不同光源对光催化降解亚甲基蓝的影响
亚甲基蓝溶液的光催化脱色及降解

亚甲基蓝溶液是一种常用的染料,其结构中含有苯环和芳香基,在光照射下会发生光催化脱色和降解的过程。这种过程的机理是,光照射下亚甲基蓝溶液中的染料分子会受到光能的作用,产生电子-空穴对,使染料分子的结构发生变化,最终导致染料的脱色和降解。
在实验中,我们可以通过以下步骤来研究亚甲基蓝溶液的光催化脱色和降解过程:
准备所需的材料:亚甲基蓝溶液、光源、滤纸、蒸馏水等。
将亚甲基蓝溶液倒入实验瓶中,并在溶液表面放置一张滤纸。
将实验瓶放置在光照射下,开始实验。
观察溶液的颜色变化情况,记录实验过程中的温度、光照强度等参数。
在实验结束后,取出滤纸,用蒸馏水冲洗并擦干。
通过观察滤纸的颜色变化情况,可以判断亚甲基蓝溶液的脱色程度。
通过测量溶液中亚甲基蓝的含量,可以判亚甲基蓝的降解情况。
通过上述步骤,我们就可以了解亚甲基蓝溶液在光照下的光催化脱色和降解情况。这对于研究和利用光催化技术处理废水具有重要意义。
纳米氧化锌紫外光解水体中的亚甲基蓝

纳米氧化锌紫外光解水体中的亚甲基蓝孙强强【摘要】ZnO nanoparticles produced by the leaching residue of a certain lead-zinc tailings in Shang luo were used as the photocatalyst, the degradation of methylene blue in water was researched and the technological conditions of degrading were optimized. The process and property of photocatalytic degradation of trace methylene blue in the wastewater were discussed. Results showed that the degradation rate of methylene blue is up to 99.72% by UV irradiation time for 2.5 h,when the pepared ZnO mass of 1.0 g is as the photocatalyst.The process of the degradation of methylene blue was speculated that the active hydroxyl radical first oxidized sulfhydryl as the chromophoric group into sulfonyl group, and then the decolorizing reaction was finished.%以商洛某铅锌尾矿库的铅锌冶金炉窑渣制得的纳米ZnO为光催化剂,研究了其对水体中亚甲基蓝(MB)的光催化降解作用,探讨了紫外降解废水中亚甲基蓝的过程与性质,并对紫外降解工艺进行优化。
光催化降解亚甲基蓝产物

光催化降解亚甲基蓝产物1.引言1.1 概述亚甲基蓝(Methylene Blue,MB)是一种常见的有机染料,广泛应用于医药、纺织、印刷等工业领域。
然而,亚甲基蓝的大量排放对环境和人体健康都造成了不可忽视的威胁。
因此,寻找一种环境友好且高效的降解亚甲基蓝的方法显得尤为重要。
在过去的几十年里,科学家们提出了多种降解亚甲基蓝的方法,包括生物降解、化学氧化降解和光催化降解。
其中光催化降解作为一种绿色、可持续的方法,备受关注。
光催化降解亚甲基蓝利用半导体材料在紫外光照射下产生电子-空穴对,并利用这些电子-空穴对将亚甲基蓝分解为无害的产物。
典型的半导体材料包括二氧化钛(TiO2)、锌氧化物(ZnO)等。
光催化降解亚甲基蓝的过程可分为吸附、光解和降解三个阶段。
首先,亚甲基蓝分子通过物理吸附或化学吸附方式吸附到半导体材料表面;接着,在紫外光的激发下,半导体材料中产生出电子-空穴对;最后,电子和空穴在界面上发生氧化还原反应,降解亚甲基蓝分子,并最终生成无害的氧化产物。
与传统的方法相比,光催化降解亚甲基蓝具有多种优势。
首先,光催化降解过程不需要添加昂贵的氧化剂,无需高温高压条件,降低了工艺的成本。
其次,光催化降解是一种非选择性的过程,能够同时降解多种有机污染物,具有广泛的应用前景。
此外,光催化降解还能够对水体进行氧化消毒,从而达到净化水质的目的。
然而,目前光催化降解亚甲基蓝的效率还不够高,降解产物也不够彻底,其在实际应用中仍存在一些挑战。
因此,进一步研究光催化降解亚甲基蓝的方法和机理,提高降解效率和产物选择性,具有重要的科学意义和应用价值。
本文将围绕光催化降解亚甲基蓝展开深入研究,重点讨论其降解原理、方法以及优化策略。
通过对现有研究的总结和分析,希望能够为实现高效、环保的亚甲基蓝降解方法提供参考和借鉴,为解决水体污染问题做出一定的贡献。
1.2 文章结构文章结构部分的内容应包括对整篇文章的组织框架进行介绍,以及各章节的主要内容概述。
球形花状结构氧化锡光催化降解亚甲基蓝

球形花状结构氧化锡光催化降解亚甲基蓝刘斌;杜燕萍;常薇;郁翠华;杨合情【摘要】为了研究SnO2对亚甲基蓝的光催化降解性能,以SnCl4·5H2O为原料,通过水热法,在200℃下反应24h,制备出直径范围为1.7μm~2.0μm球形花状结构SnO2.考察催化剂用量、光照时间及pH值对光催化降解亚甲基蓝性能的影响.结果表明,球形花状结构SnO2对亚甲基蓝溶液具有良好的光催化性能,催化剂的最佳加入量是1.25mg/mL,在最佳加入量下,紫外光照射时间超过30min时,亚甲基蓝溶液降解率达到96.3%;且随着溶液pH值的增加,亚甲基蓝溶液降解率逐渐增加,光催化反应更加完全.【期刊名称】《纺织高校基础科学学报》【年(卷),期】2015(028)003【总页数】5页(P343-347)【关键词】氧化锡;球形花状结构;光催化;亚甲基蓝【作者】刘斌;杜燕萍;常薇;郁翠华;杨合情【作者单位】西安工程大学环境与化学工程学院,陕西西安710048;陕西师范大学材料科学与工程学院,陕西西安710062;西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048;西安工程大学环境与化学工程学院,陕西西安710048;陕西师范大学材料科学与工程学院,陕西西安710062【正文语种】中文【中图分类】O643金属氧化物,如二氧化锡(SnO2)、氧化锌(ZnO)、二氧化钛(TiO2)等,由于其独特的物理和化学性能,近年来备受关注[1-2].SnO2是一种重要的n-型半导体材料,其带隙宽度为3.6eV,由于其独特的光学、电学和化学性质,在锂离子电池、染料敏化太阳能电池、气敏传感器、光催化及透明电极等领域具有广泛地应用[3].这些器件的性能在很大程度上取决于SnO2纳米结构单元的尺寸、形貌及其组装形成的纳米结构.因此,不同尺寸和形貌的SnO2的制备成为研究热点.目前为止,研究人员已经通过多种方法,如化学气相沉积、热蒸发法、水热法、微波法和溶胶凝胶法,制备了SnO2纳米粒子、纳米棒、纳米带、纳米片、纳米管、纳米线、纳米花、空心球等纳米结构,并对这些纳米结构的物理及化学性能进行了测试[4-11].SnO2纳米管[8]和空心球[11]已经被应用于制造锂离子电池的负极,测试发现,这些SnO2纳米结构具有较高的储锂容量和良好的电循环性能.此外,SnO2纳米带、纳米线、纳米粒子、纳米棒和纳米管等纳米结构已经被用于构筑各种气体传感器,并被广泛应用于乙醇、一氧化碳、氢气、二氧化氮、2-丙醇等气体和液体的测定[12-16].结果表明,这些具有不同纳米结构的SnO2传感器比SnO2粉末具有更高的灵敏度.文献[17-18]研究了SnO2纳米棒和纳米花对罗丹明B降解的光催化能力,结果发现,SnO2纳米棒[17]和纳米花[18]对罗丹明B降解的催化性能高于SnO2纳米颗粒.然而,有关球形花状纳米结构SnO2光催化降解亚甲基蓝的研究至今未见报道.本文通过水热法制备球形花状纳米结构SnO2光催化剂,以亚甲基蓝溶液为研究对象,讨论催化剂的用量、光照时间及pH值对球形花状纳米SnO2光催化性能的影响.1.1 试剂与仪器(1) 试剂四氯化锡(SnCl4·5H2O,分析纯,天津市科密欧化学试剂有限公司),氢氧化钠(NaOH,分析纯,天津市科密欧化学试剂有限公司),聚乙烯吡咯烷酮(PVP, Mr=30000,分析纯,国药集团化学试剂有限公司),亚甲基蓝(分析纯,北京化工厂),二次蒸馏水.(2)仪器 IKA RO10型磁力搅拌器(广州仪科实验室技术有限公司),DHA-9246A型电热恒温鼓风干燥箱(上海精宏实验设备有限公司),AL-204型电子天平(梅特勒-托利多仪器有限公司),TGL-16G型台式高速离心机(上海安亭科学仪器厂),UV-2450型紫外可见分光光度计(日本岛津公司),BL-GHX-V型光化学反应仪(西安比朗生物科技有限公司).1.2 方法(1) 球形花状结构SnO2的制备根据文献[19],称取0.500g SnCl4·5H2O于50 mL 烧杯中,再向其中依次加入2mL, 6M NaOH,0.5g PVP和13mL H2O,搅拌形成清亮溶液.将该溶液转入具有聚四氟乙烯内衬的反应釜中,密封反应釜,在200℃下反应24h,然后自然冷却至室温,得白色成淀.离心后分别用去离子水和无水乙醇依次洗涤3次,室温下,最终得到白色粉末状产物.(2) 光催化实验实验采用BL-GHX-V型光化学反应仪,光源是300W汞灯.首先,量取20mL,10mg/L的亚甲基蓝溶液于体积为50mL的石英试管中,再称取不同量的SnO2样品分散到亚甲基蓝溶液中,于暗处震荡10min,使亚甲基蓝分子和半导体光催化剂表面建立起吸附脱附平衡,然后置于紫外灯管下,进行测试.由于溶液pH值不同,对亚甲基蓝的结构会产生不同的影响,为了仅考虑SnO2对亚甲基蓝的光催化降解性能,所以在光催化实验方法中没有控制溶液的pH.所有实验均在室温下进行,照射一定时间后取出,高速离心,将光催化剂与溶液进行分离,取上层清液用岛津UV-2450紫外可见分光光度计进行分析测定.(3) 降解率计算先用紫外可见分光光度计对亚甲基蓝进行全波段(190nm~800nm) 扫描,确定亚甲基蓝的最大吸收波长(664 nm),再用紫外可见分光光度计在此波长下测定清液的吸光度.由Lambert-Beer定律可知:A=εbc,式中b为光程,cm;c为质量浓度,g/L;ε为质量吸光系数,L/g·cm,亚甲基蓝溶液的降解率按照下面的公式进行计算:式中:η为亚甲基蓝溶液的降解率,%;C0为含有SnO2样品的亚甲基蓝溶液的初始浓度,g/L;C为含有SnO2样品的亚甲基蓝溶液光照不同时间后的实际浓度,g/L;A0为含有SnO2样品的亚甲基蓝溶液的初始吸光度;A为含有SnO2样品的亚甲基蓝溶液光照不同时间后的吸光度.2.1 SEM和XRD分析制备的球形花状结构SnO2的SEM和XRD图谱如图1所示.从图1(a)可看出,所制备的产物由大量的球形花状结构物质组成,其直径范围为1.7μm~2.0μm.由图1(b)可见,所有衍射峰均指向四方相SnO2(JCPDS卡号:41-1445).此外,其衍射峰比较尖锐,说明该产物结晶性很高.除此之外,没有其他杂质峰出现, 说明所制备的产物为纯的四方相SnO2.2.2 亚甲基蓝溶液的吸收光谱分别测定未经紫外光照射的亚甲基蓝溶液,紫外光照射30min后的亚甲基蓝溶液和含有SnO2球形花状结构并经紫外光照射30min后的亚甲基蓝溶液的吸收光谱,其结果如图2所示.从图2可以看出,亚甲基蓝溶液的最大吸收波长为664nm(曲线Ⅰ),当紫外光照射30min后,其吸光度大约下降了12%(曲线Ⅱ),而含有SnO2球形花状结构的亚甲基蓝溶液,在紫外光照射30min后,其吸光度大约下降了96%(曲线Ⅲ).由此可见,采用球形花状结构SnO2作为光催化剂可有效降解亚甲基蓝溶液.2.3 SnO2用量对降解率的影响在光催化反应中,催化剂的用量是非常重要的影响因素.在20mL,10mg/L的亚甲基蓝溶液中加入光催化剂SnO2,用300W汞灯照射,通过改变SnO2的加入量,探究紫外光照射30min后亚甲基蓝溶液的降解率,其结果如图3所示.由图3可知,随着SnO2用量的增加,亚甲基蓝溶液的降解率逐渐增加.但当加入量至25mg后,亚甲基蓝溶液的降解率增加缓慢,不再有明显的提高.故SnO2最佳用量为25mg.2.4 光照时间对降解率的影响在其他反应条件固定不变的情况下,在20mL亚甲基蓝溶液中加入25mg 光催化剂SnO2,研究不同紫外光照射时间下亚甲基蓝溶液的降解率,其结果如图4所示.由图4 可知,随光照时间的延长,亚甲基蓝溶液的降解率不断升高,但是当光照时间超过30min后,降解率升高至最大值96.3%且增加缓慢,说明亚甲基蓝溶液基本降解完全.2.5 pH值对降解率的影响向7份,20mL亚甲基蓝溶液中分别加入25mg 光催化剂SnO2,用HCl和NaOH调节溶液pH值分别为1,3,5,7,9,11,13,用300W汞灯光照20min后,计算降解率,其结果如图5所示.由图5可见,随着溶液pH值的增加,亚甲基蓝溶液的降解率逐渐增加.由于SnO2受到紫外光照射后,会产生空穴,空穴可以和OH-反应生成羟基自由基(·OH),·OH具有很强的氧化性,可以使亚甲基蓝氧化褪色[20].在酸性pH范围时,亚甲基蓝溶液的降解率增加缓慢,这是由于在酸性溶液中,OH-浓度较低,所产生的·OH的数目相对较小,所以降解率增加缓慢.当溶液由酸性过渡到碱性时,OH-增加很多,产生的·OH数目随之增加,所以在溶液pH=7的前后,亚甲基蓝溶液的降解率大幅增加,当溶液的pH值增加到11以后,亚甲基蓝溶液的降解率达91%,亚甲基蓝溶液基本降解完全.由于光照时间较短只有20min,所以其降解率低于光照30min的降解率.本文通过水热法制备了对亚甲基蓝具有良好光催化性能的球形花状结构SnO2,并考察了催化剂用量、光照时间及溶液pH值对其光催化性能的影响.结果表明,300W汞灯照射30min,SnO2最佳加入量1.25mg/mL;当紫外光照时间超过30 min时,亚甲基蓝溶液降解率达到了96.3%.当溶液pH由酸性变化到碱性时,亚甲基蓝溶液降解率大幅增加,降解更加完全.球形花状SnO2的制备方法操作方便、条件温和、设备简单,有望用于大规模生产,且可能应用于其他氧化物花状结构的制备,预计其在染料废水处理方面有一定的应用价值.当然,这种光催化剂的性能还没有与其他光催化剂进行比较,此外,这种光催化剂对不同染料的降解性能和降解机理还有待于进一步的研究.【相关文献】[1] 余花娃,樊慧庆,王晶,等.Co掺杂ZnO微/纳米纤维的制备及其光催化性能[J].纺织高校基础科学学报,2014,27(2):244-247.YU Huawa,FAN Huiqing,WANG Jing,et al.Preparation and photocatalytic characterization of Co-doped ZnO micro/nanofibers[J].Basic Sciences Journal of TextileUniversities,2014,27(2):244-247.[2] 王文静,郭晓玲,王志刚,等.纳米二氧化钛光催化净化酸性染料废水的研究[J].西安工程大学学报,2011,25(2):216-219.WANG Wenjing,GUO Xiaoling,WANG Zhigang,et al.Study of photocatalysis purification of acid dyeing wastewater with titania[J].Journal of Xi′an PolytechnicUniversity,2011,25(2):216-219.[3] WANG X,HAN X G,XIE S F.Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets[J].Chem Eur J,2012,18(8):2283-2289.[4] KRISHNAKUMAR T,JAYAPRAKASH R,PARTHIBAVARMAN M.Microwave-assisted synthesis and investigation of SnO2 nanoparticles[J].Mater Lett,2009,63(11):896-898. [5] LUPAN O,CHOW L,CHAI G,et al.Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique[J].Physica E,2009,41(4):533-536.[6] MA X L,LI Y,ZHU Y L.Growth mode of the SnO2 nanobelts synthesized by rapid oxidation[J].Chem Phys Lett,2003,376(5/6):794-798.[7] KUMAR B,LEE D H,KIM S H,et al.General route to single-crystalline SnO2 nanosheets on arbitrary substrates[J].J Phys Chem C,2010,114(25):11050-11055.[8] LI L M,YIN X M,LIU S,et al.Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries[J].Electrochem Commun,2010,12(10):1383-1386.[9] CHEN Z W,JIAO Z,WU M H,et al.Bulk-quantity synthesis and electrical properties of SnO2 nanowires prepared by pulsed delivery[J].Mater Chem Phys,2009,115(2/3):660-663.[10] NING J J,DAI Q Q,JIANG T,et al.Facile synthesis of tin oxide nanoflowers:A potential high-capacity lithium-ion-storage material[J].Langmuir,2009,25(3):1818-1821.[11] LOU X W,WANG Y,YUAN C L,et al.Template-free synthesis of SnO2 hollownanostructures with high lithium storage capacity[J].Adv Mater,2006,18(17):2325-2329.[12] ANDREI P,FIELDS L L,ZHENG J P,et al.Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure[J].Sens Actuators B,2007,128 (1):226-234.[13] WANG B,ZHU L F,YANG Y H,et al.Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen[J].J Phys Chem C,2008,112(17):6643-6647.[14] MATIN B M,MORTAZAVI Y,KHODADADI A A,et al.Alkaline-and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing[J].Sens Actuators B,2010,151 (1):140-145.[15] WANG D,CHU X F,GONG M L.Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method[J].Sens Actuators B,2006,117(1):183-187.[16] WANG G X,PARK J S,PARK M S,et al.Synthesis and high gas sensitivity of tin oxide nanotubes[J].Sens Actuators,B,2008,131(1):313-317.[17] CHENG G E,CHEN J Y,KE H Z,et al.Synthesis,characterization and photocatalysis of SnO2 nanorods with large aspect ratios[J].Mater Lett,2011,65(21/22):3327-3329. [18] DAI S D,YAO Z L.Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity[J].Appl Surf Sci,2012,258(15):5703-5706.[19] LIU B,ZHANG L H,ZHAO H,et al.Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicron rods[J].Sens ActuatorsB,2012,173:643-651.[20] WU S S,CAO H Q,YIN S F,et al.Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals[J].J Phys Chem C,2009,113(41):17893-17898.。
光催化降解亚甲基蓝染料

染料亚甲基蓝降解可能有两种途径:一是光催化二是光敏化。
有文献称光催化降解过程中亚甲基蓝溶液紫外最大吸收峰会蓝移,即一个个脱去甲基的过程。
(Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 163–172)请问光敏化过程中其溶液紫外图是否也会出现最大吸收峰的蓝移现象?有哪位XDJM做过的,帮帮忙啦!注:其实我很怀疑文献说法的正确性,染料脱甲(烷)基过程通常是光敏化发生的基本过程,比如罗丹明B的光敏化降解过程就是逐个脱去乙基的过程。
光敏化是指可见光无法激发宽带半导体,而由染料激发电子到半导体价带上而起始氧化过程,这时染料会逐渐脱去烷基,从而在紫外吸收上发生蓝移。
光敏化拓展了二氧化钛之类的宽带半导体利用光的波长范围,光敏化降解能力较弱而光降解一般就指直接由光激发半导体产生电子空穴从而引发氧化过程你的文献上好像并没有说用二氧化钛降解MB是“光敏化”,如果在紫外光下也假设是光敏化的话,你将无法解释为什么它不能直接被激发而需要敏化;蓝移表示它开环比较困难,导致脱烷基的中间产物较多,不能由此就说它是光敏化就我所知好像很少用亚甲基蓝来敏化光降解的,也就是说,尽管结构上挺相似,它不如罗丹明B容易敏化,也许就是因为它很难开环吧:)我的意思是如果光敏化,那么将会有蓝移;但如果有蓝移,不能由此断定为光敏化。
光敏化至少应该是可见光的。
如果亚甲基蓝能够敏化,那么紫外吸收将蓝移,但不能反过来说。
文献中所说的蓝移是二氧化钛被激发产生导带电子价带空穴氧化MB而产生的脱烷基,而不是MB被激发后将电子转给导带产生的脱烷基。
这两者的来源是不同的。
尽管结果上是一样,但反过来假设将导致理论解释上的困难,即"如果在紫外光下也假设是光敏化的话,无法解释为什么它不能直接被激发而需要敏化"至于开环难易问题只是我做实验和看文献得来的一个印象,没有确切的证据证明它的普适性。
羟基氧化铁的制备及其光催化降解亚甲基蓝的机理

羟基氧化铁的制备及其光催化降解亚甲基蓝的机理作者:王家明娄亚娟邓德明余良敏来源:《工业技术创新》2019年第02期摘; ;要:采用前驱物陈化制备法和化学沉淀法制备羟基氧化铁(FeOOH),对FeOOH的物化性能进行表征,进而在不同光照条件和实验方法下对FeOOH光催化降解亚甲基蓝的机理进行研究。
研究发现:1)采用两种制备方法均可得到FeOOH,根据XRD物相表征和UV-Vis DRS表征,两者晶型分别为α-FeOOH和β-FeOOH,均能高效地利用波长为240~600 nm范围内的光,禁带宽度Eg均为2.2 eV左右,且前者比后者具有更好的光吸收度;2)FeOOH降解亚甲基蓝的效率在太阳光照射下最高,在模拟太阳光照射下次之,在紫外光照射下最低;3)乙醇淬灭实验和EDTA捕获光生空穴实验表明,在FeOOH光催化反应体系中有光生电子(e-)和空穴(h+)的产生,其中空穴起到了生成·HO的作用,而·HO可能是主要的活性物种,起到了氧化分解亚甲基蓝的作用。
关键词:羟基氧化铁;前驱物陈化制备法;光催化降解;亚甲基蓝;XRD物相表征中图分类号:X522; ; ; 文献标识码:A; ; ; 文章编号:2095-8412 (2019) 01-086-08工业技术创新 URL: http: //; ; DOI: 10.14103/j.issn.2095-8412.2019.01.014引言自20世纪50年代起,学者们针对Fe(Ⅲ)盐的光化学性质做了大量的研究工作。
20世纪90年代后,又有研究者将注意力投向Fe(Ⅲ)络合物体系(如羟基氧化铁FeOOH)光催化降解有机污染物方向上[1-3]。
与TiO2相比,FeOOH更易受光阴极腐蚀,使铁矿物部分溶解为Fe(Ⅱ)进入溶液,稳定性欠佳,光量子效率也偏低[4]。
但是,FeOOH的禁带宽度为2.2 eV,比TiO2的3.2 eV窄;FeOOH的最大激发波长(光响应波长)为560 nm,处于可见光区,且相较TiO2的380 nm明显红移,因此FeOOH对太阳能的利用率更大[5]。
亚甲基蓝溶液的光催化脱色及降解

亚甲基蓝溶液的光催化脱色及降解
李芳柏;古国榜
【期刊名称】《环境污染与防治》
【年(卷),期】1999(012)006
【摘要】以高压汞灯为光源,在自制TiO2纳米粉末悬浮体系内,以亚甲基蓝溶液光催化降解脱色反应为模型,研究了其脱色降解动力学及其影响因素.研究表明,亚甲基蓝光催化反应动力学常数为4.53 μmol/L.min,吸附常数为33.55 L/mmol;随着pH值的上升以及H2O2的加入,其脱色降解速率明显加快.离子色谱分析表明,光照40 min后,亚甲基蓝部分分解为Cl-、NH+4、NO-3和SO2-4.
【总页数】4页(P1-4)
【作者】李芳柏;古国榜
【作者单位】华南理工大学应用化学系,广州,五山,510650;华南理工大学应用化学系,广州,五山,510650
【正文语种】中文
【中图分类】X7
【相关文献】
1.AgBr/Zn3(OH)2V2O7·2H2O可见光催化降解亚甲基蓝溶液 [J], 黄雪松;黄珍珍;曹江平;李雯欣;陈建林
2.SnWO4/g-C3N4复合光催化剂降解亚甲基蓝溶液 [J], 李雯欣;王洁;张彩;陈建林
3.光催化协同臭氧氧化降解亚甲基蓝溶液实验 [J], 陆泽伟;黄敏怡;刘国辉;谢智浩;
朱豪成;林洁丽
4.光催化协同臭氧氧化降解亚甲基蓝溶液实验 [J], 陆泽伟;黄敏怡;刘国辉;谢智浩;朱豪成;林洁丽
5.膨润土负载PbSnO_3光催化剂对亚甲基蓝溶液的脱色性能 [J], 王红军;汪朋方;任欣欣;张文博;方旭旭;杨术明
因版权原因,仅展示原文概要,查看原文内容请购买。
wo3—zno复合膜光催化降解亚甲基蓝的研究

wo3—zno复合膜光催化降解亚甲基蓝的研究摘要:采用溶胶-凝胶法制备WO3-ZnO复合膜,并用其对亚甲基蓝进行光降解,研究了复合膜的焙烧时间、光源、pH、溶液初始浓度及光照时间对亚甲基蓝降解率的影响。
结果表明,在35 mL pH 12.47、浓度为5 mg/L的亚甲基蓝溶液中放置焙烧2.0 h的WO3-ZnO复合膜,紫外光光照60 min后亚甲基蓝的降解率可达98.1%。
关键词:WO3-ZnO复合膜;亚甲基蓝;光降解中国有着大量的服装生产企业,一直是染料生产和消费大国。
而在服装的制造过程中,会产生大量的染料废水,如不经过净化处理就会对周边环境造成严重污染,不但严重威胁着人们的身体健康,也制约着当地经济的健康可持续发展[1]。
染料废水由于含有的污染物种类多样、用量大、毒性大、难降解等,一直是工业废水降解处理的难点。
目前,对染料废水的降解处理方法主要包括物理法、化学法、生物氧化法等,这些传统方法对染料废水的降解有一定的效果,但也存在着明显的不足和局限性。
物理法一般是将污水中的污染物进行相转移,但并没有彻底将污染物去除而易造成二次污染;化学法在将一种有毒污染物降解的同时一般还会产生一些有毒的副产物;生物降解法单独使用一般很难彻底降解废水中的污染物,一般要与物理化学降解方法结合使用。
近年来,光催化氧化法由于具有环保、能耗低等优点在废水处理领域成为研究的热点[2]。
半导体材料TiO2由于来源丰富、化学性质稳定、环保等优点而受到半导体光催化研究者的青睐[3,4],是一种研究较为成熟的半导体催化剂,其缺点是光谱响应范围有限。
据报道,ZnO具有和TiO2较相似的禁带宽度,都属于宽带隙半导体材料,但较TiO2有着更高的光催化活性[5-7],其缺点是表面激发产生的电子-空穴易复合而降低光催化效率。
提高ZnO光催化效率最有效的方法是利用两种半导体复合改变其能级结构,促进电子-空穴的分离,从而降低电子-空穴的复合几率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同光源对光催化降解亚甲基蓝的影响
本文将以亚甲基蓝(methylene blue,MB)为研究对象,分析不同光源对光催化降解MB的影响。
一、MB的特点
1. 亚甲基蓝是一种常见的染料,具有良好的可溶性和均匀性,用于染色和抑菌。
2. MB也能被用于催化光降解,其反应机理表明它能降解空气中某些微量污染物,如挥发性有机物和氮氧化物等。
二、不同光源对MB的作用
1. 紫外光:紫外光被认为是特别有效的一种光源,它能够激活MB的反应,促进分子聚合,增强其光催化效果。
2. 红外光:红外光能打破MB分子键,将双键分离出来,从而增加氧化速率,助力光催化剂的抗氧化能力。
3. 可见光:可见光能将MB和氧化剂的密度增加,同时促使氧化剂的聚合,以激活分子反应,增强降解过程的效率。
三、比较分析
1. 不同光源对MB的影响:紫外光可以加速MB的光催化,红外光能够分离MB的双键,可见光提升氧化剂的聚合效率,均能促进降解速度和效率。
2. 三种光源对MB环境应用的影响:紫外光对于有毒污染物有很强的降解效果,但其易受到大气环境影响,减弱衰减,因此紫外线的使用应受到加以控制;红外光广泛分布在自然环境,用于太阳能光催化降解MB效率较低;可见光有着明显的降解效果、低凝固浓度,可以在室内获得更丰富的资源,具有更高的使用性和安全性。
四、结论
从上文可以看出,不同光源对MB的光催化降解有着不同的影响:紫外光拥有最强的降解效果,但受环境影响大;红外光有着广泛分布,但降解效率较低;可见光在室内获取较多资源,且拥有更高的使用性和安全性。
对此,应该结合特定的实际应用场景,采取恰当的光源来促进MB的光催化降解。