控制图和过程能力
详细全面的SPC详解

详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种用于管理和优化生产过程的方法,它的目的是通过使用统计工具来分析生产过程中的数据,从而控制和改进产品质量。
SPC强调预防原则,即通过预防措施来减少产品缺陷和不良情况的发生,而不是在出现问题后再进行纠正。
SPC的基本概念包括控制图、过程能力指数、规格界限等。
控制图是SPC的核心工具,它用于监控生产过程中的关键变量,并根据统计原理判断生产过程是否处于控制状态。
控制图通常由均值-标准差控制图和极差控制图两种类型组成。
过程能力指数是指生产过程满足产品规格要求的程度,它通常被用来评估生产过程的能力,以便进行改进。
规格界限则是根据产品要求和客户要求设定的界限,用于确定产品是否合格。
SPC的实施方法包括以下几个步骤:1.选择关键变量:首先需要选择需要监控的关键变量,例如产品尺寸、材料特性等。
2.设计控制图:根据选定的关键变量,设计适合的控制图,并确定控制界限。
3.收集数据:按照一定的时间间隔收集生产过程中的数据,并对数据进行记录和整理。
4.分析数据:根据控制图的规则,判断生产过程是否处于控制状态,并找出异常点。
5.采取措施:根据分析结果,采取适当的措施来改进生产过程,例如调整工艺参数、更换设备等。
6.监控和反馈:持续监控生产过程,并及时反馈相关信息,以确保生产过程的质量和稳定性。
SPC的优势在于它可以及时发现生产过程中的异常情况,从而采取措施防止问题的扩大。
此外,SPC还可以提高生产过程的稳定性和产品质量的一致性,减少浪费和成本。
未来,SPC将会在更多的领域得到应用和发展,例如智能制造、医疗保健、金融服务等行业。
总之,SPC是一种有效的过程管理和优化工具,可以帮助企业提高产品质量和生产效率。
学习和掌握SPC技能对于从事质量管理、生产管理、工艺优化等工作的专业人士来说是非常重要的。
控制图与过程能力

控制图与过程能力控制图与过程能力控制图是一种统计工具,用于检测过程是否稳定,并通过监控过程中的变异性来实现过程的稳定控制。
过程能力则用来评估过程的稳定性及其是否满足规定的要求。
在质量管理中,控制图和过程能力是常用的管理工具,可以帮助企业分析和改进生产过程,提高产品质量。
首先,控制图是由过程数据统计而得出的,其核心思想是通过收集并分析过程数据,判断过程是否处于可控状态,从而及时发现问题,采取相应的纠正措施。
控制图通常由中心线、控制限和数据点构成。
中心线表示过程数据的平均值,控制限则表示过程数据的变异性,通常分为控制上限和控制下限。
数据点则是通过统计过程数据得出的。
控制图可分为平均控制图和范围控制图两种。
平均控制图主要用于分析过程的平均水平是否稳定,常用的平均控制图有均值图和移动平均图。
均值图通过比较样本平均值与中心线的差异来判断过程的稳定性;移动平均图则将样本平均数按照一定的周期进行平均,从而降低随机变异的影响。
范围控制图主要用于分析过程的变异性是否稳定,常用的范围控制图有范围图和标准差图。
范围图通过比较样本范围与控制限的差异来判断过程的稳定性;标准差图则是将样本标准差按照一定的周期进行计算,从而判断过程的稳定性。
控制图的构建需要确定样本的大小和采样间隔,样本的大小一般取决于过程的稳定性和潜在的变异性,采样间隔则取决于对过程的监控程度。
通过不断地收集和分析过程数据,可以根据实际情况进行调整和改进。
过程能力则是对过程进行综合评价的指标,用于衡量过程的稳定性和能够满足规定要求的能力。
过程能力通常由过程能力指数(Cp)和过程能力指数偏差(Cpk)来表示。
Cp表示过程的能力指数,计算公式为 Cp = (USL-LSL)/(6σ),其中USL和LSL分别为规定的上限和下限,σ为过程的标准差。
Cpk表示过程能力指数偏差,表示过程确保产品能够满足要求的能力。
过程能力的评估通常需要先确定经验指标和相关标准。
常用的经验指标有6σ、4σ和3σ,表示过程的准确性和精度。
计数值数据控制图过程能力分析

计数值数据控制图过程能力分析引言计数值数据控制图是一种用于监控过程稳定性和能力的有效工具。
通过收集样本数据并绘制控制图,可以帮助我们判断过程是否处于统计性控制,并评估过程的能力。
本文将介绍计数值数据控制图的基本原理和常用的过程能力分析方法。
计数值数据控制图介绍计数值数据控制图是一种用于监控离散型数据的过程控制工具。
它通过收集数据并绘制控制界限来判断过程的稳定性和能力。
计数值数据通常指的是在一定时间或空间范围内,某个特定事件的发生次数。
常见的计数值数据控制图包括:P图、NP图、C图和U图。
P图和NP图适用于二项分布的离散型数据,C图适用于计数型数据,U图适用于事件发生的时间间隔。
过程能力分析方法过程能力分析是指通过统计量和控制界限来评估过程的能力。
常用的过程能力指标有过程潜在能力指数(Cp)、过程实际能力指数(Cpk)和过程盒子能力指数(Cpm)。
过程潜在能力指数(Cp)过程潜在能力指数是用来评估过程在规格范围内的可变性的指标。
它是根据过程的规格上下限与控制限之间的距离来计算的。
Cp的计算公式为:Cp = (USL - LSL) / (6 * sigma)其中,USL表示过程的规格上限,LSL表示过程的规格下限,sigma 表示过程的标准差。
Cp的值越接近1,表示过程的能力越高。
过程实际能力指数(Cpk)过程实际能力指数是用来评估过程在规格范围内的偏移和可变性的指标。
它考虑了过程的中心位置。
Cpk的计算公式为:Cpk = min((USL - μ) / (3 * sigma), (μ - LSL) / (3 * sigma))其中,USL表示过程的规格上限,LSL表示过程的规格下限,mu 表示过程的均值,sigma表示过程的标准差。
Cpk的值越接近1,表示过程的能力越高。
过程盒子能力指数(Cpm)过程盒子能力指数是用来评估过程在规格范围内的偏移、可变性和非正常情况比例的指标。
它考虑了过程的中心位置和不符合规格的比例。
第六章控制图、过程能力和直方图

在工序控制中需要了解的三个方面,都能在控制图上得到。 (1) 在连续的生产监控中,有无变化的征兆; (2) 有无急剧的变化; (3) 有无越出控制范围的异常值。
--控制图的作用:
在质量诊断方面,可以用来度量过程的稳定性,即过程是否处于统计控制状态; 在质量控制方面,可以用来确定什么时候需要对过程加以调整,而什么时候则需使过程保持相应的稳定状态; 在质量改进方面,可以用来确认某过程是否得到了改进。
1.864
1.816
1.777
E2
2.660
1.772
1.457
1.290
1.134
1.109
1.054
1.010
0.975
m3A2
1.880
1.187
0.796
0.691
0.549
0.509
0.430
0.410
0.360
D3
-
-
-
-
-
0.076
0.136
0.184
0.223
d2
1.128
1.693
P
-
n -
(1- )
Pn
-
Pn
-
3
u
-
3
n
u
-
+
u
-
3
n
u -
c
-
3
c —
c
-
3
c +
控制系数选用表
n
2
3
4
5
6
7
8
9
10
A2
1.880
1.023
0.729
0.577
0.483
spc第二版215203

范围
范围
范围
范围
但它们形成一个模型,若稳定,可以描述为一个分布
范围
范围
分布可以通过以下因素来加以区分
位置
分布宽度
范围 形状
或这些因素的组合
如果仅存在变差的普通原因, 随着时间的推移,过程的输 出形成一个稳定的分布并可 预测。
范围
如果存在变差的特殊 原因,随着时间的推 移,过程的输出不 稳定。
范围
目标值线 预测
采取措施包括
改变操作(操作者培训、变换输入材料)
或改变过程本身更基本的因素(如:修复设备、 人的交流和关系如何
或整个过程的设计——改变车间的温度和 湿度等)
或更改产品规范等
采取措施后
——应监测措施效果。 ——对输出采取措施:即对输出的不符合规范的产品 进行检测、分类(合格、报废、返工)。如果不分析过程 中的根本原因,不对过程采取校正措施或验证,这是 时间和材料的极大浪费。
统计特证数
2、样本中位数:
把收集到的统计数据按大小顺序重新排列, 排在正中的那个数就是中位数;
当n为奇数时,正中间的数只有一个,当n为偶数时, 中位数为正中两个数的算术平均值。
中位数也是表示数据集中位置的一种特征数, 只是较样本平均值所表示的数据集中位置要粗 略一些,但是可减少计算的工作量 。
一个过程控制系统可以称为一个反馈系统。
统计过程控制(SPC)就是一类反馈系统。
在这个系统中,通过我们使用统计方法,收集有关过 程性能的信息,让我们了解到过程正在做什么,离目标值 是近还是远,要对过程采取什么样的措施。同时,通过与 内、外部顾客的沟通,识别顾客不断变化的需求和期望的 信息,进而对过程采取措施,以满足顾客的要求。
X-R控制图及制程能力分析报告(过程能力)

管理图异常的判断1 观察个点加以判断……管制外(OUT OF CONTROL)2 将复数的点以群体加以观察并判断……连串,周期,趋向等2.1 对于中心线点连续在任何一方出现时,称为“连串”对在中心线的任何一方(上侧或下侧)连续出现时,以以下方式判断:2.1.1 5点连串时:要注意。
2.1.2 6点连串时:要开始调查2.1.3 7点连串时:有异常原因,应该采取措施2.2 中心线的一边出现众多点,应判断为工程异常2.2.1 连续11点中有10点以上2.2.2 连续14点中有12点以上2.2.3 连续17点中有14点以上2.2.4 连续20点中有16点以上2.3 点的“趋势”呈上升或下降时候点的排列逐渐变大或变小时,显示该工程已有某种趋势。
有这种趋势时,应依以下进行判断2.3.1 5点连串时:要注意。
2.3.2 6点连串时:要开始调查2.3.3 7点连串时:有异常原因,应该采取措施通常有趋势时,到第3-4点多半已经是偏离管制。
当趋势呈现而逼近管制界线时,最好及早开始调查原因。
2.4 点呈现“周期性”的变化时这种显示周期性变化的工程,在活用管理图时有必要对分组或抽样的方式下功夫。
例:刀具每2天磨一次,导致某一个特性是每2日的周期变化。
2.5 时常出现点接近管理界限的时候依3σ管理图的性质,点的出现于管理界限附近的几率很小。
点落在中心线到管理界限的宽度2/3以外的机会大约为3%。
因此经常有点落在此范围时,就可判断工程已有某项异常发生。
2.6 点集中于中心线附近的时候点集中于中心线附近,从点的变异情形来看,似乎显出管理界限太宽。
这一点要说工程无异常不如说是分组或层别的不当,对于工程管理并无助益。
此时有必要对分组或层别再下功夫。
SPC各值计算公式

SPC各值计算公式SPC(统计过程控制)是一种统计方法,用于检测和控制过程的稳定性和变异性。
SPC各值计算公式包括控制图参数和过程能力指数等。
以下是常见的SPC各值计算公式及其解释:1.控制图参数:a.X̄控制图上的中心线是过程的平均值的估计量。
计算公式为:X̄=ΣX/n,其中X是测量值的总和,n是样本大小。
b. R 控制图上的极差线是过程的极差的估计量。
计算公式为:R = Xmax - Xmin,其中Xmax和Xmin是样本中最大值和最小值。
c.S控制图上的标准偏差线是过程的标准偏差的估计量。
计算公式为:S=√(Σ(X-X̄)²/(n-1)),其中Σ(X-X̄)²是样本值与平均值的差的平方的总和。
d.UCL控制图上的上限控制限是过程的可接受上限。
计算公式为:UCL=X̄+3S,其中3是标准差的倍数,用于确定上限控制限。
e.LCL控制图上的下限控制限是过程的可接受下限。
计算公式为:LCL=X̄-3S,其中3是标准差的倍数,用于确定下限控制限。
2.过程能力指数:a.Cp过程能力指数是衡量过程发生误差在可接受范围内的能力。
计算公式为:Cp=(USL-LSL)/(6σ),其中USL和LSL是规范上限和下限,σ是标准偏差的估计量。
b. Cpk 过程能力指数是衡量过程发生误差在可接受范围内的能力,同时考虑了过程的中心线偏移。
计算公式为:Cpk = min((USL - X̄) /(3σ), (X̄ - LSL) / (3σ)),其中USL和LSL是规范上限和下限,X̄是过程的平均值的估计量,σ是标准偏差的估计量。
c. Cpm 过程能力指数是衡量过程发生误差在可接受范围内的能力,同时考虑了过程的中心线偏移和过程的极差。
计算公式为:Cpm = (USL - LSL) / (6√((ΣR/n)² + σ²)),其中USL和LSL是规范上限和下限,ΣR/n是极差均值的估计量,σ是标准偏差的估计量。
控制图与过程能力分析

控制图与过程能力分析1. 引言控制图是一种常用的质量管理工具,用于监控和分析过程中的变异性。
通过绘制控制图,可以识别过程中的特殊因素或异常情况,从而及时采取控制措施,保证过程稳定并提高产品质量。
而过程能力分析则是评估过程的稳定性和能力的方法,用于判断过程是否满足规定的质量要求。
本文将介绍控制图的基本概念和构成要素,并详细讨论过程能力分析的方法和指标。
同时,还将给出一些实际案例,帮助读者更好地理解和应用控制图与过程能力分析。
2. 控制图概述控制图是一种基于统计学原理的质量管理工具,用于监控和改进过程中的变异性。
通过绘制控制图,可以将过程的实际数据与规定的控制限进行比较,从而判断过程是否受到特殊因素的影响,以及是否处于控制状态。
控制图的构成要素主要包括控制线、样本数据和数据点的标记。
其中,上下控制线用于标识过程的稳定范围,而中心线则表示过程的平均水平。
样本数据则是从过程中得到的一组观测值,通常按时间顺序排列。
每个数据点可以通过标记来表示其特殊性质,如标明异常值或特殊原因。
3. 常见的控制图类型根据观测数据的类型和分布特征,常见的控制图类型包括:3.1. 控制图类型1这是一种适用于连续型数据的控制图类型,适用于受检量或计数型数据。
其构成要素包括X控制图和R控制图。
X控制图用于监控平均值的变化情况,R控制图则用于监控过程的变异程度。
3.2. 控制图类型2这是一种适用于计数型数据的控制图类型,适用于过程中出现的次数或事件。
其构成要素包括P控制图和C控制图。
P控制图用于监控次数型数据的比例,C控制图则用于监控次数型数据的发生数。
3.3. 控制图类型3这是一种适用于属性型数据的控制图类型,适用于过程中出现的缺陷或不良项。
其构成要素包括NP控制图和U控制图。
NP控制图用于监控缺陷或不良项的发生数,U控制图则用于监控缺陷或不良项的比例。
4. 过程能力分析方法过程能力分析是评估过程的稳定性和能力的方法,旨在判断过程是否满足规定的质量要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
较常用,计算简单,操作工人 易于理解。
计算量大,控制线凹凸不平。
适用于产品批量较大的工序 。 适用于产品批量较大的工序 。 因各种原因(时间、费用等 )每次只能得到一个数据或 希望尽快发现并消除异常原 因。
样本容量相等。
样本容量不等。
样本容量相等。
样本容量不等。
一、概述
--控制图的作用: 1. 在质量诊断方面,可以用来度量过程的稳定性,即过程是否处于统 计控制状态; 2. 在质量控制方面,可以用来确定什么时候需要对过程加以调整,而 什么时候则需使过程保持相应的稳定状态; 3. 在质量改进方面,可以用来确认某过程是否得到了改进。
E2 2.660 1.772 1.457 1.290 1.134 1.109 1.054 1.010 0.975
m3A2 1.880 1.187 0.796 0.691 0.549 0.509 0.430 0.410 0.360
D3
-
-
-
-
- 0.076 0.136 0.184 0.223
d2 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.087
控制图上的点子出现下列情形之一时,即判断生产过程
异常:
点子超出或落在控制线上; 控制界线内的点子排列有下列缺陷:
四、控制图的观察与分析-缺陷
缺陷
图例
链状况-连续七 点以上在中心线同 一侧出现。
●
●
●●
●
●●
●
●
UCL
●
●
●
●
●
●
●
●
● ●
● ● ●
CL
LCL
趋势状况-连续 七点以上上升或下 降。
D3 R
~x-m 3A2 R
D3 R
~x -2.659 RS
不考虑
控制图控制界限线的计算公式-II
图别 P
中心线 (C L)
P
上控制界限(UCL)
- P +3
-- P(1- P )
n
下控制界限(LCL)
- P
-3
-- P(1- P )
n
Pn
-
-
-
-
-
-
Pn
P n+ 3 Pn(1- Pn )
P n -3 Pn(1- Pn )
过程能力等级评定表
等级 判断
措施
特级 1级 2级 3级 4级
质量特性值
●
●
●
●
●
●
●● ● ●
抽样时间和样本序号
UCL 3倍标准偏差(3σ)
CL 3倍标准偏差(3σ)
LCL
一、概述
--控制图的种类很多,一般按数据的性质分为计量值控制图、计 数值控制图两大类。
类别
名称
控制图符号
特点
适用场合
计
平均值-极 差控制图
量 中位数-极
值 差控制图
控
制 单值-移动 图 极差控制图
● ●
● ●
● ●
● ●
●
●●
●
● ● ●
● ●
● ●
UCL CL LCL
四、控制图的观察与分析-缺陷
缺陷
图例
UCL
周期状况
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
CL
LCL
接近控制界限 状况-在连续三点 中至少有两点接近 控制界限。
● ●
●
● ●
●
● ●
●
●
● ●
●
●
UCL CL LCL
四、控制图的观察与分析
5. 计算每个样本的统计量 x (5个观测值的平均值)和 R(5个观测值
的极差) (见多装量(g)和样本统计量) 。
多装量(g)和样本统计量
样本号
x1
x2
x3
x4
x5
∑x
x
R
1
47
32
44
35
20
178
35.6
27
2
19
37
31
25
34
146
29.2
18
3
19
11
16
11
44
101
20.2
33
4
29
161
32.2
26
12
31
25
24
32
22
134
26.8
10
13
22
37
19
47
14
139
27.8
33
14
37
32
12
38
30
149
29.9
26
多装量(g)和样本统计量
样本号 x 1
x2
x3
x4
x5
∑x
x
R
15
25
40
24
50
19
158
31.6
31
16
7
31
23
18
32
111
22.2
25
17
38
0
注: K为给出双侧公差且分布中心与公差中心偏离时的平均值偏离度, 它是平均值偏离量ε 与公差一半的比值,即:K=ε /(T / 2)。当K≥
1时,认为CPK=0。
三、过程能力指数的评定
范围 CP ≥ 1.67 1.67> CP≥ 1.33 1.33> CP≥ 1 1> CP≥ 0.67 0.67> CP
--从兼顾全面性和经济性的角度,一般取: B=6σ (99.73%)
二、过程能力指数
--过程能力指数是反映过程能力满足产品质量标准( 规范、公差等)能力的参数。一般记做CP。
--过程能力指数是技术要求和过程能力的比值。
技术要求
CP= 过程能力
TL
T
TU
M:公差分布中心
μ:样本分布中心
T :公差范围
29
42
59
38
197
39.4
30
5
28
12
45
36
25
146
29.2
33
6
40
35
11
38
33
157
31.4
29
7
15
30
12
33
26
116
23.2
21
8
35
44
32
11
38
160
32.0
33
9
27
37
26
20
35
145
29.0
17
10
23
45
26
37
32
163
32.6
22
11
28
44
40
31
18
中心值CL= x =29.86(g) UCL= =x + A2 R ≈ 45.69(g) LCL= =x — A2 R ≈ 14.03(g)
注:A2为随着样本容量n而变化的系数,可由控制图系数选用表中选取 。
图
R
:
中心值 CL= R =27.44(g)
UCL= D4 R≈ 58.04(g)
注:D4为随着样本容量n而变化的系数,可由控制图系数选用表中选取 。
163
32.6
32
25
42
34
15
29
21
141
23.2
27
累计
746.6
686
平均
X=29.86 R=29.86 =
6. 计算各统计量的控制界限(UCL、LCL)。
1) 计算各样本平均值(=x)和各样本极差的平均值( R )。
=
x=
∑x
k
R=
∑R
k
2) 计算统计量的中心值和控制界限。
x 图: =
二、应用控制图的步骤
应用步骤如下:
选择控制图拟控制的质量特性,如重量、不合格品数等; 选用合适的控制图种类; 确定样本容量和抽样间隔; 收集并记录至少20~ 25个样本的数据,或使用以前所记录的数据; 计算各个样本的统计量,如样本平均值、样本极差、样本标准差等; 计算各统计量的控制界限; 画控制图并标出各样本的统计量; 研究在控制线以外的点子和在控制线内排列有缺陷的点子以及标明异
9. 在不对该过程做任何调整的同时,继续用同样的方法对 多装量抽样、观察和打点。如果在继续观察时,控制图 显示出存在异常原因,则应进一步分析具体原因,并采 取措施对过程进行调整。
四、控制图的观察与分析
点子没有超出控制线(在控制线上的点子按出超出处理
),控制界限内的点子排列无缺陷,反映工序处于控制状态 ,生产过程稳定,不必采取措施。
●
20
●
● ●
●
LCL=14.03
60
UCL=58.04
极差 R
40
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●
●
●
CL=27.44
20
●
●
●
●
●
0
样本号
5
10
15
20
25
8. 控制图没有出现越出控制线的点子,也未出现点子排列 有缺陷(即非随机的迹象或异常原因),可以认为该过 程是按预计的要求进行,即处于统计控制状态(受控状 态)。