新高考数学二轮专题复习高频考点强化训练14(附解析)

合集下载

2024年高考数学新增高频考点(解析版)

2024年高考数学新增高频考点(解析版)

(多拿20分)2024年高考数学新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项2023年高考数学新增高频考点专题突破一.复数的三角表示(共5小题)1已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6,则z 1z 2的代数形式是()A.6cosπ4+i sin π4B.6cos π12+i sin π12 C.3-3i D.3+3i2若复数z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π33已知复数z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数4复数z =cos -2π5+i sin -2π5 的辐角主值为()A.8π5B.-8π5C.2π5D.-2π55任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8 m (m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,17利用积化和差公式化简sin αsin π2-β 的结果为()A.-12[cos (α+β)-cos (α-β)]B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]8已知cos α+cos β=12,则cos α+β2cos α-β2的值为.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为.10已知α,β为锐角,且α-β=π6,那么sin αsin β的取值范围是.三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sin α•cos β=sin (α+β)+sin (α-β)B.2cos α•sin β=sin (α+β)+cos (α-β)C.cos α+cos β=2sin α+β2⋅sin α-β2D.cos α-cos β=2cos α+β2⋅cosα-β212在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,则tan A2•tan C 2的值为(参考公式:sin A +sin C =2sin A +C 2cos A -C2)()A.2B.12C.3D.1313已知sin α+sin β=2165,cos α+cos β=2765,则sin β-sin αcos β-cos α=.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为.15在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为三角形.四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CAB.-12CAC.32CAD.-32CA19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.22320已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.8023某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.1024某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为11025某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为.六.点、线、面间的距离(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.七.条件概率(共8小题)29已知事件A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥30已知P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )=,P (A|B )=.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )=.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.9533为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M上场的概率.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.61735人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.36某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.八.全概率公式(共2小题)37某铅笔工厂有甲、乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.3838假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15九.贝叶斯公式(共2小题)39对正在横行全球的“新冠病毒”,某科研团队研发了一款新药用于治疗,为检验药效,该团队从“新冠”感染者中随机抽取若干名患者,检测发现其中感染了“普通型毒株”、“奥密克戎型毒株”、“其他型毒株”的人数占比为5:3:2.对他们进行治疗后,统计出该药对“普通型毒株”、“奥密克戎毒株”、“其他型毒株”的有效率分别为78%、60%、75%,那么你预估这款新药对“新冠病毒”的总体有效率是;若已知这款新药对“新冠病毒”有效,求该药对“奥密克戎毒株”的有效率是.40英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件A ,B ,A(A 的对立事件)存在如下关系:P (B )=P (B |A )•P (A )+P (B |A )•P (A).若某地区一种疾病的患病率是0.01,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为99%,即在被检验者患病的前提下用该试剂检测,有99%的可能呈现阳性;该试剂的误报率为10%,即在被检验者未患病的情况下用该试剂检测,有10%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为()A.0.01B.0.0099C.0.1089D.0.1十.二项分布中的最大项(共3小题)41若X ~B 100,13 ,则当k =0,1,2,⋯,100时()A.P (X =k )≤P (X =50)B.P (X =k )≤P (X =32)C.P (X =k )≤P (X =33)D.P (X =k )≤P (X =49)42已知随变量从二项分布B 1001,12,则()(多选)A.P (X =k )=C k100112 1001 B.P (X ≤301)=P (X ≥701)C.P (X >E (X ))>12D.P (X =k )最大时k =500或50143经检测有一批产品合格率为75%,现从这批产品中任取5件,设取得合格产品的件数为ξ,则P (ξ=k )取得最大值时k 的值为.(多拿20分)2023年高考新增高频考点专题突破新增高频考点1:复数的三角表示新增高频考点2:三角函数的积化和差公式新增高频考点3:三角函数的和差化积公式新增高频考点4:投影向量新增高频考点5:百分位数新增高频考点6:点、线、面距离公式新增高频考点7:条件概率新增高频考点8:全概率公式新增高频考点9:贝叶斯公式新增高频考点10:二项分布中的最大项参考答案与试题解析一.复数的三角表示(共5小题)已知复数z 1=2cos π12+i sin π12 ,z 2=3cos π6+i sin π6 ,则z 1z 2的代数形式是()+i sin π4B.6cos π12+i sin π12 D.3+3i【解析】:∵z 1=2cosπ12+i sin π12 ,z 2=3cos π6+i sin π6 ,∴z 1z 2=6cos π12+i sin π12 cos π6+i sin π6=6cos π12cos π6-sin π12sin π6 +cos π12sin π6+sin π12cos π6 i=6cos π12+π6 +i sin π12+π6=6cos π4+i sin π4 =622+22i=3+3i ,故选:D .z =r (cos θ+i sin θ)(r >0,θ∈R ),则把这种形式叫做复数z 的三角形式,其中r 为复数z 的模,θ为复数z 的辐角,则复数z =32+12i 的三角形式正确的是()A.cos π6+i sinπ6 B.sin π6+i cos π6 C.cos π3+i sin π3 D.sin π3+i cos π3【解析】:z =32+12i 的模为1,辐角为π6,则复数z =32+12i 的三角形式为cos π6+i sin π6.故选:A .z =cos θ+i sin θ(i 为虚数单位),则()A.|z |=2B.z 2=1C.z ⋅z =1D.z +1z为纯虚数【解析】:对于A ,|z |=cos 2θ+sin 2θ=1,故A 错误,对于B ,z 2=(cos θ+i sin θ)2=cos 2θ+2sin θcos θi +i 2sin 2θ=cos 2θ-sin 2θ+2cos θsin θi ,故B 错误,对于C ,z ⋅z=(cos θ+i sin θ)(cos θ-i sin θ)=cos 2θ+sin 2θ=1,故C 正确,对于D ,z +1z =cos θ+i sin θ+1cos θ+i sin θ=cos θ+i sin θ+cos θ-i sin θ(cos θ+i sin θ)(cos θ-i sin θ)=2cos θ,故D 错误.故选:C .=cos -2π5 +i sin -2π5的辐角主值为()B.-8π5C.2π5D.-2π5=cos -2π5 +i sin -2π5 ,∴复数z 的辐角为2k π-2π5,k ∈Z ,∴复数z 的辐角主值为2π-2π5=8π5.5任何一个复数z =a +bi (其中a ,b ∈R ,i 为虚数单位)都可以表示成z =r (cos θ+i sin θ)(其中r ≥0,θ∈R )的形式,通常称之为复数z 的三角形式,法国数学家棣莫弗发现:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ)(n ∈N *),我们称这个结论为棣莫弗定理.由棣莫弗定理可知,若复数cos π8+i sin π8m(m ∈N *)为纯虚数,则正整数m 的最小值为()A.2B.4C.6D.8【解析】:∵复数cosπ8+i sin π8 m =cos m π8+i sin m π8为纯虚数,∴cos m π8=0,sin m π8≠0,∴m π8=k π+π2,k ∈Z ,根据m ∈N *,可得正整数m 的最小值为4,此时,k =0,故选:B .二.三角函数的积化和差公式(共5小题)6设直角三角形中两锐角为A 和B ,则cos A cos B 的取值范围是()A.0,12B.(0,1)C.12,1 D.34,1【解析】:直角三角形中两锐角为A 和B ,A +B =C =π2,则cos A cos B =12[cos (A -B )+cos (A +B )]=12cos (A -B ),再结合A -B ∈-π2,π2,可得cos (A -B )∈(0,1],∴12cos (A -B )∈0,12 ,故选:A .7利用积化和差公式化简sin αsin π2-β的结果为()A.-12[cos (α+β)-cos (α-β)] B.12[cos (α+β)+cos (α-β)]C.12[sin (α+β)-sin (α-β)]D.12[sin (α+β)+sin (α-β)]【解析】:sin αsin π2-β =sin αcos β=12[sin (α+β)+sin (α-β)]故选:D .8已知cos α+cos β=12,则cos α+β2cos α-β2的值为 14 .【解析】:∵cos α+cos β=12,∴cos α+β2cos α-β2=12cos α+β2-α-β2 +cos α+β2+α-β2 =12(cos α+cos β)=12×12=14.故答案为:14.9已知sin (α+β)•sin (β-α)=m ,则cos 2α-cos 2β的值为 m .【解析】:由已知得:sin (α+β)•sin (β-α)=cos2α-cos2β2=(2cos 2α-1)-(2cos 2β-1)2=cos 2α-cos 2β=m10已知α,β为锐角,且α-β=π6,那么sinαsinβ的取值范围是 0,32 .【解析】:∵α-β=π6∴sinαsinβ=-12[cos(α+β)-cos(α-β)]=-12cos(α+β)-32=-12cos2β+π6-32∵β为锐角,即0<β<π3∴π6<2β+π6<5π6,∴-32<cos2β+π6<32∴0<-12cos2β+π6-32<32故答案为:0,3 2三.三角函数的和差化积公式(共5小题)11对任意的实数α、β,下列等式恒成立的是()A.2sinα•cosβ=sin(α+β)+sin(α-β)B.2cosα•sinβ=sin(α+β)+cos(α-β)C.cosα+cosβ=2sinα+β2⋅sinα-β2D.cosα-cosβ=2cosα+β2⋅cosα-β2【解析】:sin(α+β)+sin(α-β)=sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ=2sinαcosβ,故选:A.12在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,则tan A2•tan C2的值为(参考公式:sin A+sin C=2sin A+C2cos A-C2)()A.2B.12C.3 D.13【解析】:∵a+c=2b,∴由正弦定理得sin A+sin C=2sin B=2sin(A+C),即2sin A+C2cos A-C2=4sin A+C2cos A+C2,在三角形中sin A+C2≠0,∴cos A-C2=cos A+C2,即cosαA2cos C2+sin A2sin C2=2cos A2cos C2-2sin A2sin C2,即3sin A2sin C2=cos A2cos C2,即sin A2sin C2cos A2cos C2=13,即tan A2•tan C2=13,故选:D.13已知sinα+sinβ=2165,cosα+cosβ=2765,则sinβ-sinαcosβ-cosα= -97 .【解析】:sin α+sin β=2165,可得2sin α+β2cos α-β2=2165⋯①cos α+cos β=2765,2cos α+β2cos α-β2=2765⋯②.①②可得sin α+β2cosα+β2=2127=79.sin β-sin αcos β-cos α=-2cos α+β2sin α-β22sin α+β2sin α-β2=-cos α+β2sinα+β2=-97.故答案为:-97.14已知sin α+sin β=14,cos α+cos β=13,则tan (α+β)的值为 247 .【解析】:由sin α+sin β=14,得2sinα+β2cos α-β2=14,由cos α+cos β=13,得2cos α+β2cos α-β2=13,两式相除,得tanα+β2=34,则tan (α+β)=2tan α+β21-tan 2α+β2=2×341-34 2=247故答案为:24715在△ABC 中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,若cos B +cos C =sin B +sin C ,则△ABC 为直角三角形.【解析】:由cos B +cos C =sin B +sin C 得到2cosB +C 2cos B -C 2=2sin B +C 2cos B -C2两边同除以2cos B -C 2得sin B +C 2=cos B +C 2即tan B +C2=1,由0<B <π,0<C <π,得到B +C 2∈(0,π),所以B +C 2=π4即B +C =π2,所以A =π2,则△ABC 为直角三角形.故答案为:直角四.投影向量(共5小题)16已知两个单位向量a 和b 的夹角为120°,则向量a -b在向量b 上的投影向量为()A.-12aB.-12bC.32bD.-32b【解析】:因为两个单位向量a 和b的夹角为120°,所以a ⋅b =|a |⋅|b |cos120°=1×1×-12=-12,所以(a -b )⋅b =a ⋅b -b 2=-12-1=-32,故所求投影向量为(a-b )⋅b |b |⋅b =-32b.故选:D .17已知平面向量a =(-2,λ),b =(1,1),且a ⊥b ,则a -b 在b方向上的投影向量的坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)【解析】:已知a =(-2,λ),b =(1,1),由于a ⊥b ,所以a ⋅b=(-2)×1+λ×1=0,解得λ=2,所以a =(-2,2),b =(1,1),得a -b=(-3,1),则(a -b )⋅b=(-3)×1+1×1=-2,|b |=12+12=2,故a -b 在b 方向上的投影为(a -b )⋅b|b |=-22=-2,得a -b 在b方向上的投影向量为-2⋅b 2=(-1,-1).故选:D .18在正△ABC 中,向量AB 在CA上的投影向量为()A.12CA B.-12CA C.32CA D.-32CA【解析】:AB 与CA 的夹角为2π3,则cos ‹AB ,CA ›=-12,根据投影向量的定义有:AB 在CA 上的投影向量为|AB |⋅cos ‹AB ,CA ›⋅CA|CA |=-12CA .故选:B .19设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b,则cos ‹a ,b ›=()A.-13B.13C.-223D.223【解析】:∵a +b 在b 上的投影向量为23b,∴(a+b )⋅b |b |⋅b |b |=23b ,∴a ⋅b =-13,∵|a|=|b |=1,∴由向量的夹角公式可知,cos ‹a ,b ›=a ⋅b |a ||b |=-13.故选:A .20已知|a |=2|b |,若a 与b的夹角为120°,则2b -a 在a 上的投影向量为()A.3-3aB.-32aC.-12aD.3a【解析】:∵|a|=2|b |,a 与b 的夹角为120°,∴(2b -a )⋅a =2a ⋅b -a 2=2|a |⋅12|a | ⋅cos120°-a 2=-32a 2,∴2b -a 在a 上的投影向量为:(2b -a )⋅a |a |⋅a|a |=-32a .故选:B .五.百分位数(共5小题)21学校组织班级知识竞赛,某班的8名学生的成绩(单位:分)分别是:68、63、77、76、82、88、92、93,则这8名学生成绩的75%分位数是90分.【解析】:8名学生的成绩从小到大排列为:63,68,76,77,82,88,92,93,因为8×75%=6,所以75%分位数为第6个数和第7个数的平均数,即12×(88+92)=90(分).故答案为:90分.22为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路•科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为()A.76B.77C.78D.80【解析】:记构成的等差数列为{a n },则a n =70+2(n -1)=2n +68,∵10×40%=4,∴这10个班级的平均成绩的第40百分位数为a 4+a 52=76+782=77,故选:B .23某工厂随机抽取20名工人,对他们某天生产的产品件数进行统计,数据如表,则该组数据的第75百分位数是()件数7891011人数37541A.8.5B.9C.9.5D.10【解析】;抽取的工人总数为20,20×75%=15,那么第75百分位数是所有数据从小到大排序的第15项与第16项数据的平均数,第15项与第16项数据分别为9,10,所以第75百分位数是9+102=9.5.故选:C .24某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A.频率分布直方图中a 的值为0.012B.估计这20名学生数学考试成绩的第60百分位数为80C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[50,60)内的学生人数为110【解析】:由频率分布直方图可得,(a +0.01+0.03+0.035+0.01)×10=1,解得a =0.015,故A 错误,设第60百分位数为x ,则0.1+0.015+(x -70)×0.035=0.6,解得x =80,故B 正确,估计这20名学生数学考试成绩的众数为75,故C 错误,估计总体中成绩落在[50,60)内的学生人数为1000×0.01×10=100,故D 错误.故选:B .25某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为10.8.【解析】:数据从小到大排序为:8.6、8.9、9.1、9.6、9.7、9.8、9.9、10.2、10.6、10.8、11.2、11.7,共有12个,所以12×80%=9.6,所以这组数据的第80百分位数是第10个数即:10.8.故答案为:10.8.六.点、线、面间的距离计算(共3小题)26如图,在多面体ABCDE 中,平面ABCD ⊥平面ABE ,AD ⊥AB ,AD ∥BC ,∠BAE =π2,AB =AD =AE =2BC =2,F 是AE 的中点.(1)证明:BF ∥面CDE ;(2)求点F 到平面CDE 的距离.【答案】(1)证明:取DE 中点G ,连接FG ,CG ,∵F ,G 分别为AE ,DE 中点,∴FG ∥AD ,FG =12AD ,又AD ∥BC ,BC =12AD ,∴BC ∥FG ,BC =FG ,∴四边形BCGF 为平行四边形,∴BF ∥CG ,又BF ⊄平面CDE ,CG ⊂平面CDE ,∴BF ∥平面CDE .(2)∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,AD ⊥AB ,AD ⊂平面ABCD ,∴AD ⊥平面ABE ,又∠BAE =π2,则以A 为坐标原点,AB ,AE ,AD正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则F (0,1,0),C (2,0,1),D (0,0,2),E (0,2,0),∴CD =(-2,0,1),DE =(0,2,-2),FE =(0,1,0),设平面CDE 的法向量n=(x ,y ,z ),则CD ⋅n=-2x +z =0DE ⋅n =2y -2z =0,令x =1,解得:y =2,z =2,∴n=(1,2,2),∴点F 到平面CDE 的距离d =|FE ⋅n||n |=23.27如图多面体ABCDEF 中,四边形ABCD 是菱形,∠ABC =60°,EA ⊥平面ABCD ,EA ∥BF ,AB =AE =2BF =2.(1)证明:CF ∥平面ADE ;(2)在棱EC 上有一点M (不包括端点),使得平面MBD 与平面BCF 的夹角余弦值为155,求点M 到平面BCF 的距离.【答案】(1)证明:取AE 的中点G ,连接GD ,GF ,因为BF ∥EA ,且BF =12AE ,所以AG ∥BF 且AG =BF ,所以四边形AGFB 是平行四边形,所以GF ∥AB ,又因为ABCD 是菱形,所以AB ∥DC ,且AB =DC ,所以GF ∥DC 且GF =DC ,所以四边形CFGD 是平行四边形,CF ∥DG ,又CF ⊄平面ADE ,DG ⊂平面ADE ,所以CF ∥平面ADE ;解:(2)连接BD 交AC 于N ,取CE 中点P ,∵PN ∥AE ,EA ⊥平面ABCD ,∴PN ⊥平面ABCD ,且CN ⊥BN ,∴以N 为原点,NC ,NB ,NP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设在棱EC 上存在点M 使得平面MBD 与平面BCF 的夹角余弦值为155,E (-1,0,2),B (0,3,0),C (1,0,0),F (0,3,1),A (-1,0,0),D (0,-3,0)则设CM =λCE=λ(-2,0,2)(0<λ<1),∴M (1-2λ,0,2λ),所以DM =(1-2λ,3,2λ),DB =(0,23,0),BC =(1,-3,0),FB=(0,0,-1)设平面DBM 的一个法向量为n=(x ,y ,z ),则n ⋅DM=0n ⋅DB =0,即(1-2λ)x +3y +2λz =023y =0 ,令y =0,x =-2λ,z =1-2λ,得n=(-2λ,0,1-2λ),设平面FBC 的一个法向量为m=(a ,b ,c ),则m ⋅BC =0m ⋅FB =0,即a -3b =0-c =0 ,取b =1,得m=(3,1,0),∴|cos ‹n ,m ›|=|m ⋅n ||m |⋅|n |=|-23λ|2(-2λ)2+(1-2i )2=155,解得λ=13或λ=1,又∵0<λ<1,∴λ=13,此时M 13,0,23 ,∴CM =-23,0,23 ,∴点M 到平面BCF 的距离d =|CM ⋅m||m |=2332=33.28如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =2,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB 所成的角的余弦值为255,求点P 到平面AEF 的距离.【解析】:(1)证明:因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC .因为ABCD 为正方形,所以AB ⊥BC ,又因为PA ∩AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB ,所以BC ⊥平面PAB .因为AE ⊂平面PAB ,所以AE ⊥BC .因为PA =AB ,E 为线段PB 的中点,所以AE ⊥PB ,又因为PB ∩BC =B ,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC .又因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC .(2)因为PA ⊥底面ABCD ,AB ⊥AD ,以A 为坐标原点,以AB ,AD ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),P (0,0,2),E (1,0,1),易知u=(0,1,0)是平面PAB 的法向量,设BF =t (t ∈[0,2]),则F (2,t ,0),所以AE=(1,0,1),AF =(2,t ,0),所以|cos ‹AF ,u ›|=|AF ⋅u||AF ||u |=1-255 2,即t t 2+4=55,得t =1,所以AF =(2,1,0),设n=(x 1,y 1,z 1)为平面AEF 的法向量,则n ⋅AE=0,n ⋅AF =0,,所以平面AEF 的法向量n=(-1,2,1),又因为AP=(0,0,2),所以点P 到平面AEF 的距离为d =|AP ⋅n ||n |=26=63,所以点P 到平面AEF 的距离为63,由(1)可知,∠BAF 是直线AF 与平面PAB 所成的角,所以cos ∠BAF =AB AF =AB AB 2+BF 2=255,解得BF =12AB =12BC ,故F 是BC 的中点,所以AF =AB 2+BF 2=5,AE =12PB =2,EF =AF 2-AE 2=3,所以△AEF 的面积为S △AEF =12AE ⋅EF =62,因为PA =AB =2,△PAE 的面积为S △PAE =12S △PAB =14PA ⋅AB =1,设点P 到平面AEF 的距离为h ,则有V P -AEF =13S △AEF ⋅h =66h =V F -PAE =13S △PAE ⋅BF =13,解得h =63,所以点P 到平面AEF 的距离为63.七.条件概率(共8小题)A 、B 满足P (A |B )=0.7,P (A)=0.3,则()A.P (A ∩B )=0.3B.P (B |A )=0.3C.事件A ,B 相互独立D.事件A ,B 互斥【解析】:根据题意,设P (B )=x ,由于P (A |B )=0.7,则P (AB )=P (B )P (A |B )=0.7x ,P (A )=1-P (A)=0.7,则P (A )P (B )=0.7x ,则有P (AB )=P (A )P (B ),事件A ,B 相互独立.不确定x 的值,P (A ∩B )=P (AB )=0.7x ,A 错误;P (B |A )=P (AB )P (A )=x ,B 错误;由于A 、B 相互独立,事件A 、B 可能同时发生,则事件A 、B 一定不互斥,D 错误.故选:C .P (A )=13,P (B |A )=23,P (B |A )=14,则P (B )= 1936 ,P (A |B )= 319 .【解析】:P (A )=13,则P (A )=1-P (A )=23,故P (B )=P (AB )+P (A B )=P (A )P (B |A )+P (A )P B |A )=23×23+13×14=1936,P (A |B )=P (AB )P (B )=13×141936=319.故答案为:1936,319.31研究人员开展甲、乙两种药物的临床抗药性研究实验,事件A 为“对药物甲产生抗药性”,事件B 为“对药物乙产生抗药性”,事件C 为“对甲、乙两种药物均不产生抗药性”.若P (A )=415,P (B )=215,P (C )=710,则P (B |A )= 38 .【解析】:由题意可知P (C )=P (A ∩B )=710,则P (A ∪B )=1-P (A ∩B )=1-710=310.又P (A ∪B )=P (A )+P (B )-P (AB ),所以P (AB )=P (A )+P (B )-P (A ∪B )=415+215-310=110,则P (B |A )=P (AB )P (A )=110415=38.故答案为:38.32已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是()A.0.75B.0.8C.0.76D.0.95【解析】:设买到的产品是甲厂产品为事件A ,买到的产品是乙厂产品为事件B ,则P (A )=0.8,P (B )=0.2,记事件C :从该地市场上买到一个合格产品,则P (C |A )=0.75,P (C |B )=0.8,所以P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B )=0.8×0.75+0.2×0.8=0.76.故选:C .33为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M 对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(Ⅰ)求甲队明星队员M 在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(Ⅱ)求甲乙两队比赛3局,甲队获得最终胜利的概率;(Ⅲ)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M 上场的概率.【解析】:(Ⅰ)事件B =“甲乙两队比赛4局甲队最终获胜”,事件A j =“甲队第j 局获胜”,其中j =1,2,3,4,A j 相互独立.又甲队明星队员M 前四局不出场,故P (A j )=12,j =1,2,3,4,B =A 1 A 2A 3A 4+A 1A 2 A 3A 4+A 1A 2A 3 A 4,所以P (B )=C 13×124=316.(Ⅱ)设C 为甲3局获得最终胜利,D 为前3局甲队明星队员M 上场比赛,由全概率公式知,P (C )=P (C |D )P (D )+P (C |D )P (D),因为每名队员上场顺序随机,故P (D )=C 24A 33A 35=35,P (D )=1-35=25,P (C |D )=122×34=316,P C |D )=123=18, 所以P (C )=316×35+18×25=1380.(Ⅲ)由(2),P (D |C )=P (CD )P (C )=P (C |D )P (D )P (C )=316×351380=913.34某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为()A.38B.310C.611D.617【解析】:需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,设事件A 表示“选派3名男医生和2名女医生,有一名主任医生被选派”,B 表示“选派3名男医生和2名女医生,两名主任医师都被选派”,P (A )=C 23C 24+C 33C 14+C 23C 14C 34C 25=1720,P (AB )=C 23C 14C 34C 25=310,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为:P (B |A )=P (AB )P (A )=3101720=617.故选:D .35人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案:方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.【解析】:设试验一次,“取到甲袋”为事件A 1,“取到乙袋”为事件A 2,“试验结果为红球”为事件B 1,“试验结果为白球”为事件B 2,(1)P (B 1)=P (A 1)P (B 1|A 1)+P (A 2)P (B 1|A 2)=12×910+12×210=1120;所以试验一次结果为红球的概率为1120.(2)①因为B 1,B 2是对立事件,P (B 2)=1-P (B 1)=920,所以P A 1|B 2)=P (A 1B 2)P (B 2)=P (B 2|A 1)P (A 1)P (B 2)=110×12920=19,所以选到的袋子为甲袋的概率为19;②由①得P (A 2|B 2)=1-P A 1|B 2)=1-19=89,中取到红球的概率为:P 1=P (A 1|B2)P (B1|A1)+P (A2|B2)910+89×210=518,方案二中取到红球的概率为:P 2=P (A 2|B 2)P (B 1|A 1)+P (A 1|B 2)P B 1|A 2)=89×910+19×210=3745, 所以方案二中取到红球的概率更大.该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】:(1)该款芯片生产在进入第四道工序前的次品率P =1-1-110 ×1-19 ×1-18=310.(2)设该批次智能自动检测合格为事件A ,人工抽检合格为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.八.全概率公式(共2小题)乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为()A.0.92B.0.08C.0.54D.0.38【解析】:甲生产线的产量是乙生产线产量的1.5倍,则从这种铅笔中任取一件抽到甲生产线的概率为0.6,抽到乙生产线的概率为0.4,从这种铅笔产品中任取一件,则取到次品的概率为0.6×10%+0.4×5%=0.08,所以取到合格产品的概率为1-0.08=0.92.故选:A .第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品,现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,则取出的零件是次品的概率为()A.18B.320C.740D.15【解析】:设事件A i 表示从第i (i =1,2)箱中取一个零件,事件B 表示取出的零件是次品,则P (B )=P (A 1。

2024高中数学高考高频考点经典题型练习卷 (1314)

2024高中数学高考高频考点经典题型练习卷 (1314)

一、单选题1. 设是虚数单位,如果复数的实部与虚部是互为相反数,那么实数的值为 ( )A.B.C.D.2. 函数的图象大致为( )A.B.C.D.3. 设全集,集合,则A.B.C.D.4. 是所在平面上的一点,满足,若,则的面积为().A.B.C.D.5. 曲线在点处的切线方程是()A.B.C.D.6. 已知双曲线的离心率为,则点到的渐近线的距离为A.B.C.D.7. 已知双曲线E的左、右焦点分别为,,M,N是以为圆心,为半径的圆与E的两交点.若,则的离心率是()A.B.C.2D.8. 展开式中的系数为()A.15B.20C.30D.09. 已知函数的部分图象如图所示,则下列选项正确的是()A.B.函数的单调增区间为C.函数的图象可由的图象向右平移个单位长度得到D .函数的图象关于点中心对称10. 设是椭圆上一点,是其左,右顶点,,则离心率A.B.C.D.11. 已知如图所示的几何体是一个半球与一个圆锥组合而成的,其中半球的底面与圆锥底面重合,且圆锥的母线长与底面直径均为4,若在该几何体内放入一球,则此球半径的最大值为()A.B.C.D.12. 不等式成立的一个充分不必要条件是()A.B.C.D.13.已知函数,若在定义域内恒成立,则实数a的取值范围为()A.B.C.D.14. 某班分成了A、B、C、D四个学习小组学习二十大报告,现从中随机抽取两个小组在班会课上进行学习成果展示,则组和组恰有一个组被抽到的概率为()A.B.C.D.15. ()A.B.C.D.16. 已知函数的导函数的图象如右图所示,则的图象最有可能的是()二、多选题A.B.C.D.17. 已知双曲线的左、右顶点分别为,,左、右焦点分别为,,点是双曲线的右支上一点,且三角形为正三角形(为坐标原点),记,的斜率分别为,,设为的内心,记,,的面积分别为,,,则下列说法正确的是( )A.B .双曲线的离心率为C.D.18.已知函数,将函数的图象向左平移()个单位长度后,得到函数的图象,若在区间上单调递减,下列说法正确的是( )A .当取最小值时,在区间上的值域为B.当取最小值时,的图象的一个对称中心的坐标为C .当取最大值时,在区间上的值域为D .当取最大值时,图象的一条对称轴方程为19. 已知平面向量,是两个夹角为的单位向量,且与垂直,则下列说法正确的是( )A .若,则与方向相同的单位向量是B.若,则在上的投影向量是C .若,则与方向相同的单位向量是D .若,则与的夹角的余弦值为20. 已知奇函数在上可导,其导函数为,且恒成立,若在单调递增,则下列说法正确的是( )A .在单调递减B.C.D.三、填空题四、解答题21. 受疫情影响,全球经济普遍下滑.某公司及时调整产研策略,加大研发力度,不断推出新的产品,使2021年的经济由亏转盈,并健康持续发展.下表为2021年1月份至6月份此公司的经济指标万元)与时间月份)的关系:123456其中,其对应的回归方程为,则下列说法正确的有( )A.与负相关B.C.回归直线可能不经过点D .2021年10月份的经济指标大约为22. 下列等式能够成立的为( )A.B.C.D.23. 已知F为椭圆的一个焦点,A ,B 为该椭圆的两个顶点,若,则满足条件的椭圆方程为( )A.B.C.D.24.已知抛物线的焦点为,准线为,过点的直线与抛物线交于两点,点在上的射影为,则下列说法正确的是( )A .若,则B.以为直径的圆与准线相交C .设,则D .过点与抛物线有且仅有一个公共点的直线有3条25.已知数列的前项和为,若,则的值为__________________.26. 已知是等比数列,是等差数列,,,则___________.27. 如图所示,在平面直角坐标系中,动点以每秒的角速度从点出发,沿半径为2的上半圆逆时针移动到,再以每秒的角速度从点沿半径为1的下半圆逆时针移动到坐标原点,则上述过程中动点的纵坐标关于时间的函数表达式为___________.28. 已知函数.五、解答题(1)当时,讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.29.已知函数(Ⅰ)将函数化简成的形式,并指出的周期;(Ⅱ)求函数上的最大值和最小值30. 对于数列,,的前n 项和,在学习完“错位相减法”后,善于观察的小周同学发现对于此类“等差×等比数列”,也可以使用“裂项相消法”求解,以下是她的思考过程:①为什么可以裂项相消?是因为此数列的第n ,n +1项有一定关系,即第n 项的后一部分与第n +1项的前一部分和为零②不妨将,也转化成第n ,n +1项有一定关系的数列,因为系数不确定,所以运用待定系数法可得,通过化简左侧并与右侧系数对应相等即可确定系数③将数列,表示成形式,然后运用“裂项相消法”即可!聪明的小周将这一方法告诉了老师,老师赞扬了她的创新意识,但也同时强调一定要将基础的“错位相减法”掌握.(1)(巩固基础)请你帮助小周同学,用“错位相减法”求的前n 项和;(2)(创新意识)请你参考小周同学的思考过程,运用“裂项相消法”求的前n项和.31.已知(1)化简;(2)若,求的值;(3)若,求的值.32. 化简,并求函数的值域和最小正周期.33.在中,,,.(1)求A 的大小;(2)求外接圆的半径与内切圆的半径.34.已知函数.(1)画出f (x )的图象,并写出的解集;(2)令f (x )的最小值为T ,正数a ,b满足,证明:.35. 如图,组合体由半个圆锥和一个三棱锥构成,其中是圆锥底面圆心,是圆弧上一点,满足是锐角,.(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明;(2)在(1)中,若是中点,且,求直线与平面所成角的正弦值.36. 给定函数,,.(1)在所给坐标系(1)中画出函数,的大致图象;(不需列表,直接画出.)(2),用表示,中的较小者,记为,请分别用解析法和图象法表示函数.(的图象画在坐标系(2)中)(3)直接写出函数的值域.37. 若动点到定点与定直线的距离之和为4.(1)求点的轨迹方程,并画出方程的曲线草图;(2)记(1)得到的轨迹为曲线,问曲线上关于点()对称的不同点有几对?请说明理由.38. 随着工作压力的增大,很多家长下班后要么加班,要么抱着手机,陪伴孩子的时间逐新减少,为了调查A地区家长陪伴孩子的时间,研究人员对200名家长一天陪伴孩子的时间进行统计,所得数据统计如图所示.(1)求这200名家长陪伴孩子的平均时间(同一组中的数据用该组区间的中点值代表);(2)若按照分层抽样的方法从陪伴时间在的家长中随机抽取7人,再从这7人中随机抽取2人,求至少有1人陪伴孩子的时间在的概率;(3)为了研究陪伴时间的多少与家长的性别是否具有相关性,研究人员作出统计如下表所示,判断是否有99%的把握认为陪伴时间的多少与家长的性别有关.男性女性陪伴时间少于60分钟5030陪伴时间不少于60分钟5070附:,.0.1000.0500.0100.0012.7063.841 6.63510.828六、解答题39.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量)进行统计,按照、、、、的分组作出频率分布直方图,已知得分在、的频数分别为、.(1)求样本容量和频率分布直方图中的、的值;(2)估计本次竞赛学生成绩的众数、中位数、平均数.40.矩形中,,,点为中点,沿将折起至,如下图所示,点在面的射影落在上.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.41.如图,四边形为梯形,,于,于,,,,现沿将折起,使为正三角形,且平面平面,过的平面与线段、分别交于、.(1)求证:;(2)在棱上(不含端点)是否存在点,使得直线与平面所成角的正弦值为,若存在,请确定点的位置;若不存在,说明理由.42.已知圆:.(1)求圆的圆心坐标及半径;(2)设直线:①求证:直线与圆恒相交;②若直线与圆交于,两点,弦的中点为,求点的轨迹方程,并说明它是什么曲线.43.如图,在三棱柱中,侧棱底面,底面等边三角形,分别是的中点.求证:七、解答题(1)∥平面;(2)平面平面.44.如图,,是圆锥底面圆的两条互相垂直的直径,过的平面与交于点,若,点在圆上,.(1)求证:平面;(2)若,,求三棱锥的体积.45.如图所示为一个半圆柱,为其轴截面,E为半圆弧上的任意点(异于C 、D两点).(1)求证:不论E 在何处总有;(2)已知求四棱锥的体积.46. “绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:年份20142015201620172018销量(万台)810132524某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:购置传统燃油车购置新能源车总计男性车主624女性车主2总计30(1)求新能源乘用车的销量关于年份的线性相关系数,并判断与是否线性相关;(2)请将上述列联表补充完整,并判断是否有的把握认为购车车主是否购置新能源乘用车与性别有关;(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为X ,求X 的数学期望与方差.参考公式:,,其中.,若,则可判断与线性相关.附表:.100.050.0250.0100.0012.7063.841 5.024 6.63510.82847. 经销商第一年购买某工厂商品的单价为(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:上一年度销售额/万元商品单价/元为了研究该商品购买单价的情况,为此调查并整理了个经销商一年的销售额,得到下面的柱状图.已知某经销商下一年购买该商品的单价为(单位:元),且以经销商在各段销售额的频率作为概率.(1)求的平均估计值.(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为获奖金额/元500010000概率记(单位:元)表示某经销商参加这次活动获得的资金,求的分布及数学期望.48. 针对偏远地区因交通不便、消息闭塞导致优质农产品藏在山中无人识的现象,各地区开始尝试将电商扶贫作为精准扶贫的重要措施.为了解电商扶贫的效果,某部门随机就100个贫困地区进行了调查,其当年的电商扶贫年度总投入(单位:万元)及当年人均可支配年收入(单位:元)的贫困地区数目的数据如下表:人均可支配年收入(元)电商扶贫年度总投入(万元)(5000,10000](10000,15000](15000,20000](0,500]532(500,1000]3216(1000,3000)23424(1)估计该年度内贫困地区人均可支配年收入过万的概率,并求本年度这100个贫困地区的人均可支配年收入的平均值的估计值(同一组数据用该组数据区间的中间值代表);(2)根据所给数据完成下面的列联表,并判断是否有99%的把握认为当地的人均可支配年收入是否过万与当地电商扶贫年度总投入是否超过千万有关.人均可支配年收入≤10000元人均可支配年收入>10000元电商扶贫年度总投入不超过1000万电商扶贫年度总投入超过1000万附:,其中.0.0500.010.0053.841 6.6357.87949. 为贯彻中共中央、国务院2023年一号文件,某单位在当地定点帮扶某村种植一种草莓,并把这种露天种植的草莓搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的草莓的箱数(单位:箱)与成本(单位:千元)的关系如下:134675 6.577.58与可用回归方程(其中为常数)进行模拟.(1)若农户卖出的该草莓的价格为150元/箱,试预测该水果100箱的利润是多少元.(利润=售价-成本)(2)据统计,1月份的连续16天中农户每天为甲地可配送的该水果的箱数的频率分布直方图如图,用这16天的情况来估计相应的概率.一个运输户拟购置辆小货车专门运输农户为甲地配送的该水果,一辆货车每天只能运营一趟,每辆车每趟最多只能装载40箱该水果,满载发车,否则不发车.若发车,则每辆车每趟可获利500元;若未发车,则每辆车每天平均亏损200元.试比较和时,此项业务每天的利润平均值的大小.参考数据与公式:设,则0.54 6.8 1.530.45线性回归直线中,.50. 某陶瓷厂只生产甲、乙两种不同规格的瓷砖,甲种瓷砖的标准规格长宽为,乙种瓷砖的标准规格长宽为,根据长期的检测结果,两种规格瓷砖每片的重量(单位:)都服从正态分布,重量在之外的瓷砖为废品,废品销毁不流入市场,其他重量的瓷砖为正品.(1)在该陶瓷厂生产的瓷砖中随机抽取10片进行检测,求至少有1片为废品的概率;(2)监管部门规定瓷砖长宽规格“尺寸误差”的计算方式如下:若瓷砖的实际长宽为,,标准长宽为,,则“尺寸误差”为,按行业生产标准,其中“一级品”“二级品”“合格品”的“尺寸误差”的范围分别是,,(正品瓷砖中没有“尺寸误差”大于的瓷砖),现分别从甲、乙两种产品的正品中随机抽取各100片,分别进行“尺寸误差”的检测,统计后,绘制其频率分布直方图如图所示,已知经销商经营甲种瓷砖每片“一级品”的利润率为0.12,“二级品”的利润率为0.08,“合格品”的利润率为0.02.经销商经营乙种瓷砖每片“一级品”的利润率为0.10,“二级品”的利润率为0.05,“合格品”的利润率为0.02.视频率为概率.①若经销商在甲、乙两种瓷砖上各投资10万元,和分别表示投资甲、乙两种瓷砖所获得的利润,求和的数学期望和方差,并由此分析经销商经销两种瓷砖的利弊;②若经销商在甲、乙两种瓷砖上总投资10万元,则分别在甲、乙两种瓷砖上投资多少万元时,可使得投资所获利润的方差和最小?附:若随机变量服从正态分布,则,,,,,51. 甲、乙两名同学与同一台智能机器人进行象棋比赛,计分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得-1分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.7,乙赢机器人的概率为0.6.求:(1)在一轮比赛中,甲的得分ξ的分布列;(2)在两轮比赛中,甲的得分的期望和方差.2024高中数学高考高频考点经典题型练习卷2024高中数学高考高频考点经典题型练习卷。

适用于新高考新教材2024版高考数学二轮复习考点突破练14圆锥曲线中的定点定值探索性问题课件

适用于新高考新教材2024版高考数学二轮复习考点突破练14圆锥曲线中的定点定值探索性问题课件
= 5,
= 2,
= =
2
∴椭圆的方程为 9
1 2 3 4
2
+ 4 =1.
A(-2,0),
(2)证明 根据题意,直线 PQ 的斜率存在,设 MN 的中点为 T,直线 PQ 的方程
为 y=k(x+2)+3(k<0),P(x1,y1),Q(x2,y2),
联立
2
9
2
+ 4
= 1,
= ( + 2) + 3,
,k2=
,
1 +2
2 +2
(1 +2)+3
(2 +2)+3
1
1
∴k1+k2= +2 + +2 =2k+3( +2 + +2)
1
2
1
2
2
16 +24+4
2
1 +2 +4
=2k+3( +2)( +2)=2k+3[ 2 4 +9 2
]=2k+(-2k+3)=3,∴T(0,3).
3

(1)求C的方程;
(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证
明:线段MN的中点为定点.
1 2 3 4
(1)解 由题意,椭圆


5
,
3
2
C: 2

2
5
+ 2 =1(a>b>0)的离心率为 ,且过点
3

= 3,
∴ 2

2024年普通高等学校招生全国统一考试数学模拟试题(二)(新高考九省联考题型)(高频考点版)

2024年普通高等学校招生全国统一考试数学模拟试题(二)(新高考九省联考题型)(高频考点版)

一、单选题二、多选题1. 已知的二项展开式中,第项与第项的二项式系数相等,则所有项的系数之和为( )A.B.C.D.2.已知函数,现将的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,则的解析式为( )A.B.C.D.3. 函数的值域是( )A.B.C.D.4. 若复数满足(为虚数单位),则复数的共轭复数是( )A.B.C.D.5. 设,,则等于( )A.B.C.D.6. 设是首项为,公差为-1的等差数列,为其前n项和,若成等比数列,则=( )A .2B .-2C.D.7.已知函数有两个零点,且存在唯一的整数,则实数的取值范围为( )A.B.C.D.8.已知圆与圆相交于,两点,且,给出以下结论:①是定值;②四边形的面积是定值;③的最小值为;④的最大值为,则其中正确结论的个数是( )A.B.C.D.9.如图,在正方体中,E 、F 、G 分别为的中点,则()A.B .与所成角为C.D .平面10. 与-835°终边相同的角有( )A .-245°B .245°C .475°D .-475°E .-115°2024年普通高等学校招生全国统一考试数学模拟试题(二)(新高考九省联考题型)(高频考点版)2024年普通高等学校招生全国统一考试数学模拟试题(二)(新高考九省联考题型)(高频考点版)三、填空题四、解答题11. 已知函数,则( )A .为偶函数B.的最小值为C .函数有两个零点D .直线是曲线的切线12.已知数列满足,记的前项和为,则( )A.B.C.D.13. 若关于的不等式的解是,试求的最小值为_____.14.已知,若的展开式中含项的系数为40,则______.15.设函数的定义域为,满足,当时,,则______16.已知函数的部分图象如图所示,在条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:;条件③:.注:如果选择多个条件组合分别解答,则按第一个解答计分.(1)求函数的解析式;(2)设函数,若在区间上单调递减,求m 的最大值.17.在中,内角,,所对的边分别是,,,已知.(1)求;(2)若,是外的一点,且,,则当为多少时,平面四边形的面积最大,并求的最大值.18. 若正项数列的首项为,且当数列是公比为的等比数列时,则称数列为“数列”.(1)已知数列的通项公式为,证明:数列为“数列”;(2)若数列为“数列”,且对任意,、、成等差数列,公差为.①求与间的关系;②若数列为递增数列,求的取值范围.19. 刷脸时代来了,人们为“刷脸支付”给生活带来的便捷感到高兴,但“刷脸支付”的安全性也引起了人们的担忧.某调查机构为了解人们对“刷脸支付”的接受程度,通过安全感问卷进行调查(问卷得分在40~100分之间),并从参与者中随机抽取200人.根据调查结果绘制出如图所示的频率分布直方图.如图有两个数据没有标注清晰(即图中),但已知此直方图的满意度的中位数为68.(1)求的值;并据此估计这200人满意度的平均数(同一组中的数据用该组区间的中点值作代表);(2)某大型超市引入“刷脸支付”后,在推广“刷脸支付”期间,推出两种付款方案:方案一:不采用“刷脸支付”,无任何优惠,但可参加超市的抽奖返现金活动.活动方案为:从装有8个形状、大小完全相同的小球(其中红球3个,黑球5个)的抽奖盒中,一次性摸出3个球,若摸到3个红球,返消费金额的;若摸到2个红球,返消费金额的,除此之外不返现金.方案二:采用“刷脸支付”,此时对购物的顾客随机优惠,但不参加超市的抽奖返现金活动,根据统计结果得知,使用“刷脸支付”时有的概率享受8折优惠,有的概率享受9折优惠,有的概率享受95折优惠.现小张在该超市购买了总价为1000元的商品.①求小张选择方案一付款时实际付款额X的分布列与数学期望;②试从期望角度,比较小张选择方案一与方案二付款,哪个方案更划算?(注:结果精确到0.1)20. 已知函数有两个零点.(1)求a的取值范围.(2)记两个零点分别为x 1,x2,证明:.21. 已知,其中为自然对数的底数.(1)若在处的切线的斜率为,求;(2)若有两个零点,求的取值范围.。

新高考数学二轮专题复习高频考点强化训练1(附解析)

新高考数学二轮专题复习高频考点强化训练1(附解析)

强化训练1 集合、常用逻辑用语、不等式一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·全国甲卷]设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}2.[2022·全国乙卷]设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M3.[2022·湖南常德一模]已知集合A ={x ∈Z |x 2≤1},B ={x |x 2-mx +2=0},若A ∩B ={1},则A ∪B =( )A .{-1,0,1}B .{x |-1≤x ≤1}C .{-1,0,1,2}D .{x |-1≤x ≤2}4.[2022·山东潍坊二模]十七世纪,数学家费马提出猜想:“对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )A .对任意正整数n ,关于x ,y ,z 的方程x n +y n =z n 都没有正整数解B .对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解C.存在正整数n ≤2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解D .存在正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解5.[2022·江苏南京模拟]设a 、b 均为非零实数,且a <b ,则下列结论中正确的是( ) A .1a >1bB .a 2<b 2C .1a 2 <1b 2D .a 3<b 3 6.[2022·山东潍坊一模]已知a >0,则“a a >a 3”是“a >3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.[2022·广东汕头三模]下列说法错误的是( )A .命题“∀x ∈R ,cos x ≤1”的否定是“∃x 0∈R ,cos x 0>1”B .在△ABC 中,sin A ≥sin B 是A ≥B 的充要条件C .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充要条件是“a >0,且b 2-4ac ≤0”D .“若sin α≠12 ,则α≠π6”是真命题 8.[2022·河北保定二模]已知a ,b ∈(0,+∞),且a 2+3ab +4b 2=7,则a +2b 的最大值为( ) A.2 B .3C .22D .32二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·湖北武汉二模]已知集合A ={1,4,a },B ={1,2,3},若A ∪B ={1,2,3,4},则a 的取值可以是( )A .2B .3C .4D .510.[2022·广东汕头二模]已知a ,b ,c 满足c <a <b ,且ac<0,那么下列各式中一定成立的是( )A .ac (a -c )>0B .c (b -a )<0C .cb 2<ab 2D .ab >ac11.[2022·江苏南京三模]设P =a +2a,a ∈R ,则下列说法正确的是( ) A .P ≥22B .“a >1”是“P ≥22 ”的充分不必要条件C.“P >3”是“a >2”的必要不充分条件D .∃a ∈(3,+∞),使得P <312.[2022·辽宁葫芦岛二模]已知a >b >0,a +b +1a +1b=5,则下列不等式成立的是( )A.1<a +b <4B .(1a +b )(1b+a )≥4 C .(1a +b )2>(1b+a )2 D .(1a +a )2>(1b+b )2 三、填空题(本题共4小题,每小题5分,共20分)13.[2022·南京师大附中模拟]命题“∀x >1,x 2≥1”的否定是____________.14.[2022·福建三明模拟]已知命题p :∃x ∈R ,x 2-ax +a <0,若命题p 为假命题,则实数a 的取值范围是________.15.[2022·湖南怀化一模]已知a ∈R ,且“x >a ”是“x 2>2x ”的充分不必要条件,则a 的取强化训练1 集合、常用逻辑用语、不等式1.解析:由题意,B ={x|x2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.答案:D2.解析:由题知M ={2,4,5},对比选项知,A 正确,BCD 错误. 答案:A3.解析:解不等式x2≤1得:-1≤x≤1,于是得A ={x ∈Z|-1≤x≤1}={-1,0,1},因A∩B ={1},即1∈B ,解得m =3,则B ={1,2},所以A ∪B ={-1,0,1,2}.答案:C4.解析:命题的否定形式为全称量词命题的否定是存在量词命题.故只有D 满足题意.答案:D5.解析:对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a2=b2,B 错误;对于C ,取a =-1,b =1,则1a2 =1b2 ,C 错误;对于D ,因a<b ,则b3-a3=(b -a )(b2+ab +a2)=(b -a )·⎣⎢⎡⎦⎥⎤(b +12a )2+34a2 >0,即a3<b3,D 正确. 答案:D6.解析:若0<a<1,由aa>a3可得a<3,此时0<a<1; 若a =1,则aa =a3,不合乎题意;若a>1,由aa>a3可得a>3,此时a>3.因此,满足aa>a3的a 的取值范围是{a|0<a<1或a>3},因为{a|0<a<1或a>3}{a|a>3},因此,“aa>a3”是“a>3”的必要不充分条件.答案:B7.解析:A.命题“∀x ∈R ,cos x≤1”的否定是“∃x0∈R ,cos x0>1”,正确;B .在△ABC 中,sin A≥sin B ,由正弦定理可得a 2R ≥b 2R (R 为外接圆半径),a≥b ,由大边对大角可得A≥B ;反之,A≥B 可得a≥b ,由正弦定理可得sin A≥sin B ,即为充要条件,故正确;C.当a =b =0,c≥0时满足ax2+bx +c≥0,但是得不到“a>0,且b2-4ac≤0”,则不是充要条件,故错误;D .若sin α≠12 ,则α≠π6 与α=π6 则sin α=12 的真假相同,故正确.答案:C8.解析:7=(a +2b )2-ab =(a +2b )2-12 a·2b≥(a +2b )2-12 (a +2b 2 )2=7(a +2b )28, 则(a +2b )2≤8,当且仅当a =2b = 2 时,“=”成立,又a ,b ∈(0,+∞),所以0<a +2b≤2 2 ,当且仅当a =2b = 2 时,“=”成立,所以a +2b 的最大值为2 2 . 答案:C9.解析:因为A ∪B ={1,2,3,4},所以{1,4,a}{1,2,3,4},所以a =2或a =3.答案:AB10.解析:因为a ,b ,c 满足c<a<b ,且ac<0,所以c<0,a>0,b>0,a -c>0,b -a>0,所以ac (a -c )<0,c (b -a )<0,cb2<ab2,ab>ac.答案:BCD11.解析:A 错误,当a<0时,显然有P 小于0;B 正确,a>1时,P =a +2a ≥2a·2a =2 2 ,当且仅当a =2a 时,即a = 2 时等号成立.故充分性成立,而P≥2 2 只需a>0即可;C 正确,P =a +2a >3可得0<a<1或a>2,当a>2时P>3成立,故C 正确;D 错误,因为a>3有a +2a >3+23 >3,故D 错误. 答案:BC12.解析:a +b +1a +1b =5,即a +b +a +b ab =5,所以ab =a +b 5-(a +b ),因为a>b>0,所以由基本不等式得:ab<(a +b )24 ,所以a +b 5-(a +b ) <(a +b )24, 解得:1<a +b<4,A 正确;(1a +b )(1b +a )=1ab +ab +2≥21ab ·ab +2≥4,当且仅当1ab =ab 时等号成立,故B 正确;(1a +b )2-(1b +a )2=(1a +b +1b +a )(1a +b -1b -a )=(1a +b +1b +a )(1ab +1)(b -a ),因为a>b>0,所以(1a +b +1b +a )(1ab +1)(b -a )<0,所以(1a +b )2<(1b +a )2,C 错误;(1a +a )2-(1b +b )2=(1a +a +1b +b )(1a +a -1b -b )=(1a +a +1b +b )(1ab -1)(b -a ),因为a>b>0,而1ab 可能比1大,可能比1小,所以(1a +a +1b +b )(1ab -1)(b -a )符号不确定,所以D 错误.答案:AB13.解析:因为命题“∀x>1,x2≥1”是全称量词命题,所以其否定是存在量词命题,即 “∃x>1,x2<1”.答案:“∃x>1,x2<1”14.解析:根据题意,∀x ∈R ,x2-ax +a≥0恒成立,所以Δ=a2-4a≤0⇒a ∈[0,4].答案:[0,4]15.解析:x2>2x 等价于x<0或x>2,而且“x>a”是“x2>2x”的充分不必要条件,则a≥2.答案:[2,+∞)16.解析:因为第一象限的点M (a ,b )在直线x +y -1=0上,所以a +b =1,a>0,b>0,所以1a +2b =(a +b )(1a +2b )=3+b a +2a b ≥3+2 2 ,当且仅当a = 2 -1,b =2- 2 时等号成立.答案:3+2 2。

2024高中数学高考高频考点经典题型模拟卷 (144)

2024高中数学高考高频考点经典题型模拟卷 (144)

一、单选题1. 已知函数f(x)=则下列结论正确的是( )A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)2. 已知函数是定义在上的奇函数,当时,,则( )A.-12B.12C.9D.-93. 设,,,则()A.B.C.D.4. 复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5. 已知在公比不为1的等比数列中,,且为和的等差中项,设数列的前项积为,则()A.B.C.D.6. 已知函数的部分图象如图所示,若存在,满足,则()A.B.C.D.7. 如图,在体积为3的三棱锥P-ABC中,PA,PB,PC两两垂直,,若点M是侧面CBP内一动点,且满足,则点M的轨迹长度的最大值为()A.3B.6C.D.8.若,则的值为()A.B.C.D.9. 若函数在区间上的值域为,则称函数为“和谐函数”.已知是区间上的“和谐函数”(其中),则实数m的取值范围()A.B.C.D.二、多选题10.已知函数,若将函数的图象向左平移个单位长度后得到函数的图象,若关于的方程在上有且仅有两个不相等的实根,则实数的取值范围是( )A.B.C.D.11. 已知双曲线的一条渐近线与直线垂直,则的焦点坐标为( )A.B.C.D.12.将函数的图象上所有的点的横坐标缩短到原来的(纵坐标不变),再沿轴向左平移个单位长度,所得图象对应的函数为.关于函数,现有如下命题:①函数的图象关于点对称;②函数在上是增函数:③当时,函数的值域为;④函数是奇函数.其中真命题的个数为( )A .1B .2C .3D .413.设的小数部分为x ,则( )A .1B .2C .3D .414. 已知函数是定义在上的偶函数,,当时,,若,则的最大值是( )A.B.C.D.15. 已知全集,集合,,则( )A.B.C.D.16.等于( )A.B.C.D.17. 已知函数,,若关于的方程有3个实数解,,,且,则( )A .的最小值为4B .的取值范围是C.的取值范围是D .的最小值是1318.若函数满足:①,恒有,②,恒有,③时,,则下列结论正确的是( )A.B .的最大值为4C.的单调递减区间为D .若曲线与的图象有6个不同的交点,则实数的取值范围为19.已知某物体作简谐运动,位移函数为,且,则下列说法正确的是( )A.该简谐运动的初相为B .函数在区间上单调递增三、填空题四、解答题C .若,则D .若对于任意,,有,则20. 设等比数列的公比为,前项积为,下列说法正确的是( )A .若,则B.若,则C .若,且为数列的唯一最大项,则D .若,且,则使得成立的的最大值为2021. 2022年我国对外经济进口总值累计增长率统计数据如图所示,则()A .2022年我国对外经济进口总值逐月下降B .2022年我国对外经济进口总值累计增长率在前6个月的方差大于后6个月的方差C .2022年我国对外经济进口总值累计增长率的中位数为5.5%D .2022年我国对外经济进口总值累计增长率的80%分位数为7.1%22. 在长方体中,,,,则下列命题为真命题的是( )A .若直线与直线CD 所成的角为,则B .若经过点A 的直线与长方体所有棱所成的角相等,且与面交于点M,则C .若经过点A 的直线m 与长方体所有面所成的角都为θ,则D .若经过点A 的平面β与长方体所有面所成的二面角都为,则23. 椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程可能为( )A .2B .8C .10D .1224. 已知是的一个极值点,则( )A.B.C.若有两个极值点,则D .若有且只有一个极值点,则25. 中国古代数学经典《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑(biē nào ).若三棱锥为鳖臑,且⊥平面,又该鳖臑的外接球的表面积为,则该鳖臑的体积为__________26. 已知直线l 为曲线的一条切线,写出满足下列两个条件的函数______.①原点为切点:②切线l 的方程为.27.已知函数,且,则的取值范围是 .五、解答题28. 已知向量,(,),令().(1)化简,并求当时方程的解集;(2)已知集合,是函数与定义域的交集且不是空集,判断元素与集合的关系,说明理由.29. 在长方体中,,.(1)在边上是否存在点,使得,为什么?(2)当存在点,使时,求的最小值,并求出此时二面角的正弦值.30.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.31. 已知函数.(1)求f (x )的最小正周期和在的单调递增区间;(2)已知,先化简后计算求值:32. (1)求值:;(2)已知,求的值.33. 计算求值:(1);(2)已知,均为锐角,,,求的值.34. 某省2019年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A 等;分数在[70,85)内,记为B 等;分数在[60,70)内,记为C 等;60分以下,记为D 等,同时认定A ,B ,C 等为合格,D 等为不合格,已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校样本的频率分布直方图如图1所示,乙校的样本中等级为C ,D 的所有数据的茎叶图如图2所示.(1)求图中x 的值,并根据样本数据比较甲、乙两校的合格率;(2)在乙校的样本中,从成绩等级为C ,D 的学生中随机抽取2名学生进行调研,求抽出的2名学生中至少有1名学生成绩等级为D 的概率.35. 一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)作为样本如下表所示.脚掌长(x)20212223242526272829身高(y)141146154160169176181188197203(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;(2)若某人的脚掌长为,试估计此人的身高;(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.(参考数据:,,,)36. 在三棱锥中,G是的重心,P是面内一点,且平面.(1)画出点P的轨迹,并说明理由;(2)平面,,,,当最短时,求二面角的余弦值.37. 随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司分别管理的、小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到小区住户满意度评分的频率分布直方图和小区住户满意度评分的频数分布表.B小区住户满意度评分的频数分布表:满意度评分分组频数4610128(1)在图2中作出小区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两小区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(2)根据住户满意度评分,将住户满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个小区住户的满意度等级为不满意的概率大?若要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.六、解答题38. 某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:注:尺寸数据在内的零件为合格品,频率作为概率.(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望; (Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?39. 某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.百分制85分及以上70分到84分60分到69分60分以下等级ABCD规定:A ,B ,C 三级为合格等级,D 为不合格等级.为了解该校高三年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计.按照,,,,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示(1)求,,的值;(2)根据频率分布直方图,求成绩的中位数(精确到0.1);(3)在选取的样本中,从A ,D 两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A 等级的概率.40. 如图所示,直角梯形中,,,,四边形为矩形,,平面平面.(2)在线段上是否存在点P,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.41. 如图所示,在直三棱柱中,,设D为的中点,且.(1)求证:平面平面;(2)求点到平面的距离.42. 如图,三棱锥的底面和侧面都是等边三角形,且平面平面.(1)若点是线段的中点,求证:平面;(2)点在线段出上且满足,求与平面所成角的正弦值.43. 如图,正三棱柱中,E是棱的中点,,点F在线段AC上,且.(1)求证:平面.(2)求平面与平面的夹角的余弦值.44. 已知数列满足:.(1)求证:;(2)求证:.45. 如图,在三棱柱中,平面平面ABC,,,,,,.七、解答题(2)求二面角的余弦值.46. 某科技公司生产某种芯片.由以往的经验表明,不考虑其他因素,该芯片每日的销售量y (单位:枚)与销售价格x (单位:元/枚,):当时满足关系式,(m ,n 为常数);当时满足关系式.已知当销售价格为20元/枚时,每日可售出该芯片7000枚;当销售价格为30元/枚时,每日可售出该芯片1500枚.(1)求m ,n 的值,并确定y 关于x 的函数解析式;(2)若该芯片的成本为10元/枚,试确定销售价格x 的值,使公司每日销售该芯片所获利润最大.(x 精确到0.01元/枚)47. 为了提高居民参与健身的积极性,某社区组织居民进行乒乓球比赛,每场比赛采取五局三胜制,先胜3局者为获胜方,同时该场比赛结束,每局比赛没有平局.在一场比赛中,甲每局获胜的概率均为p ,且前4局甲和对方各胜2局的概率为.(1)求p 的值;(2)记该场比赛结束时甲获胜的局数为X ,求X 的分布列与期望.48. 世界杯足球赛淘汰赛阶段的比赛规则为:90分钟内进球多的球队取胜,如果参赛双方在90分钟内无法决出胜负(踢成平局),将进行30分钟的加时赛,若加时赛阶段两队仍未分出胜负,则进入“点球大战”.点球大战的规则如下:①两队各派5名队员,双方轮流踢点球,累计进球个数多者胜;②如果在踢满5球前,一队进球数已多于另一队踢5球可能踢中的球数,则该队胜出,譬如:第4轮结束时,双方进球数比,则不需踢第5轮了;③若前5轮点球大战中双方进球数持平,则采用“突然死亡法”决出胜负,即从第6轮起,双方每轮各派1人踢点球,若均进球或均不进球,则继续下一轮.直到出现一方进球另一方不进球的情况,进球方胜.现有甲乙两队在淘汰赛中相遇,双方势均力敌,120分钟(含加时赛)仍未分出胜负,须采用“点球大战”决定胜负.设甲队每名球员射进的概率为,乙队每名球员射进的概率为.每轮点球结果互不影响.(1)设甲队踢了5球,为射进点球的个数,求的分布列与期望;(2)若每轮点球都由甲队先踢,求在第四轮点球结束时,乙队进了4个球并刚好胜出的概率.49. “斯诺克(Snooker )”是台球比赛的一种,意思是“阻碍、障碍”,所以斯诺克台球有时也被称为障碍台球,是四大“绅士运动”之一,随着生活水平的提高,“斯诺克”也成为人们喜欢的运动之一.现甲、乙两人进行比赛比赛采用5局3胜制,各局比赛双方轮流开球(例如:若第一局甲开球,则第二局乙开球,第三局甲开球……),没有平局已知在甲的“开球局”,甲获得该局比赛胜利的概率为,在乙的“开球局”,甲获得该局比赛胜利的概率为,并且通过“猜硬币”,甲获得了第一局比赛的开球权.(1)求甲以3∶1赢得比赛的概率;(2)设比赛的总局数为,求.50. 小明参加某电视台举办的一场智力比赛,比赛分为两轮,其中第一轮比赛的方案如下.方案一:第一轮中小明必须回答3个问题,每个问题回答正确的概率均为,3个问题至少答对2个才能进入第二轮,且获得第一轮的奖金1000元,否则直接淘汰.方案二:第一轮中小明必须回答2个问题,每个问题回答正确的概率均为,2个问题至少答对1个才能进入第二轮,且获得第一轮的奖金800元,否则直接淘汰.在第二轮中,小明需要回答2个问题,且2个问题回答正确的概率依次为,,2个问题全部回答正确则获得奖金3000元,否则只能获得第一轮的奖金.(1)若小明第一轮比赛选择方案一,记小明最终获得的奖金总额为X ,求X 的分布列以及数学期望.(2)为使小明最终获得的奖金总额的期望最大,小明在第一轮中应选择方案一还是方案二?请说明理由.51. 某投资公司2012年至2021年每年的投资金额(单位:万元)与年利润增量(单位:万元)的散点图如图:该投资公司为了预测2022年投资金额为20万元时的年利润增量,建立了关于的两个回归模型;模型①:由最小二乘公式可求得与的线性回归方程:;模型②:由图中样本点的分布,可以认为样本点集中在由线:的附近,对投资金额做换元,令,则,且有,(1)根据所给的统计量,求模型②中关于的回归方程;(2)分别利用这两个回归模型,预测投资金额为20万元时的年利润增量(结果保留两位小数);附:样本的最小乘估计公式为;参考数据:.。

新高考数学二轮专题复习高频考点强化训练8(附解析)

新高考数学二轮专题复习高频考点强化训练8(附解析)

强化训练8 等差数列与等比数列——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东威海三模]等差数列{a n }的前n 项和为S n ,若a 3=4,S 9=18,则公差d =( )A .1B .-1C .2D .-22.[2022·湖南常德一模]设S n 为等比数列{a n }的前n 项和,若a 4=4,S 3=S 2+2,则a 1=( )A .12B .1C .2D .23.[2022·湖南岳阳一模]已知等差数列{a n }满足a 2=4,a 3+a 5=4(a 4-1),则数列{a n }的前5项和为( )A .10B .15C .20D .304.[2022·湖南师大附中二模]设等比数列{a n }的首项为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意N *都有a n +1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.[2022·辽宁鞍山二模]设等差数列{a n },{b n }的前n 项和分别是S n ,T n ,若S n T n=2n 3n +7,则 a 3b 3 =( ) A .1 B .511C .2217D .386.已知a 1=1,a n =n (a n +1-a n )(n ∈N +),则数列{a n }的通项公式是a n =( )A .2n -1B .(n +1n)n +1 C .n 2 D .n7.[2022·河北邯郸一模]“中国剩余定理”又称“孙子定理”,可见于中国南北朝时期的数学著作《孙子算经》卷下第十六题的“物不知数”问题,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有一个相关的问题:将1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序排成一列,构成一个数列,则该数列的项数为( )A .132B .133C .134D .1358.[2022·北京北大附中三模]已知数列{a n }满足a 1a 2a 3…a n =n 2,其中n =1,2,3,…,则数列{a n }( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.在数列{a n }中,a 1=1,数列⎩⎨⎧⎭⎬⎫1a n +1 是公比为2的等比数列,设S n 为{a n }的前n 项和,则( )A .a n =12n -1B .a n =12n +12C .数列{a n }为递减数列D .S 3>7810.[2022·湖南永州三模]已知等差数列{a n }是递减数列,S n 为其前n 项和,且S 7=S 8,则( )A .d >0B .a 8=0C .S 15>0D .S 7、S 8均为S n 的最大值11.[2022·山东枣庄三模]给出构造数列的一种方法:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现自1,1起进行构造,第1次得到数列1,2,1,第2次得到数列1,3,2,3,1,…,第n (n ∈N *)次得到数列1,x 1,x 2,…,x k ,1,记a n =1+x 1+x 2+…+x k +1,数列{a n }的前n 项和为S n ,则( )A.a 4=81B .a n =3a n -1-1C .a n =3n +1D .S n =12 ×3n +1+n -3212.[2022·河北沧州二模]已知数列{a n }满足a 1=1,a n +2=(-1)n +1(a n -n )+n ,记{a n }的前n 项和为S n ,则( )A .a 48+a 50=100B .a 50-a 46=4C .S 48=600D .S 49=601三、填空题(本题共4小题,每小题5分,共20分)13.[2022·辽宁丹东一模]在等差数列{a n }中,已知a 1+2a 7=15,则a 2+a 8=________.14.[2022·广东潮州二模]记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则a 4=________.15.[2022·山东泰安二模]已知数列{a n }是公差大于0的等差数列,a 1=2,且a 3+2,a 4,a 6-4成等比数列,则a 10=________.16.[2022·河北唐山二模]已知数列{a n }满足a 1=a 5=0,|a n +1-a n |=2,则{a n }前5项和的最大值为________.强化训练8 等差数列与等比数列1.解析:由题可知⎩⎪⎨⎪⎧a1+2d =49a1+9×82·d =18 ⇒⎩⎨⎧a1=6d =-1 . 答案:B2.解析:由已知a3=S3-S2=2,q =a4a3 =42 =2,所以a1=a3q2 =222 =12 .答案:A3.解析:等差数列{an}中,2a4=a3+a5=4(a4-1),解得a4=2,于是得公差d =a4-a24-2=-1,a1=5, 所以数列{an}的前5项和为S5=5a1+5(5-1)2d =15. 答案:B4.解析:若a1<0,且0<q<1,则an +1-an =a1qn -a1qn -1=a1qn -1(q -1)>0,所以an +1>an ,反之,若an +1>an ,则an +1-an =a1qn -a1qn -1=a1qn -1(q -1)>0, 所以a1<0,且0<q<1或a1>0,且q>1,所以“a1<0,且0<q<1”是“对于任意N*,都有an +1>an”的充分不必要条件. 答案:A5.解析:因为等差数列{an},{bn}的前n 项和分别是Sn ,Tn ,所以a3b3 =a1+a52b1+b52 =5(a1+a5)25(b1+b5)2=S5T5 =1015+7=511 . 答案:B6.解析:由an =n (an +1-an ),得(n +1)an =nan +1,即an +1an =n +1n ,则an an -1 =n n -1 ,an -1an -2 =n -1n -2 ,an -2an -3 =n -2n -3,…,a2a1 =21 ,n≥2, 由累乘法可得an a1 =n ,所以an =n ,n≥2,又a1=1,符合上式,所以an =n.答案:D7.解析:因为由1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序所构成的数列是一个首项为14,公差为15的等差数列{an},所以该数列的通项公式为an =14+15(n -1)=15n -1.令an =15n -1≤2 022, 解得n≤134,即该数列的项数为134.答案:C8.解析:依题意,因为a1a2a3…an =n2,其中n =1,2,3,…,当n =1时,a1=12=1,当n≥2时,a1a2a3…an -1=(n -1)2,a1a2a3…an =n2,两式相除有an =n2(n -1)2 =(1+1n -1)2,n≥2,易得an 随着n 的增大而减小,故an≤a2=4,且an>1=a1,故最小项为a1=1,最大项为a2=4.答案:A9.解析:因为a1=1,数列⎩⎨⎧⎭⎬⎫1an +1 是公比为2的等比数列,所以1an +1=2·2n -1=2n ,所以an =12n -1,故A 正确,B 错误; 因为y =2x -1,(x≥1)是单调增函数,故y =12x -1,(x≥1)是单调减函数,故数列{an}是减数列,故C 正确;S3=a1+a2+a3=1+13 +17 >78 ,故D 正确.答案:ACD10.解析:因为等差数列{an}是递减数列,所以an +1-an<0,所以d<0,故A 错误;因为S7=S8,所以a8=S8-S7=0,故B 正确;因为S15=15(a1+a15)2=15a8=0,故C 错误; 因为由题意得,⎩⎨⎧a7>0a8=0a9<0,所以S7=S8≥Sn (n ∈N*),故D 正确. 答案:BD11.解析:由题意得:a1=4,a2=10=3×4-2,a3=28=3×10-2,a4=82=3×28-2,所以有an =3an -1-2,因此选项AB 不正确;an =3an -1-2⇒an -1=3(an -1-1),所以数列{an -1}是以a1-1=3为首项,3为公比的等比数列,因此有an -1=3·3n -1=3n ⇒an =3n +1,因此选项C 正确;Sn =3(1-3n )1-3+n =12 ×3n +1+n -32 ,所以选项D 正确. 答案:CD12.解析:因为a1=1,an +2=(-1)n +1(an -n )+n ,所以当n 为奇数时,an +2=an =a1=1;当n 为偶数时,an +an +2=2n.所以a48+a50=96,选项A 错误;又因为a46+a48=92,所以a50-a46=4,选项B 正确;S48=a1+a3+a5+…+a47+[(a2+a4)+(a6+a8)+…+(a46+a48)]=24×1+2×(2+6+…+46)=24+2×(2+46)×122=600,故C 正确; S49=S48+a49=600+1=601,选项D 正确.答案:BCD13.解析:由题意在等差数列{an}中,设公差为d ,则a1+2a7=3a1+12d =3a5=15,所以a5=5,于是a2+a8=2a5=10.答案:1014.解析:设等比数列{an}的公比为q ,由已知S3=a1+a1q +a1q2=1+q +q2=34 ,即q2+q +14 =0,解得q =-12 ,所以a4=1·(-12 )3=-18 .答案:-1815.解析:设公差为d ,则a 24 =(a3+2)(a6-4),即(2+3d )2=(2+2d +2)(2+5d -4),化简得d2+4d -12=0,解得d =2或d =-6,又d>0,故d =2,则a10=a1+9d =20.答案:2016.解析:∵a1=a5=0,|an +1-an|=2,∴|a2-a1|=|a2|=2,∵求an 前5项和的最大值,∴取a2=2,∵|an +1-an|=2,∴|a3-a2|=|a3-2|=2.∵求an 前5项和的最大值,∴取a3=4,∵|a4-a3|=|a4-4|=2①|a5-a4|=|0-a4|=|a4|=2②结合①和②,∴a4=2时前5项和可有最大值.∴{an}前5项和的最大值为:0+2+4+2+0=8.答案:8。

2024年新高考数学高频考点+重点题型

2024年新高考数学高频考点+重点题型

2024年新高考数学高频考点+重点题型
新高考数学的高频考点和重点题型会因地区和考试年份的不同
而有所差异。

以下是一些可能的高频考点和重点题型:
- 集合与逻辑:集合的运算、充要条件等。

- 函数与导数:函数的性质、图像和应用,导数的计算和应用等。

- 三角函数与解三角形:三角函数的图像和性质,解三角形等。

- 数列:等差数列、等比数列的通项公式和求和公式,数列的应用等。

- 立体几何:空间向量的应用,空间角和距离的计算等。

- 解析几何:直线和圆的方程,椭圆、双曲线和抛物线的标准方程和性质等。

- 概率与统计:概率的计算,分布列和数学期望的计算等。

需要注意的是,以上只是一些常见的高频考点和重点题型,具体的考试内容和难度会因地区和年份的不同而有所差异。

建议你结合所在地区的实际情况,认真学习和掌握数学知识,做好备考工作。

2024年新高考数学的重点题型可能包括以下几种:
- 基本不等式
- 数列
- 立体几何
- 解析几何
- 概率与统计
需要注意的是,不同地区和年份的新高考数学重点题型可能会有所差异,建议你结合所在地区的实际情况,认真学习和掌握数学知识,做好备考工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

强化训练14立体几何——大题备考第二次作业1.[2022·广东深圳二模]如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD是正三角形,M是侧棱PD的中点,且AM⊥平面PC D.(1)求证:平面P AD⊥平面ABCD;(2)求AM与平面PBC所成角的正弦值.2.[2022·河北唐山二模]如图,△ABC是边长为43的等边三角形,E,F分别为AB,AC的中点,G是△ABC的中心,以EF为折痕把△AEF折起,使点A到达点P的位置,且PG⊥平面AB C.(1)证明:PB⊥AC;(2)求平面PEF与平面PBF所成二面角的正弦值.3.[2022·山东淄博三模]已知如图,在多面体ABCEF 中,AC =BC =2,∠ACB =120°,D 为AB 的中点,EF ∥CD ,EF =1,BF ⊥平面AEF .(1)证明:四边形EFDC 为矩形; (2)当三棱锥A - BEF 体积最大时,求平面AEF 与平面ABE 夹角的余弦值.4.[2022·山东德州二模]《九章算术》是中国古代张苍,耿寿昌所撰写的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右,是当时世界上最简练有效的应用数学专著,它的出现标志着中国古代数学形成了完整的体系.在《九章算术·商功》篇中提到“阳马”这一几何体,是指底面为矩形,有一条侧棱垂直于底面的四棱锥,现有“阳马”P - ABCD ,底面为边长为2的正方形,侧棱P A ⊥平面ABCD ,P A =2,E 、F 为边BC 、CD 上的点,CE → =λCB → ,CF → =λCD →,点M 为AD 的中点.(1)若λ=12,证明:平面PBM ⊥平面P AF ;(2)是否存在实数λ,使二面角P - EF - A 的大小为45°?如果不存在,请说明理由;如果存在,求此时直线BM 与平面PEF 所成角的正弦值.强化训练15 统计、统计案例与概率——小题备考一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东潍坊三模]某省新高考改革方案推行“3+1+2”模式,要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门.某学生各门功课均比较优异,因此决定按方案要求任意选择,则该生选考物理、生物和政治这3门科目的概率为( )A .12B .13C .16D .1122.[2022·山东威海三模]甲、乙两人相约在某健身房锻炼身体,他们分别在两个网站查看这家健身房的评价.甲在网站A 查到共有840人参与评价,其中好评率为95%,乙在网站B 查到共有1 260人参与评价,其中好评率为85%.综合考虑这两个网站的信息,则这家健身房的总好评率为( )A .88%B .89%C .91%D .92% 3.[2022·辽宁葫芦岛一模]有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据,y 1,y 2,…,y n ,其中y i =x i +c (i =1,2,…,n )c 为非零常数,则( )A .两组样本数据的样本方差相同B .两组样本数据的样本众数相同C .两组样本数据的样本平均数相同D .两组样本数据的样本中位数相同 4.[2022·辽宁辽阳二模]为了解某地高三学生的期末语文考试成绩,研究人员随机抽取了100名学生对其进行调查,根据所得数据制成如图所示的频率分布直方图,已知不低于90分为及格,则这100名学生期末语文成绩的及格率为( )A .40%B .50%C .60%D .65% 5.[2022·河北保定二模]某研究机构为了了解初中生语文成绩的平均分y (单位:分)与每周课外阅读时间x (单位:分钟)是否存在线性关系,搜集了100组数据(∑i =1100x i =3 000,∑i =1100y i =7 900),并据此求得y 关于x 的回归直线方程为y =0.3x +a.若一位初中生的每周课外阅读时间为2个小时,则可估计她的语文成绩的平均分为()A .70.6B .100C .106D .110 6.[2022·山东青岛一模]甲乙两选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为( )A .0.36B .0.352C .0.288D .0.648 7.[2022·湖北武汉模拟]通过随机询问某中学110名中学生是否爱好跳绳,得到如下列联表:已知χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),则以下结论正确的是(A .根据小概率值α=0.001的独立性检验,爱好跳绳与性别无关B .根据小概率值α=0.001的独立性检验,爱好跳绳与性别无关,这个结论犯错误的概率不超过0.001C .根据小概率值α=0.01的独立性检验,有99%以上的把握认为“爱好跳绳与性别无关”D .根据小概率值α=0.01的独立性检验,在犯错误的概率不超过1%的前提下,认为“爱好跳绳与性别无关”8.[2022·湖南长沙模拟]第24届冬季奥林匹克运动会于2022年2月4日至20日在北京和张家口举行.某特许产品100件,其中一等品98件,二等品2件,从中不放回的依次抽取10件产品(每次抽取1件).甲表示事件“第一次取出的是一等品”,乙表示事件“第二次取出的是二等品”,记取出的二等品件数为X ,则下列结论正确的是( )A .甲与乙相互独立B .甲与乙互斥C .X ~B(10,0.02)D .E(X)=0.2二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·辽宁大连二模]为评估一种农作物的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg )互不相等,且从小到大分别为x 1,x 2,…,x 10,则下列说法正确的有( )A .x 1,x 2,…,x 10的平均数可以用来评估这种农作物亩产量稳定程度B .x 1,x 2,…,x 10的标准差可以用来评估这种农作物亩产量稳定程度C .x 10-x 1可以用来评估这种农作物亩产量稳定程度D .x 1,x 2,…,x 10的中位数为x 5 10.[2022·山东枣庄三模]下列结论正确的有( ) A .若随机变量ξ,η满足η=2ξ+1,则D(η)=2D(ξ)+1B .若随机变量ξ~N(3,σ2),且P(ξ<6)=0.84,则P(3<ξ<6)=0.34C .若样本数据(x i ,y i )(i =1,2,3,…,n)线性相关,则用最小二乘估计得到的回归直线经过该组数据的中心点(x - ,y -)D .根据分类变量X 与Y 的成对样本数据,计算得到χ2=4.712.依据α=0.05的独立性检验(x 0.05=3.841),可判断X 与Y 有关且犯错误的概率不超过0.0511.[2022·福建福州三模]某质量指标的测量结果服从正态分布N(80,σ2),则在一次测量中( )A .该质量指标大于80的概率为0.5B .σ越大,该质量指标落在(70,90)的概率越大C .该质量指标小于60与大于100的概率相等D .该质量指标落在(75,90)与落在(80,95)的概率相等 12.[2022·山东淄博三模]甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以A 1,A 2和A 3表示由甲箱取出的球是红球、白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则下列结论正确的是( )A .事件B 与事件A i (i =1,2,3)相互独立B .P(A 1B)=522C .P(B)=25D .P(A 2|B)=845三、填空题(本题共4小题,每小题5分,共20分) 13.[2022·河北石家庄二模]某中学高一、高二、高三年级的学生人数分别为1 200、1 000、800,为迎接春季运动会的到来,根据要求,按照年级人数进行分层抽样,抽选出30名志愿者,则高一年级应抽选的人数为________.14.[2022·全国乙卷]从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.15.[2022·山东济南二模]2022年4月24日是第七个“中国航天日”,今年的主题是“航天点亮梦想”.某校组织学生参与航天知识竞答活动,某班8位同学成绩如下:7,6,8,9,8,7,10,m.若去掉m ,该组数据的第25百分位数保持不变,则整数强化训练14 立体几何1.解析:(1)证明:因为AM ⊥平面PCD , 所以AM ⊥CD ,又底面ABCD 为正方形,所以AD ⊥CD ,又AD∩AM =A ,所以CD ⊥平面PAD ,又CD ⊂平面ABCD , 所以平面PAD ⊥平面ABCD ;(2)取AD 的中点O ,连接PO ,则PO ⊥平面ABCD , 则以O 为原点,建立如图所示空间直角坐标系:设AB =2,则A (1,0,0),B (1,2,0),C (-1,2,0),P (0,0,3 ),D (-1,0,0),M (-12) ,0,32 ),所以AM→ =(-32 ,0,32 ),PB → =(1,2,- 3 ),PC → =(-1,2,-3 ),设平面PBC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧PB →·n =0PC →·n =0 ,即⎩⎨⎧x +2y -3z =0-x +2y -3z =0 ,令z = 3 ,则y =32 ,x =0,则n =(0,32 ,3 ), 设AM 与平面PBC 所成角为θ,所以sin θ=|cos 〈AM →,n 〉|=|AM →·n||AM →|·|n| =323·212=77 .2.解析:(1)证明:连接BF ,由△ABC 为等边三角形,F 为AC 的中点,所以BF ⊥AC ,由PG ⊥平面ABC ,AC ⊂平面ABC ,所以PG ⊥AC ,又PG∩BF =G ,PG ,BF ⊂平面PBF ,所以AC ⊥平面PBF , 又PB ⊂平面PBF ,所以PB ⊥AC ;(2)依题意PF =2 3 ,GF =2,在Rt △PFG 中,PG =22 , 以F 为坐标原点,以FB→ 为x 轴的正方向,如图建立空间直角坐标系,则A (0,-2 3 ,0),C (0,2 3 ,0),B (6,0,0),E (3,- 3 ,0),P (2,0,2 2 )FP→ =(2,0,2 2 ),FE → =(3,- 3 ,0),由(1)可知,AC → =(0,4 3 ,0)是平面PBF 的一个法向量,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n·FP →=2x +22z =0n·FE →=3x -3y =0 ,令x =2 ,则n =( 2 , 6 ,-1),所以cos 〈AC → ,n 〉=AC →·n |AC →|·|n | =63 ,所以sin 〈AC→ ,n 〉=1-cos2〈AC→,n 〉 =33,所以平面PEF 与平面PBF 所成二面角的正弦值为33 .3.解析:(1)证明:因为∠ACB =120°,AC =BC =2,D 为AB 的中点, 所以CD ⊥AB ,且CD =BC sin30°=1,又因为EF =1,所以CD =EF ,因为EF ∥CD , 所以四边形EFDC 为平行四边形,因为BF ⊥平面AEF ,EF ⊂平面AEF ,所以BF ⊥EF ,所以CD ⊥BF ,因为BF∩AB =B ,BF ,AB ⊂平面ABF ,所以CD ⊥平面ABF, DF ⊂平面ABF , 所以CD ⊥DF ,所以四边形EFDC 为矩形.(2)由(1)可知,EF ⊥平面ABF ,BF ⊥平面AEF ,AF ⊂平面AEF ,所以BF ⊥AF ,AB =2BC2 - CD2 =2 3 ,所以三棱锥A - BEF 的体积V =13 S △ABF·EF =16 AF·BF≤112 (AF2+BF2)=112 AB2=1, 当且仅当AF =BF 时等号成立,此时FD ⊥AB ,据(1),以D 为坐标原点,分别以DA ,CD ,DF 所在的直线为x ,y ,z 轴建立空间直角坐标系D - xyz 如图所示.由已知可得下列点的坐标:A ( 3 ,0,0),B (- 3 ,0,0),F (0,0,3 ),E (0,-1, 3 ),所以AB→ =(-2 3 ,0,0),AE → =(- 3 ,-1, 3 ), 设平面ABE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m·AE →=0m·AB →=0 ,即⎩⎨⎧-3x -y +3z =0-23x =0,取y = 3 ,则x =0,z =1, 所以平面ABE 的一个法向量为m =(0, 3 ,1), 因为BF→ =( 3 ,0, 3 )是平面AEF 的法向量, 设平面AEF 与平面ABE 夹角为θ,则cos θ=|m·BF →||m|·|BF →| =32·6 =24 ,故平面AEF 与平面ABE 夹角的余弦值为24 .4.解析:(1)证明:λ=12 时,点E 、F 为BC 及CD 的中点. 连接AF 与BM 交于点G ,在△ABM 和△DAF 中,AB =AD ,AM =DF ,∠BAM =∠ADF =90°, 所以△ABM ≌△DAF ,于是∠ABM =∠FAD. 而∠FAD +∠BAF =90°, 所以∠ABM +∠BAF =90°,故∠AGB =90°,即BM ⊥AF.又PA ⊥平面ABCD ,BM ⊂平面ABCD , 所以PA ⊥BM.因为BM ⊥PA ,BM ⊥AF ,PA ⊂平面PAF ,AF ⊂平面PAF ,PA∩AF =A , 所以BM ⊥平面PAF.又因为BM ⊂平面PBM ,所以平面PBM ⊥平面PAF.(2)连接AC ,交EF 于点Q ,连接PQ ,记BD 与AC 交于点O ,如图:因为CE→ =λCB → ,CF → =λCD → , 所以EF ∥BD , 因为AC ⊥BD ,所以AC ⊥EF ,从而PQ ⊥EF , 所以∠AQP 为二面角P - EF - A 的一个平面角.由题意,∠AQP =45°,从而AQ =PA =2, 所以CQ =2 2 -2,于是λ=CE CB =CQ CO =22-22 =2- 2 ,所以CF =CE =4-2 2 ,BE =DF =2 2 -2.如图,以AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴建立空间直角坐标系,于是P (0,0,2),E (2,2 2 -2,0),F (2 2 -2,2,0),B (2,0,0),M (0,1,0)BM → =(-2,1,0),PE → =( 2 ,2 2 -2,-2),PF →=(2 2 -2,2,-2),设平面PEF 的一个法向量是n =(x ,y ,z ),由⎩⎪⎨⎪⎧n·PE →=2x +(22-2)y -2z =0n·PF →=(22-2)x +2y -2z =0 ,得:⎩⎨⎧x =y z =2x ,取x =1,则y =1,z = 2 ,则n =(1,1, 2 ). 所以直线BM 与平面PEF 所成角为θ,则sin θ=|cos 〈n ,BM → 〉|=|n·BM →||n|·|BM →| =⎪⎪⎪⎪⎪⎪-2+14×5 =510 .。

相关文档
最新文档