个部分的最值,根据这个最值来求得参数的取值范围.2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.【试题来源】2020届湖南省长沙市长郡中学高三下学期3月停课不停学阶段性测试(理) 【答案】(,2]e -∞【分析】首先对参数的范围进行讨论,分两种情况,尤其是当0m >时,对式子进行变形,构造新函数,将恒成立问题转化为最值来处理,利用函数的单调性来解决,综述求得最后的结果.【解析】(1)0m ≤,显然成立;(2)0m >时,由32ln 0mxx x me -≥22ln m x m x x e x ⇒≥2ln (2ln )mxx m x e e x⇒≥,由()x f x xe =在[),e +∞为增2ln mx x⇒≥2ln m x x ⇒≤在[),e +∞恒成立, 由()2ln g x x x =在[),e +∞为增,min ()2g x e =,02m e <≤, 综上,2m e ≤,故答案为(,2]e -∞.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.【试题来源】四川省泸州市2020学年下学期高二期末统一考试(文) 【答案】(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【解析】函数的导数2()21f ax x x '=+-,由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立,即221a x x+,得322x x a +在1x 上恒成立,设32()2g x x x =+, 则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数, 则当1x =时,()g x 取得最小值()1213g =+=,则3a , 即实数a 的取值范围是(],3-∞,故答案为(],3-∞.【名师点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 【试题来源】2020年高考数学选填题专项测试(文理通用) 【答案】[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【解析】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥,故答案为[)0,+∞.【名师点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________. 【试题来源】2020届四川省成都七中高三二诊数学模拟(理)试题 【答案】0a e ≤<【分析】若函数()0x f x e ax =->恒成立,即min ()0f x >,求导得'()x f x e a =-,在0,0,0a a a >=<三种情况下,分别讨论函数单调性,求出每种情况时的min ()f x ,解关于a的不等式,再取并集,即得.【解析】由题意得,只要min ()0f x >即可,'()x f x e a =-,当0a >时,令'()0f x =解得ln x a =,令'()0f x <,解得ln x a <,()f x 单调递减, 令'()0f x >,解得ln x a >,()f x 单调递增,故()f x 在ln x a =时,()f x 有最小值,min ()(ln )(1ln )f x f a a a ==-, 若()0f x >恒成立,则(1ln )0a a ->,解得0a e <<; 当0a =时,()0x f x e =>恒成立; 当0a <时,'()x f x e a =-,()f x 单调递增,,()x f x →-∞→-∞,不合题意,舍去.综上,实数a 的取值范围是0a e ≤<.故答案为0a e ≤<6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 【试题来源】陕西省商洛市洛南中学2019-2020学年高二下学期第二次月考(理) 【答案】(2,)+∞【分析】设()3212,[1,2]2x x x x f x --∈-=,利用导数求得函数的单调性与最大值,结合题意,即可求得实数m 的取值范围.【解析】由题意,设()3212,[1,2]2x x x x f x --∈-=, 则()22(1)(323)x x f x x x --=-+'=,当2[1,)3x ∈--或(1,2]x ∈时,()0f x '>,()f x 单调递增;当2(,1)3x ∈-时,()0f x '<,()f x 单调递减, 又由222(),(2)2327f f -==,即2()(2)3f f -<, 即函数()f x 在区间[1,2]-的最大值为2,又由当[1,2]x ∈-时,32122x x x m --<恒成立,所以2m >, 即实数m 的取值范围是(2,)+∞.故答案为(2,)+∞【名师点睛】本题主要考查了恒成立问题的求解,其中解答中熟练应用函数的导数求得函数的单调性与最值是解答的关键,着重考查推理与运算能力,属于基础题.7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.【试题来源】浙江省杭州地区(含周边)重点中学2020-2021学年高三上学期期中 【答案】32m ≤-【分析】对已知不等式进行变形,利用换元法、构造函数法、常变量分离法,结合导数的性质进行求解即可.【解析】()()()()222210xx x x x xme ex e ex me ex e ex e e++++-⇒≤≤ (1), 令x ext e=,因为()0,x ∈+∞,所以0t >, 则不等式(1)化为2221(2)(1)11t t m t t m t --+++≤⇒≤+,设()xex f x e=,()0,x ∈+∞,'(1)()x e x f x e -=,当1x >时,'()0,()f x f x <单调递减, 当01x <<时,'()0,()f x f x >单调递增,因此当()0,x ∈+∞时,max ()(1)1f x f ==, 而(0)0f =,因此当()0,x ∈+∞时,()(0,1]f x ∈,因此(0,1]t ∈,设2221()1t t g t t --+=+,(0,1]t ∈,因此要想()()220x x xme ex e ex e ++-≤在()0,x ∈+∞上恒成立,只需min ()m g t ≤,2'2243()(1)t t g t t ---=+,因为(0,1]t ∈,所以'()0g t <,因此()g t 在(0,1]t ∈时单调递减,所以min 3()(1)2g t g ==-,因此32m ≤-.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.【试题来源】四川省三台中学实验学校2019-2020学年高二下学期期末适应性考试(理) 【答案】1,e e ⎛⎫ ⎪⎝⎭【分析】先由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;原问题即可转化为直线y ax =介于x y e =与ln y x =之间,作出其大致图象,由图象得到只需<<OA OB k a k ;根据导数的方法求出OA ,OB 所在直线斜率,进而可得出结果. 【解析】由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;所以若()()(ln )0=--<xf x e ax x ax 恒成立,只需0ln 0x e ax x ax ⎧->⎨-<⎩,即直线y ax =介于x y e =与ln y x =之间,作出其大致图象如下:由图象可得,只需<<OA OB k a k ;设11(,)A x y ,由ln y x =得1y x'=,所以111OA x x k y x =='=, 所以曲线ln y x =在点11(,)A x y 处的切线OA 的方程为1111ln ()-=-y x x x x , 又该切线过点O ,所以11110ln (0)1-=-=-x x x ,解得1x e =,所以1=OA k e; 设22(,)B x y ,由x y e =得e x y '=,所以22x OB x x k y e =='=,所以曲线x y e =在点22(,)B x y 处的切线OB 的方程为222()-=-x x y e e x x ,又该切线过点O ,所以2220(0)-=-x x ee x ,解得21x =,所以=OB k e ;所以1a e e <<.故答案为1,e e ⎛⎫⎪⎝⎭. 【名师点睛】本题主要考查由导数的方法研究不等式恒成立的问题,熟记导数的几何意义即可,属于常考题型.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________. 【试题来源】黑龙江省七台河市田家炳高级中学2019-2020学年高二下学期期中考试(理)【答案】[1,)-+∞【分析】求导得到()x f x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案. 【解析】因为()1x f x e ax =+-,所以()x f x e a '=+,因为0x ,所以()1f x a '+. 当10a +,即1a ≥-时,()0f x ',则()f x 在[0,)+∞上单调递增,从而()(0)0f x f =,故1a ≥-符合题意;当10a +<,即1a <-时,因为()x f x e a '=+在[0,)+∞上单调递增,且(0)10f a '=+<,所以存在唯一的0(0,)x ∈+∞,使得()00f x '=.令()0f x '<,得00x x <,则()f x 在[)00,x 上单调递减,从而()(0)0f x f =,故1a <-不符合题意.综上,a 的取值范围是[1,)-+∞.故答案为[1,)-+∞.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________. 【试题来源】北京市101中学2019-2020学年高三10月月考 【答案】331n n >-【分析】将不等式中的数字2变为3,得出331n n >-,然后利用导数证明出当3n ≥时,33n n ≥即可,即可得出不等式331n n >-对任意的n *∈N 恒成立.【解析】13311>-,23321>-,33331>-,猜想,对任意的n *∈N ,331n n >-.下面利用导数证明出当3n ≥时,33n n ≥,即证ln 33ln n n ≥,即证ln ln 33n n ≤, 构造函数()ln x f x x =,则()21ln xf x x -'=,当3x ≥时,()0f x '<. 所以,函数()ln x f x x =在区间[)3,+∞上单调递减,当3n ≥时,ln ln 33n n ≤.所以,当3n ≥且n *∈N 时,33n n ≥,所以,331n n >-.故答案为331n n >-. 【名师点睛】本题考查数列不等式的证明,考查了归纳法,同时也考查了导数在证明数列不等式的应用,考查推理能力,属于中等题.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________. 【试题来源】湖北省襄阳市第一中学2019-2020学年高二下学期5月月考 【答案】(,1)-∞【分析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->,分类讨论,分离参数,求最值,即可求实数m 的取值范围.【解析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->, (ⅰ)当(0,1)x ∈时,||0x m -≥,ln 0xx<,不等式恒成立,所以m R ∈; (ⅰ)当1x =时,|1|0m -≥,ln 0xx=,所以1m ≠; (ⅰ)当1x >时,不等式恒成立等价于ln x m x x <-恒成立或ln xm x x>+恒成立, 令ln ()x h x x x =-,则221ln ()x x h x x'-+=,因为1x >,所以()0h x '>,从而()1h x >, 因为ln xm x x<-恒成立等价于min ()m h x <,所以1m , 令ln ()x g x x x =+,则221ln ()x xg x x+-'=, 再令2()1ln p x x x =+-,则1'()20p x x x=->在(1,)x ∈+∞上恒成立,()p x 在(1,)x ∈+∞上无最大值,综上所述,满足条件的m 的取值范围是(,1)-∞.故答案为(,1)-∞.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.【试题来源】陕西省安康市2020-2021学年高三上学期10月联考(理)【答案】4e -⎡⎤⎣⎦【分析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立,当0x ≠时,则2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩,然后构造函数()x e g x x=(0x >),()221x h x x x +=-(0x <),分别求解函数()g x 的最小值和()h x 的最大值,只需()()min max h x a g x ≤≤即可.【解析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立;当0x ≠时,则()2,012,0x e ax x a x x x x ⎧≥>⎪⎨-≥--<⎪⎩,因为当0x <时,20x x ->, 所以只需满足2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩即可,令()x e g x x =(0x >),则()()21x x e g x x-'=, 则()0,1x ∈时,()0g x '<,所以()g x 在()0,1x ∈上递减, 当()1,x ∈+∞时,()0g x '>,则()g x 在()1,+∞上递增, 所以()()1min g x g e ==,所以a e ≤,令()221x h x x x +=-(0x <), 则()()()()()()22222222112221x x x x x x h x x x x x --+-+-'==--,令()0h x '=,得x =x =则当x ⎛∈-∞ ⎝ ⎭时,()0h x '>;当x ⎫∈⎪⎪⎝⎭时,()0h x '<, 所以函数()h x在⎛-∞ ⎝ ⎭上递增,在⎫⎪⎪⎝⎭上递减, 所以()4maxh x h ===-⎝⎭⎝⎭故4a ≥-4a e -≤.故答案为4e -⎡⎤⎣⎦.【名师点睛】本题考查根据不等式恒成立问题求参数的取值范围问题,考查学生分析问题、转化问题的能力,考查参变分离思想的运用,考查利用导数求解函数的最值,属于难题. 解决此类问题的方法一般有以下几种:(1)作出函数的图象,利用数形结合思想加以研究;(2)先进行参变分离,然后利用导数研究函数的最值,即可解决问题,必要时可以构造新函数进行研究.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________.【试题来源】河南省名校联盟2020届高三(6月份)高考数学(理)联考试题 【答案】[)0,+∞ 【分析】先根据2x π=时22f a ππ⎛⎫≤⎪⎝⎭得0a ≥,再对函数()f x 求导,研究导函数的单调性、最值等,进而研究函数()f x 单调性,即可解决.【解析】22f a ππ⎛⎫≤ ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π,0a ∴≥. 由题意得()()2sin sin cos 1sin cos 1f x x x x x x x x '=-++-=-+-⎡⎤⎣⎦, 令()sin cos 1g x x x x =-+-,则()sin g x x x '=-. 当,2x π⎛⎤∈π⎥⎝⎦时,()0g x '<,()g x 单调递减; 当3,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,()g x ∴的最小值为()1g ππ=--. 又22g π⎛⎫=- ⎪⎝⎭,302g π⎛⎫= ⎪⎝⎭,3,22x ππ⎡⎤∴∈⎢⎥⎣⎦,()0g x ≤,即()0f x '≤, ()f x ∴在区间3,22ππ⎡⎤⎢⎥⎣⎦为减函数.02f π⎛⎫= ⎪⎝⎭,∴当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x ≤.又当0a ≥,3,22x ππ⎡⎤∈⎢⎥⎣⎦时,0ax ≥,故()f x ax ≤恒成立,因此a 的取值范围是[)0,+∞.14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.【试题来源】6月大数据精选模拟卷04(上海卷)(满分冲刺篇) 【答案】e -【分析】把不等式()221ln 0a x ax x ax -+≥+恒成立,转化为函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,结合函数的单调性和零点,得出1a-是函数ln y ax x =-的零点,即可求解. 【解析】由题意,不等式()221ln 0a x ax x ax -+≥+恒成立,即函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,由ln ,0,0y ax x a x =-<>,则10y a x'=-<,所以ln y ax x =-为(0,)+∞减函数, 又由当0a <,可得1y ax =+为(0,)+∞减函数, 所以1y ax =+ 与ln y ax x =-同为单调减函数,且1a-是函数1y ax =+的零点, 故1a -是函数ln y ax x =-的零点,故110ln a a a ⎛⎫⎛⎫=⋅--- ⎪ ⎪⎝⎭⎝⎭,解得a e =-.【名师点睛】本题主要考查了不等式的恒成立问题,以及函数与方程的综合应用,其中解答中把不等式恒成立问题转化为函数的性质和函数的零点问题是解答的关键,着重考查转化思想,以及推理与运算能力.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________. 【试题来源】2020届辽宁省抚顺市高三二模考试(理) 【答案】12-【分析】设()()2211xx ax f x x e-+=≤,结合导数可知当0a <时,()()min 21f x f a =+;由题意可知,()()2122211a a f x f a e++≥+=≥,设()1t g t e t =--,则()0g t ≤,由导数可求出当0t =时,()g t 有最小值0,即()0g t ≥.从而可确定()0g t =,即可求出a 的值.【解析】设()()2211xx ax f x x e -+=≤,则()()()121xx x a f x e --+⎡⎤⎣⎦'=.当211a +≥,即0a ≥时,()0f x '≤,则()f x 在(],1-∞上单调递减, 故()()2211a f x f e -≥=≥,解得102ea ≤-<,所以0a ≥不符合题意; 当211a +<,即0a <时,()f x 在(),21a -∞+上单调递减,在(]21,1a +上单调递增, 则()()min21f x f a =+.因为2211xx ax e -+≥,所以()()2122211a a f x f a e ++≥+=≥. 令211a t +=<,不等式21221a a e++≥可转化为10te t --≤,设()1t g t e t =--, 则()1tg t e '=-,令()0g t '<,得0t <;令()0g t '>,得01t <<,则()g t 在(),0-∞上单调递减,在()0,1上单调递增;当0t =时,()g t 有最小值0, 即()0g t ≥.因为()0g t ≤,所以()0g t =,此时210a +=,故12a =-. 【名师点睛】本题考查了函数最值的求解,考查了不等式恒成立问题.本题的难点在于将已知恒成立问题,转化为()10tg t e t =--≤恒成立.本题的关键是结合导数,对含参、不含参函数最值的求解. 四、双空题1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【试题来源】辽宁省锦州市渤大附中、育明高中2020-2021学年高三上学期第一次联考 【答案】10,2⎛⎫ ⎪⎝⎭[)5,-+∞【分析】求出导函数()2122122ax x f x ax x x-+'=-+=,只需方程22210ax x -+=有两个不相等的正根,满足1212010210x x a x x a ⎧⎪∆>⎪⎪=>⎨⎪⎪+=>⎪⎩,解不等式组可得a 的取值范围;求出 ()()1212f x f x x x +--的表达式,最后利用导数,通过构造函数,求出新构造函数的单调性,最后求出t 的取值范围.【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---, 设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭, 22()0a h a a '-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞. 故答案为10,2⎛⎫ ⎪⎝⎭;[)5,-+∞【名师点睛】本题考查了已知函数极值情况求参数取值范围问题,考查了不等式恒成立问题,构造新函数,利用导数是解题的关键,属于基础题.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________. 【试题来源】2021年新高考数学一轮复习学与练 【答案】13,2⎛⎤-∞-⎥⎝⎦132-【分析】将2n =代入求解即可;当n 为奇数时,cos 1n π=-,则转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2 1
要证
x1
1 k
x2
,即证
x1
ln
x2 x2
x1 ln
x1
x2
,等价于证1
x1 ln x2
x2 ,令 t x2 ,
x1
x1
x1
则只要证1 t 1 t ,由 t 1知 ln t 0 ,故等价于证 ln t t 1 t ln t(t 1) (*). ln t
① 设 g(t) t 1 ln t(t 1) ,则 g(t) 1 1 0(t 1) ,故 g(t) 在[1, ) 上是增函数, t
0, b
0)
的最大值是12
,则
x 0, y 0,
a2 b2 的最小值为 94
()
A . 13 25
B.1
C .1
D.2
2
10. 定义域为 R 的偶函数 f (x) 满足对任意的实数 x ,有 f (x 2) f (x) f (1) ,且当
x 2,3 时, f (x)= 2x2 12x 18 ,若函数 y f (x) loga x 1 在 0, 上至少有
2
3
(2)因为 c 2 ab 又 CA CB 18 所以 ab cos C 18
所以 ab 36 即 c 2 36 所以 c 6 .
19.解:(1) an 2n
(2)
Sn
n2
n
1 3n 2
20.(2) 3 22 11
21.(Ⅰ)解:由 e= c 3 ,得 3a2 4c2 .再由 c2 a2 b2 ,解得 a=2b. a2
,值域为

13. 在等差数列 an 中,若 a1 a5 a9 4π ,则 a5
, tan a2 +a8 =
.
14.一个几何体的三视图如图所示(单位:cm),
则该几何体的表面积为

该该几何体的体积为

uur uur r
15.过点 P 2,1 的直线与抛物线 y2 16x 交于 A, B 两点,且 PA PB 0 则此直线的
ur
r
ur r
18.已知向量 m sin A,cos A,n cos B,sin B ,m n
3 ,且 A, B,C 分别是锐角三角形 ABC
2
三边 a,b, c 所对的角.
(Ⅰ)求 C 的大小;
uur uur (Ⅱ)若 a, c,b 成等比数列,且 CA CB 18 ,求 c 的值.
19.设数列 an 是公差大于零的等差数列,已知 a1=2,a3 =a22 10 . (1) 求数列an 的通项公式; (2) 设数列 bn 是以1为首项,以 3 为公比的等比数列,求数列 an bn 的前 n 项和 Sn .
方程为_________.
16.若函数 f (x)=x3 ax 2 在区间 1, 内是增函数,则实数 a 的取值范围是______ .
17.若对任意 x 1, 2 且 y 2,3 ,不等式 xy ax2 2 y2 恒成立 , 则实数 a 的取值范围
是___________.
三、解答题:本大题共 5 小题,共 74 分,解答应写出文字说明、证明过程或演算步骤。
浙江省 2019-2020 学年高二下学期期中考试试题
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.已知集合 A {1, 2,3, 4}, B {2, 4,6} ,则 A I B 的元素个数是
()
A .0个
B .1个
C.2个
(2) 设 F(x) ax2 f (x) (a R) ,讨论函数 F(x) 的单调性;
(3)
斜率为 k 的直线与曲线 y
f (x) 交于 A(x1, y1) , B(x2 , y2 )
( x1
x2 ) 两点,求证:x1
1 k
x2 .
参考答案
1-5、CAABB 6-10、DCABB
11. 1 , 3 33
由题意可知 1 2a 2b 4 ,即 ab=2. 2
a 2b, 解方程组 ab 2, 得 a=2,b=1.
所以椭圆的方程为 x2 y2 1. 4
(Ⅱ)解:由(Ⅰ)可知点 A 的坐标是(-2,0).设点 B 的坐标为 (x1, y1) ,直线 l 的
斜率为 k.则直线 l 的方程为 y=k(x+2).
F(x) 2ax 1 2ax2 1 (x 0) . xx
…………5 分
① 当 a 0 时,恒有 F (x) 0 , F (x) 在 (0,) 上是增函
…………6 分
② 当 a 0 时,
令 F (x) 0 ,得 2ax2 1 0 ,解得 0 x 1 ; 2a
…………7 分
令 F (x) 0 ,得 2ax2 1 0 ,解得 x 1 . 2a
2
2 8k 2 1 4k2
2
4k 1 4k 2
2
4 1 k2 1 4k2
.
由| AB |
42 5
4 1 k2
,得
1 4k2
4 2 5
.
整理得 32k 4 9k 2 23 0 ,即 (k 2 1)(32k 2 23) 0 ,解得 k= 1.
3
所以直线 l 的倾斜角为 或 .
44
22.(1)
B . 3 3n 1
C . 9n 1 4
3 9n 1
D. 4
7. ABC 中,角 A, B,C 所对的边分别为 a,b, c ,若 3b c cos A a cos C ,则 cos A
( )A.1 2
B. 3 2
C. 3 3
D. 3
8.设椭圆
C1
的离心率为
5 13
,焦点在
x
轴上且长轴长为 26 .
综上,当 a 0 时, F (x) 在 (0,) 上是增函数;
…………8 分
当 a 0 时, F (x) 在 (0, 1 ) 上单调递增,在 ( 1 , ) 上单调递
2a
2a
减.
…………9 分
(3) 证: k f (x2 ) f (x1) ln x2 ln x1 .
x2 x1
x2 x1
∴ 当 t 1时, g(t) t 1 ln t g(1) 0 ,即 t 1 ln t(t 1) .
② 设 h(t) t ln t (t 1)(t 1) ,则 h(t) ln t 0(t 1) ,故 h(t) 在[1, ) 上是增函数,
∴ 当 t 1时, h(t) t ln t (t 1) h(1) 0 ,即 t 1 t ln t(t 1) .
A.π 2
B.π
C . 2π
r
r
rr
5. 已知向量 a 1, 2 , b x, 4 且 a∥b ,则实数 x 的值是
D . 4π
() ()
A . 2
B.2
C .8
D . 8
6. 已知等比数列 an 中,an 2 3n1 ,则由此数列的偶数项所组成的新数列的前 n 项和 Sn 的
值为
()
A . 3n 1
若曲线 C2
上的点到椭圆 C1 的两
个焦点的距离的差的绝对值等于 8 ,则曲线 C2 的标准方程为
A.
x2 42
y2 32
1
B
.
x2 132
y2 52
1
C
.
x2 32
y2 42
1
()
D
.
x2 132
y2 122
1
3x y 6 0,
9.设
x,
y
满足约束条件
x
y
2 0,
若目标函数
z
ax
by(a
由①②知(*)成立,得证.
…………15 分
y k (x 2),
于是 A、B 两点的坐标满足方程组 x2 4
y2
1.
消去 y 并整理,得
(1 4k 2)x2 16k 2x (16k 2 4) 0 .
由 2x1
16k 2 4 1 4k 2
,得
x1
2 8k 2 1 4k 2
.从而
y1
4k 1 4k 2
.
所以 | AB |
2.直线 x 2y 3 0 的斜率是
A .1
B.1
C . 2
2
2
3.“ k 2 且 b 1 ”是“直线 y kx b 过点 1,1 ”的
D .3个 D.2
()
()
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分又不必要条件
4.函数 f (x) sin(2x π) (x R) 的最小正周期为 3
12. 2, ,4
13. 4 , 3 14. 144cm2,64cm3 3
15.8x y 15 0 16. 3, 17. 1,
18.解:(1) sin Acos B cos Asin B 3 即 sin( A B) 3
2
2
所以 sin C 3 又因为 C 是锐角三角形内角,所以 C
1 a b 0 的离心率 e=
3 ,连接椭圆的四个顶点得到的菱形的面积 2
为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线 l 与椭圆相交于不同的两点 A, B ,已知点 A 的坐标为 a,0 , 若 AB 4 2 ,
5 求直线 l 的倾斜角.
22.设函数 f (x) x ln x (x 0) . (1) 求函数 f (x) 的最小值;
三个零点,则 a 的取值范围是
()
A . 0,
2 2
B . 0,
3 3
C . 0,
相关文档
最新文档