卡方检验及校正卡方检验的计算
卡方检验及校正卡方检验的计算

2X 检验或卡方检验和校正卡方检验的计算私立广厦学校 郭捷思在教育学量的研究中,各种各样的统计方法已经被广泛的应用,特别是由于统计软件(如:SPSS )的不断成熟,给教育研究者提供了多种量的研究方法。
但是,这并不是无论什么量的研究都要通过统计软件来实现,也不是所有量的研究一定要运用统计软件才能快捷,简便的实现。
本文将教给大家几种简便的方法来实现卡方检验。
2X 检验(chi-square test )或称卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的零假设是样本来自的总体分布与期望分布或某一理论分布无显著差异。
根据卡方检验基本思想的理论依据,对变量总体分布的检验就可以从对各个观察频数的分析入手。
为检验实际分布与理论分布(期望分布)之间是否存在显著差异,可采用卡方检验统计量。
典型的卡方统计量是pearson 卡方,其基本公式为:∑=-=ki o i e i o i f f f X 12)( 式中k 为子集个数,o f 为观察频数,e f 为期望频数,2X 服从k —1个自由度的卡方分布。
如果2X 值较大,则说明观测频数分布与期望频数分布差距较大;反之,如果2X 值较小,则说明观测频数分布与期望频数分布较接近。
我们将通过代入数据运算这条公式,计算出2X统计量的观测值,并依据卡方分布表计算观测值对应的概率p值。
下面,将通过几个实际例子来探究如何进行卡方检验。
一、四格表资料的卡方检验例1:某学校分别运用传统教学和多媒体教学在两个平行班的数学课上进行试验,目的为了检测两种教学方法对学生的成绩影响是否有差异。
本实验把学生的成绩划分为优秀人数(80分以上)和非优秀人数。
表1:两种教学方法学生成绩优秀率的比较表内这四个数据(斜体)是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的;两种教学的优秀率分别为40%和68.6%,两者的差别可能是抽样误差所致,亦可能是两种教学效果确有所不同。
卡方检验四格表计算举例

卡方检验四格表计算举例卡方检验是一种用于统计两个分类变量之间是否存在关联的方法。
它的计算过程涉及到四格表,其中每个格子包含了两个分类变量的交叉频次。
以下是一个卡方检验四格表的计算举例:假设我们想要研究饮食习惯与健康状况之间的关联。
为了进行研究,我们在一组参与者中选择了200人,并记录了他们的饮食习惯(偏好肉类或偏好蔬菜)和他们的健康状况(有健康问题或无健康问题)。
根据我们的观察,四格表可以构建如下:有健康问题,无健康问------------------,-----------------,-----------------偏好肉类,a,b------------------,-----------------,-----------------偏好蔬菜,c,d------------------,-----------------,-----------------在这个例子中,a表示偏好肉类和有健康问题的参与者数量,b表示偏好肉类但没有健康问题的参与者数量,c表示偏好蔬菜但有健康问题的参与者数量,d表示偏好蔬菜和没有健康问题的参与者数量。
计算卡方值的步骤如下:1.计算每个格子的期望频次。
期望频次是基于无关联假设的预期频次。
在这个假设下,我们认为饮食习惯和健康状况之间没有关联。
计算期望频次的公式为:E=(总行和*总列和)/总样本数。
对于我们的例子,总行和为a+b、c+d,总列和为a+c、b+d,总样本数为a+b+c+d。
因此,期望频次E(a)=[(a+b)(a+c)]/(a+b+c+d)。
2.计算每个格子的卡方统计量。
卡方统计量是观察频次和期望频次之间的差异的平方和除以期望频次的总和。
计算卡方统计量的公式为:χ²=Σ[(O-E)²/E]。
对于我们的例子,第一个格子的卡方统计量为[(a-O(a))²/O(a)+(c-O(c))²/O(c)],其中O(a)和O(c)是观察频次。
23卡方检验公式

2×3卡方检验公式
卡方检验公式是用于检验两个分类变量之间是否存在相关性的统计方法。
对于一个2×3的列联表,卡方检验的公式如下:
卡方值(χ²)= Σ (观察频数 - 期望频数)² / 期望频数
其中,观察频数是指实际观察到的每个单元格中的频数,期望频数是指在两个变量之间不存在相关性的情况下,每个单元格中的预期频数。
具体计算步骤如下:
1. 计算每个单元格的期望频数。
期望频数可以通过以下公式计算:期望频数 = (行总频数× 列总频数) / 总频数
2. 计算每个单元格的观察频数与期望频数之差的平方。
即 (观察频数 - 期望频数)²
3. 将所有单元格的观察频数与期望频数之差的平方相加,得到Σ (观察频数 - 期望频数)²
4. 将Σ (观察频数 - 期望频数)²除以期望频数,得到卡方值(χ²)。
根据卡方值的大小和自由度,可以查找卡方分布表来确定是否存在显著性差异。
卡方检验的计算步骤

卡方检验的计算步骤
卡方检验是一种常用的统计学方法,用于检验两个或多个分类变量之间是否存在显著的关联性。
以下是卡方检验的计算步骤:
1.提出假设:根据研究问题,确定检验的假设,通常有两个假设:
-H0:两个分类变量之间不存在关联性;
-H1:两个分类变量之间存在关联性。
2.计算期望频数:根据样本数据,计算每个单元格(即每个交叉分类)的期望频数。
期望频数等于每个类别在样本中的频率乘以总样本量。
3.计算卡方值:根据期望频数和实际频数,计算卡方值。
卡方值的计算公式为:
其中,O表示实际频数,E表示期望频数。
4.确定自由度:卡方检验的自由度等于行数减去1乘以列数减去1。
5.查找临界值:根据自由度和显著性水平(通常为0.05或0.01),查找卡方分布表中的临界值。
6.作出决策:如果卡方值大于临界值,则拒绝H0,接受H1,认为两个分类变量之间存在关联性。
如果卡方值小于临界值,则不能拒绝H0,认为两个分类变量之间不存在关联性。
需要注意的是,在进行卡方检验时,需要注意样本量是否足够大,以及分类变量的类别是否存在不均衡的情况。
如果存在这些情况,可能会导致检验结果不准确。
x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算x2检验(chi-square test)或称卡方检验x2检验(chi-square test)或称卡方检验,是一种用途较广的假设检验方法。
可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。
一、四格表资料的x2检验例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?表20-11 两种疗法治疗卵巢癌的疗效比较组别有效无效合计有效率(%)化疗组19 24 43 44.2 化疗加放疗组34 10 44 77.3合计53 34 87 60.9表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。
这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:式中A为实际数,以上四格表的四个数据就是实际数。
T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。
这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。
兹以表20-11资料为例检验如下。
检验步骤:1.建立检验假设:H0:π1=π2H1:π1≠π2α=0.052.计算理论数(TRC),计算公式为:TRC=nR.nc/n 公式(20.13)式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。
第1行1列: 43×53/87=26.2第1行2列: 43×34/87=16.8第2行1列: 44×53/87=26.8第2行2列: 4×34/87=17.2以推算结果,可与原四项实际数并列成表20-12:表20-12 两种疗法治疗卵巢癌的疗效比较因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2T1.2=43-26.2=16.8T2.1=53-26.2=26.8T2.2=44-26.2=17.23.计算x2值按公式20.12代入4.查x2值表求P值在查表之前应知本题自由度。
卡方检验 公式

卡方检验公式卡方检验,也称卡方分布检验,是一种常用的假设检验方法,用于检验两个分类变量之间是否存在相关性。
在统计学中,卡方检验是基于卡方分布的检验方法,用于比较实际观察值与理论期望值之间的差异。
卡方检验的原理是比较观察到的频数与期望的频数之间的差异,以判断两个变量是否相关。
它通过计算观察频数与期望频数之间的卡方值,然后根据卡方分布的概率密度函数计算出对应的P值,进而判断两个变量之间的关联性。
卡方检验的公式可以表示为:卡方值(X^2) = Σ (观察频数-期望频数)^2 / 期望频数其中,Σ表示求和,观察频数和期望频数分别表示对应格子中的实际观察值和理论期望值。
在进行卡方检验时,首先需要根据实际数据计算出期望频数。
期望频数是基于某种假设模型计算得出的,它表示在变量之间不存在相关性的情况下,每个分类中的期望频数。
然后,将观察频数和期望频数代入公式中进行计算,得出卡方值。
接下来,需要根据卡方值的大小来判断两个变量之间的关联性。
通常情况下,我们会将卡方值与临界值进行比较。
临界值是根据给定的显著性水平和自由度确定的,用于判断卡方值是否显著。
如果计算得到的卡方值大于临界值,则拒绝原假设,即认为两个变量之间存在相关性;反之,则接受原假设,即认为两个变量之间不存在相关性。
卡方检验的应用非常广泛。
例如,在医学研究中,可以使用卡方检验来判断某种疾病与某种基因型之间是否存在关联;在市场调研中,可以使用卡方检验来分析不同年龄段人群对某个产品的偏好程度;在教育评估中,可以使用卡方检验来比较不同教学方法对学生成绩的影响。
需要注意的是,卡方检验有一些前提条件。
首先,变量应为分类变量,而不是连续变量;其次,观察频数应满足一定的要求,例如每个格子中的观察频数应大于5;最后,卡方检验对样本容量要求较高,当样本容量较小时,卡方检验的结果可能不准确。
卡方检验是一种用于检验两个分类变量之间相关性的假设检验方法。
通过计算卡方值和P值,可以判断两个变量之间是否存在关联。
卡方检验的p值计算公式

卡方检验的p值计算公式
卡方检验对于一个样本的卡方值,其p值可以用如下公式计算:p值= 1 - F(卡方值,自由度)
其中,F为卡方分布的累积分布函数,需要根据自由度和显著水平进行相应的查表或计算。
一般而言,自由度为样本数量减1。
如果计算出的p值小于设定的显著水平,就拒绝原假设。
需要注意的是,卡方检验并不适用于所有形式的数据。
它通常被用来研究离散变量之间的关系,例如性别和健康状态之间的关系,或者不同年龄组的吸烟率之间的关系等。
对于连续变量的研究,其他方法(例如t检验)通常是更合适的选择。
除了单个样本的卡方检验,还可以进行跨组的卡方检验。
例如,可以用卡方检验来研究两个伴侣之间是否有某种偏好的相似性,或者不同社会群体中是否有某种特定行为的差异等。
在这种情况下,需要根据两个或更多的组之间的卡方值和自由度来计算p值。
总之,卡方检验是一种用于研究离散变量之间关系的统计方法,其p值可以用相应的卡方分布计算公式来计算。
适用范围广泛,但要根据数据类型和研究问题进行相应的选择和解释。
卡方检验及校正卡方检验的计算

卡方检验及校正卡方检验的计算卡方检验(Chi-squared test)是一种用于比较观察值与期望值之间的差异是否显著的统计方法。
它可以用于分析两个或多个分类变量之间的关联性或独立性。
卡方检验的原假设是观察值与期望值没有显著差异,备择假设是它们有显著差异。
在进行卡方检验之前,需要计算期望值以比较与观察值的差异。
这可以通过以下步骤完成:1.建立假设:首先,建立原假设和备择假设。
原假设通常假设两个变量之间没有关联性或独立性,备择假设则是它们之间存在关联性或独立性。
2.计算期望频数:对于给定的样本数据,可以计算出每个分类变量的期望频数。
期望频数是基于原假设计算出来的,它表示了在原假设成立的情况下,每个分类变量中的期望观察值数量。
3.计算卡方值:卡方值是观察频数与期望频数的差异的平方的总和除以期望频数的总和。
卡方值越大,观察值与期望值之间的差异越大,意味着更有可能拒绝原假设。
4.确定自由度:自由度是用于计算卡方分布的参数。
对于二维列联表(2x2),自由度为1;对于更大的列联表,自由度为(行数-1)x(列数-1)。
5.判断统计显著性:根据自由度和卡方值,可以查找卡方分布表以确定观察值与期望值之间的差异是否显著。
如果卡方值大于临界值,则可以拒绝原假设,认为观察值与期望值之间存在显著差异。
校正卡方检验(Adjusted Chi-squared test)是对卡方检验的改进,它通过应用连续性修正或其他修正方法来解决离散数据中的小样本问题。
当样本容量较小时,卡方检验可能会产生不准确的结果,因为期望频数可能会小于5,从而违反了卡方检验的假设条件。
校正卡方检验的计算步骤与普通卡方检验类似,但需要应用修正方法来计算期望频数。
修正方法可以是连续性校正(continuity correction)、费希尔校正(Fisher's exact test)或模拟校正(simulation correction)等。
连续性校正是在计算期望频数时,对每个单元格中的观察频数进行微小的调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡方检验及校正卡方检验的计算
卡方检验是一种统计方法,用于比较一个样本中观察到的频数与期望
频数之间的差异。
它适用于分析两个或更多个分类变量之间的关联性或独
立性。
卡方统计量的计算方法如下:
1.设置原假设(H0)和备择假设(Ha):
-H0:观察到的频数与期望频数之间不存在差异,两个变量之间独立。
-Ha:观察到的频数与期望频数之间存在差异,两个变量之间存在关联。
2.构建列联表:
- 将两个或多个分类变量的观察值按照行列交叉方式记录在一个称为
列联表(Contingency Table)的表格中。
3.计算期望频数:
-在H0条件下,计算每个单元格的期望频数。
-期望频数通过总频数除以总行数、总列数或总样本量再乘以各自的
行或列的个数来计算。
4.计算卡方统计量:
-将观察到的频数与期望频数之间的差异进行量化,可用卡方统计量
来表示。
- 卡方统计量的计算方法为:卡方统计量 = sum((观察频数-期望频数)^2 / 期望频数)。
其中sum表示对所有的单元格进行累加。
5. 计算自由度(df):
- 自由度是指用于计算卡方统计量时可以自由变动的数值个数。
对于2x2的列联表,自由度为1,对于更大的列联表,自由度为(df)=(行数-1) x (列数-1)。
6.查找临界值:
-根据所设定的显著性水平(通常为0.05),查找临界值。
以自由度和显著性水平为参数,在卡方分布表中查找对应的临界值。
7.比较卡方统计量和临界值:
-如果计算得到的卡方统计量大于临界值,则拒绝原假设,即观察到的差异是显著的,变量之间存在关联。
-如果计算得到的卡方统计量小于临界值,则接受原假设,即观察到的差异不是显著的,变量之间独立。
校正卡方检验是针对样本容量较小的情况进行的一种修正卡方检验方法。
当使用传统卡方检验时,如果期望频数过低或者有一些单元格的期望频数小于5,那么卡方统计量的计算结果可能不准确。
此时,可以使用校正卡方检验方法,通过修正期望频数来避免这个问题。
校正卡方检验的计算方法如下:
1.构建列联表和计算期望频数与卡方统计量的步骤与传统卡方检验相同。
2. 如果单元格的期望频数小于5,使用校正因子(Correction Factor)来修正期望频数。
-原始期望频数=(行总和x列总和)/总样本量,当原始期望频数小于5时,使用校正因子进行修正。
- 校正因子 = sqrt((观察频数-0.5)^2 / 原始期望频数),其中
sqrt表示开方
3.修正期望频数=校正因子x原始期望频数
4.使用修正期望频数计算卡方统计量,然后与临界值进行比较,判断变量之间的关联性。
通过以上的卡方检验和校正卡方检验的计算方法,可以对分类变量之间的关联性进行分析,并判断其差异是否显著。
这有助于我们更好地理解变量之间的关系,从而进行更有针对性的决策和分析。