大学化学第一章

合集下载

大学化学第一章1讲解

大学化学第一章1讲解
ΔU = Q + W
解:(1)△U系统=(-60)+(-40)=-100kJ (2)△U系统=(-40)+(+60)=+20kJ (3)△U系统=(+60)+(+40)=100kJ (4)△U系统=(+40)+(-60)=-20kJ
化学反应的反应热 化学反应系统与环境进行能量交换的 主要形式是热,称反应热或热效应。
化学反应动力学 现实性—速率 计算任意反应的∆U、∆H、∆S 、∆G和速率v。
为了便于讨论,我们先介绍以下几 个基本概念: 包括: 系统、 环境、 相、
质量守恒、 能量守恒、 状态 和 状态函数、 热和功
热力学基本概念
◆系统和环境 (system and surroundings) 系统: 作为研究对象的那一
∴ QP =△U +P△V
QP = △U +P△V
上式可化为: QP=(U2-U1)+ P(V2-V1)
即: QP=(U2+P2V2)-(U1+P1V1)
此时,令: H = U +PV 称:焓
则: QP =H2-H1=ΔH
意义:
焓:
符号:H ; H 是状态函数;
无绝对数值;
其值与n 成正比;
单位: kJ。 根据 Q 符号的规定,有:
• 也说明ΔU ,ΔH 可以通过量热实验进行直接测定。
注意下列各组状态函数表示的意义:
1.U , H 当泛指一个过程时状态函数改变量的
表示法
2.rU , r H
指明某一反应而没有指明反应进度即 不做严格的定量计算时,两个状态函
数改变量的表示法
3.rU m , r H m 表示某反应按所给定反应方程式进

大学有机化学-各章重点

大学有机化学-各章重点

H3C H
CH3 H
H3C H
H CH3
顺-2-丁烯 反-2-丁烯 两个相同原子或基团处于双键同侧者为顺式, 处于异侧者为反式。 顺反异构产生的条件: (1) 结构中存在限制旋转的因素(π 键或环) 。 (2) 双键碳上分别连有不同基团
a
即在
b
中当 a ≠ d,b ≠ c 时存在几何异构。当双键的两个碳上若没有相同原子或
第二章 烷烃
2.1 基本要求
1. 2. 3. 4. 掌握烷烃碳原子的杂化状态及分子结构特点。 掌握烷烃的系统命名法和普通命名法。 掌握烷烃构象的概念及构象的写法。 掌握烷烃的卤代反应及其自由基反应的机理。
2.2 基本内容
1. 命名 烷烃的命名常用的有普通命名法和系统命名法两种方法。 (1)普通命名法 简单的烷烃根据碳原子的总数称为某烷 C1~C10 用甲、乙、丙……壬癸表示,从 C11 开始 用中文大写数字表示。 不含支链的称 “正” 某烷, 链的一端第二个碳上有一个甲基并再无其它取代基的称为 “异” 某烷,有二个甲基并再无其它取代基的称为“新”某烷。 (2)系统命名法 系统命名法的基本点是确定主链和取代基的位次,描述一个烷烃结构实际上就是描写主 链(母体)和取代基的具体情况。 2. 烷烃的分子结构 (1) 碳原子的 sp3 杂化和 σ 键的特点 由一个 s 轨道和三个 p 轨道“混合” ,并“重新组合”形成四个相同的新轨道的杂化方 3 3 式称 sp 杂化。饱和烃中碳原子均为 sp 杂化,饱和烃中所有的键均为 σ 键,因为饱和碳上 形成的键都是沿着轨道对称轴方向相互重叠而形成,这是 σ 键的特征。 (2) 碳链异构和碳氢类型 分子式相同,分子中碳原子连接顺序不同而产生的异构称碳链异构。在各种不同结构的 碳链中,由于碳原子所处的地位不同可以分为伯(一级 1º)、仲(二级 2º)、叔(三级 3º)、季(四 级 4º)四种类型。 (3) 烷烃的构象异构 烷烃分子中各原子均以单键(σ 键)相连。从乙烷开始,由于 C-C σ 键的自由旋转,使分 子中的原子或基团在空间上存在不同的排列方式, 称为烷烃的构象。 乙烷有交叉式和重叠式 两种极端构象式。 由于交叉式构象中两个碳原子上的氢原子距离较远, 斥力较小, 内能最低, 称为优势构象式。 分子的热运动提供的能量足可以使不同构象间以极快的速度转化, 所以在 室温下不能分离构象异构体。 (4) 化学性质 烷烃的化学性质较稳定,但在光照或高温加热下可以发生卤代反应。卤代反应是共价键 的均裂产生自由基引起的,所以属于自由基取代反应历程。以外,在一定条件下,烷烃还能 发生氧化与燃烧、热裂等反应。

大学化学1溶液和胶体

大学化学1溶液和胶体

14
溶液的通性 — 溶液的沸点上升的原因
3.溶液的沸点上升(boiling point)
液体的沸点 ( boiling point ) 当P 液 = P 外,液体沸腾时的温度。
正常沸点:当P外=P标时的液体的沸点。
溶液的沸点升高
是溶液蒸气压下降的直接结果
2024/9/30
15
溶液的通性 — 溶液的沸点上升的数值
p溶液= p*-⊿p = 2.338kPa - 0.021kPa = 2.317kPa
溶液的通性 — 凝固点下降
2.液体的凝固点降低(freezing point)
凝固点:某物质的液相蒸汽压与固相蒸汽压相等时 的温度。用Tf表示 或在一定外压下,物质固、液两相平衡共存时的温 度。
如 :H2O(l) 273K,101.3kPa H2O(s)
该温度下的饱和蒸汽压,简称蒸汽压。
加入一种难挥发的非电解质
束缚一部分高能水分子
P↓
占据了一部分水的表面
2024/9/30
8
溶液的通性 — Raoult定律
在一定温度下,难挥发性非电解质稀溶液的蒸气压
(P)等于纯溶剂的蒸气压(PA*)乘以溶液中溶剂的 摩尔分数(xA )。
p
p* A
xA
xA
nA nA nB
1.蒸气压下降 2.凝固点降低 3.沸点升高 4.渗透压力
p
p* A
xB
ΔTf=kf • bB
ΔTb =kb• bB
= CBRT
的数值与溶液中质点 的个数成正比
2024/9/30
23
第 4 章 酸碱解离平衡和沉淀溶解平衡
4.1 电解质溶液 4.2 酸碱理论 4.3 弱电解质的解离平衡 4.4 缓冲溶液 4.5 沉淀溶解平衡

大学普通化学第一章

大学普通化学第一章

q q
Example 2
(系统吸热)= (系统吸热)=
m·cs · ΔT n·cm · ΔT
100.0 J 的热量可使 1mol 铁的温度上升 3.98 K,求铁的cm.
Solution
q 100.0J cm = = n ⋅ ΔT (1mol)(3.98K) = 25.1 J ⋅ mol ⋅ K
−1 −1
(a)
(b)
如下图所示,试管内的物质有几相组成?
因为试管a内的酒精和水互 因为试管a内的酒精和水互 溶,故溶液中任何部分的物理 溶,故溶液中任何部分的物理 性质和化学性质完全相同;而 性质和化学性质完全相同;而 试管b内,煤油和水互不相 试管b内,煤油和水互不相 溶,致使上下两层液体的物理 溶,致使上下两层液体的物理 性质和化学性质完全不相同, 性质和化学性质完全不相同, 而且上下层间有明确的界面隔 而且上下层间有明确的界面隔 开,因此上下层液体形成两个 开,因此上下层液体形成两个 相。 但是,如果把液体上方的 相。 但是,如果把液体上方的 空气也考虑进去,则试管a中 空气也考虑进去,则试管a中 有两相:气相和溶液相;试管 有两相:气相和溶液相;试管 b中有三相,分别是水相、煤 b中有三相,分别是水相、煤 油相及液体上方的气相。 油相及液体上方的气相。
3. 状态和状态函数 (state and state function)
状 态: 一定条件下系统存在的形式。 状态函数: 描述系统状态的物理量,例如 p,V,T 等。
Attention:
(1) 系统的状态确定,系统的各种性质即所有的状态函数也都 确定,反之亦然。 (2) 当系统的状态发生变化,系统的状态函数也变化,但不一 定所有的状态函数都变化,如等温、等压过程。 (3) 反过来,当系统有一个状态函数发生变化,系统的状态一 定发生变化。

大学化学01第一章 气体和溶液

大学化学01第一章 气体和溶液

第一章 气体和溶液学习要求1. 了解分散系的分类及主要特征。

2. 掌握理想气体状态方程和气体分压定律。

3. 掌握稀溶液的通性及其应用。

4. 掌握胶体的基本概念、结构及其性质等。

5. 了解高分子溶液、乳状液的基本概念和特征。

1.1 气体1.1.1 理想气体状态方程气体是物质存在的一种形态,没有固定的形状和体积,能自发地充满任何容器。

气体的基本特征是它的扩散性和可压缩性。

一定温度下的气体常用其压力或体积进行计量。

在压力不太高(小于101.325 kPa)、温度不太低(大于0 ℃)的情况下,气体分子本身的体积和分子之间的作用力可以忽略,气体的体积、压力和温度之间具有以下关系式:V=RT p n (1-1)式中p 为气体的压力,SI 单位为 Pa ;V 为气体的体积,SI 单位为m 3;n 为物质的量,SI 单位为mol ;T 为气体的热力学温度,SI 单位为K ;R 为摩尔气体常数。

式(1-1)称为理想气体状态方程。

在标准状况(p = 101.325 Pa ,T = 273.15 K)下,1 mol 气体的体积为 22.414 m 3,代入式(1-1)可以确定R 的数值及单位:333V 101.32510 Pa 22.41410 m R T1 mol 27315 Kp n .-⨯⨯⨯==⨯3118.314 Pa m mol K --=⋅⋅⋅11= 8.314 J mol K --⋅⋅ (31 Pa m = 1 J ⋅)例1-1 某氮气钢瓶容积为40.0 L ,25 ℃时,压力为250 kPa ,计算钢瓶中氮气的质量。

解:根据式(1-1)333311V 25010Pa 4010m RT8.314Pa m mol K 298.15Kp n ---⨯⨯⨯==⋅⋅⋅⨯4.0mol =N 2的摩尔质量为28.0 g · mol -1,钢瓶中N 2的质量为:4.0 mol × 28.0 g · mol -1 = 112 g 。

大学化学第一章4节化学反应速率

大学化学第一章4节化学反应速率

对于化学反应:
1 dcB 反应速率为: v B dt
dcB 表示化学反应中物质B的浓度cB 随时间t dt
的变化率。反应速率υ 单位: mol · -3 ·-1 dm s
3
mol · -3 · -1 dm min
应用哪种物质表示υ都有唯一确定的值 。
例如: 起始浓度c/mol· -3 dm N2 + 3H2 = 2NH3 1.0 3.0 0
2秒后浓度c/mol· -3 dm
v ( N2 )
v( H2 )
0.8
2.4
0.4
0.2 0.1mol L1 s 1 t 2
cN2
1 cH 2 0.6 0.1mol L1 s 1 3 t 6
1 cNH3 0.4 0.1mol L1 s 1 2 t 4
4
v ( NH3 )
随着反应的进行,反应物的浓度不断降低, 所以正反应速率会不断变慢,产物的浓度不断增 加,所以逆反应速率会不断变快;直到正反应速 率等于逆反应速率;达到平衡状态
5
1.4.2.化学反应速率的测定
1 ci lim v(i ) t 0 i t
1 dc(i ) i dt
28
例题:写出元反应 NO2 + CO = NO + CO2的 反应速率方程式、反应的总级数和反应速率 系数单位。 解: 根据质量作用定律: v k[ NO2 ][CO] n=1+1=2 反应为二级反应 k 的单位:mol-1· 3 · -1 dm s
29
1.4.5温度对反应速率的影响 阿累尼乌斯公式 (Arrhenius公式)
17
化学反应 2HI = H2 + I2 2N2O = 2N2 + O2

大学化学课件第一章

大学化学课件第一章

思考
1. 101.325 kPa,273.15 K下,H2O(l), H2O(g)和 H2O(s)同时共存时,系统中的相数为多少?
2. CaCO3(s)分解为CaO (s)和CO2(g)并且达到平 衡的系统中有多少相?
二、状态与状态函数 (state function )
1. 状态是体系内一切性质的总和。
例1.1 在容积为10.0 L的真空钢瓶内,充入氯气, 当温度为288 K时,测得瓶内气体的压强为 1.01×107 Pa。 试计算钢瓶内氯气的质量,以千克表示。
解:由pV=nRT, 推出 m MpV RT
m 71.0103 1.01107 10.0 103 8.314 288
单相体系:均匀体系,只有一个相的体系。 多相体系:不均匀系,有两相或两相以上的体系。 相变:同一物质的气相、液相、固相间的相互转
化,叫做相变。固态物质不同晶形间的转 化也属相变。
TiO2/MgTiO3 界面结构
高分辨透射电子显微镜(HRTEM) High-resolution Transmission Electron Microscope
1. 理想气体 为了研究的方便,假设有一种气体:
只有位置不占有体积,是一个具有质量的几何点。 分子之间没有相互作用力, 分子间及分子与器壁间的碰撞不造成动能损失。 这种气体称之为理想气体。
说明
1) 理想气体只是一种人为的气体模型, 实际中它是不存在的。
2) 研究结果表明: 在温度不太低,压力不太高(高温、低压)条件下, 气体分子间的距离相当大, 气体分子自身体积与气体体积相比可以忽略, 分子间的作用力也显得微不足道, 可以近似认为是理想气体。 高温、低压: 温度高于0 oC, 压强低于1 atm。

大学化学 第一章

大学化学 第一章
封闭系统中状态发生变化时,系统内能的变化 等于系统从环境吸收的热减去系统对环境所做 的功。 ★注意: 1o “Δ”=终态-始态 (物理量的变化值) 2o 体系(反应)吸热,Q为“+”; 体系(反应)放热, Q为“-”; 体系对环境做功,w为“+”; 环境对体系做功,w为“-”。
例1.2 某体系吸收了40 kJ热量,对环境做了 20 kJ的功,那么体系内能的改变量为? 解:对体系而言: ∆U(体系) = Q - w = 40 - 20 = 20 (kJ)
pV nRT
2.气体分压定律(道尔顿分压定律)
piV ni RT pi ni xi 或 pi xi p pV nRT p n
即:组分气体的分压等于 总压与该组分气体的摩尔分数的乘积。
§1.2 能量和能量守恒定律
一、体系 (系统) 和环境 (system and surrounding ) 体系(系统)就是所要研究的对象; 系统以外与系统有密切联系的其他物质或 空间部分,叫做环境。
1molN2 1molO2
答:相等。 ∵ pV=nRT ,而V、T、n均相同。 2) 容器1中O2和N2对器壁的压力相等? 答:相等。 ∵pV=nRT,而V、T、n均相同。 3) 两个容器的器壁承受的压力是否相同? 答:否。
1molO2
p2 pO2;p1 pO2 pN2 2 p2
2.气体分压定律(道尔顿分压定律)
2. 理想气体状态方程
波义尔
Robert Boyle 1627-1691
查理
Jackues-Alexandre Charles 1746-1823
盖-吕萨克
Joseph-Louis Gay-Lussac 1778-1850
阿伏加德罗
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 习题选解
3. 20℃时某地空气中水的实际蒸汽压为
1.001KPa 。

此时的相对湿度是多少?若温度降低到10℃,相对湿度又如何变化?
解:设水蒸气服从PV=nRT ,其他因素不变时,P 正比于绝对温度T ,故10℃时:
P H2O 实际= 1.001×2
.2932.283=0.9669(KPa ) 查表1-1(P10)知,P H2O ,饱和是2.339 KPa (20℃)和1.228 KPa (10℃) 按相对湿度=饱和实际
,O H O H P P 22,计算,此地空气的相对湿度分别是42.80%(20℃)和78.74%
(10℃),温度降低至10℃,其值增大为20℃值的
80.4274.78=1.840(倍) 4. 比较并简述原因
(1)不同浓度蔗糖溶液的凝固点高低;
解:b/mol·Kg -1 0.1 0.2 0.5
/b K t f f ⋅=∆℃ 小 大 更大
/0f f t t ∆-=℃ 高 低 更低
(2)同浓度不同溶质水溶液的凝固点高低;
解:溶质 微粒b/mol·kg -1 /f t ∆℃ /f t ℃
C 6H 12O 6 0.1 小 高
NaCl=Na ++Cl - 0.2 大 低
Na 2SO 4=2Na ++SO 42- 0.3 更大 更低
(3)不同浓度Na 2SO 4溶液的渗透压高低。

解:Na 2SO 4⎩⎨⎧∙≈⋅-KPa RT b p kg m ol b //1

低1.0 高2.0 更高5
.0
5. 比较并说明理由:
解:(1) BaCl 2 FeCl 2 AlCl 3 CCl 4 晶体类型 离子 过渡型(偏离子) 过渡型(偏分子) 分子
熔 点 由高到低
(2) SiO 2 BaO CO 2 晶体类型 原子 离子 分子
硬 度 由大到小
(3) MgO CaO CaF 2 CaCl 2
离子键强度 由强到弱
熔 点 由高到低
(4) SiC SiBr 4 SiF 4 晶体类型 原子 分子 分子
结合力 共价键 色散力较强 色散力,较弱
熔 点 由高到低
(5) 液态HF 、HCl 、HBr 、HI 靠分子间力(主要是色散力)凝聚,从左到右因分子体积增大,色散力增强,故沸点升高。

例外的是HF (l )因形成大量分子间氢键,从而使其沸点升至最高。

8. 不同1 mol·Kg -1 溶液的冰点下降:
NaCl NH 4NO 3 (NH 4)2SO 4
微粒b/mol·kg -1 2 2 3
/f t ∆℃ 少 少 多
故用(NH 4)2SO 4代替NaCl ,既可以提高其融冰雪的效率,又可以为草地施肥。

第一章 补充习题1-1
1. 已知H 2SO 4(Mr=98.07 )的质量为147g ,求n (H 2SO 4)和n (2
1H 2SO 4)。

解:n (H 2SO 4)=07
.98147=1.50(mol ) n (2
1H 2SO 4)=2×1.50=3.00(mol ) 2. 已知80% H 2SO 4溶液的密度是1.74g/cm -3,求C (H 2SO 4)和C (2
1H 2SO 4)。

解:C (H 2SO 4)=1
07.98%80100074.1⨯⨯⨯≈14(mol ·L -1) C (2
1H 2SO 4)=2×14=28(mol ·L -1) 3. 50.0g 水中溶有2.00g 甲醇(CH 3OH ,Mr=32.04),求甲醇的质量摩尔浓度。

解:b (CH 3OH )=04.3200.20
.501000⨯=1.25(mol·kg -1) 4. 500g 溶液中含有50gNaCl ,溶液的密度为1.071g ·cm -3,求C (NaCl ),b (NaCl )和x (NaCl )。

NaCl 的Mr=58.44。

解:n (NaCl )=44
.5850=0.86 n (H 2O )=015
.18450=25.0 n (NaCl )+ n (H 2O )≈25.9
∴ x (NaCl )=9
.2586.0=0.033 b (NaCl )=0.86×450
1000=1.9(mol·kg -1) V 液=071
.1500=467 ∴ C (NaCl )=0.86×467
1000=1.8(mol ·L -1) 5. 怎样用FeCl 3·6H 2O (Mr=270.30)配制1.5kg35%的FeCl 3溶液,溶质的摩尔分数是多少?
解:FeCl 3的Mr=270.30-18.015×6=162.21
FeCl 3·6H 2O 的m=1.5×35%×21
.16230.270=0.87(kg ) 加水量m A =1.5-0.87=0.6(kg )
用尽可能少的盐酸溶解0.87kg FeCl 3·6H 2O ,再加0.6kg 水混匀。

n (FeCl 3)=21
.162%3510005.1⨯⨯=3.2(mol ) n (H 2O )=015
.18%6510005.1⨯⨯=54(mol ) ∴x (FeCl 3)=2
.572.3=0.056
小测验(一)
1. 已知:(1)Zn (s )+2
1O 2(g )=ZnO (s ) θrHm ∆= –348.28mol kJ ⋅-1 (2)Hg (l )+2
1 O 2(g )=HgO (s )θrHm ∆= –90.83mol kJ ⋅-1 求(3)Zn (s )+ HgO (s )= ZnO (s )+ Hg (l )的θ
3rHm ∆
解: (3)式=(1)式–(2)式
∴θ3rHm ∆=(–348.28)–(–90.83)= –257.45(mol kJ ⋅-1) 2. 0℃时,水和三块浮冰组成的系统中有几相?(2相)①撒上一把盐,使其全溶,维持0℃,会有什么现象发生?最后有几相?(冰全熔;1相)②滴加AgNO 3溶液,有何现象?系统有几相?(白色AgCl 沉淀;2相)③又加入一些CCl 4(l ),系统有几相?(沉入底部分层,3相)
补充习题1—2
1. 汽车发动机水箱中加入8.0dm 3乙二醇(密度是1.083-⋅cm g ,Mr=6
2.067)和32 dm 3水,求此溶液的凝固点。

解:0-f t =1.86×32
1067.6208.110000.8⨯⨯⨯=8.1 ∴f t =-8.1(℃)
2. 海水中盐的总浓度约为0.60 mol·L -1(即
3.5%),若均以主要成分NaCl 计,试估算海水开始结冰的温度和沸腾的温度,以及在25℃时用反渗透法提取纯水所需的最低压力(设C≈6).
解:⎩⎨⎧=⨯⨯=-=⨯⨯=-61
.0260.0512.01002.2260.086.10b f t t )(61.100)(2.2C t C t b f =-= P 渗=0.60×2×8.314×298.15=3.0×103(Kpa )=3.0(Mpa )
3. 血红素1.0g 溶于100ml 水中,20℃时渗透压为366Pa ,计算血红素的相对分子质量。

解:366×10-3=15.293314.8100.00.1⨯⨯⨯M
∴血红素的Mr=6.7×104。

相关文档
最新文档