考研数学(同济版)重点
【干货】2021考研数学第一章范围及复习提点

【干货】2021考研数学第一章范围及复习提点同学们,计划备考2021考研的考生,现在开始就应该开始复习考研数学了,考研数学对于很多考生来说都比较难,所以更应该提早进行复习。
本篇文章文都考研为同学们带来关于考研数学第一章范围及复习提点的内容,计划参加2021考研的小伙伴们来看看吧!高等数学同济七版(复习提点)第一章:函数极限第一节:理论部分(自己认真学)另注意狄利克雷函数、符号函数、取整函数的定义及性质,双曲正弦(奇函数)双曲余弦(偶函数),双曲正切(奇函数),反双曲正弦(奇函数),反双曲正切(奇函数)。
习题1-1:第8、9、13.第二节:理论部分(自己认真学)另其中例1、2、3了解;定理1、例4理解;定理2、定理3、推论、定理4掌握;习题1-2:第1题(略);第2、3题了解;第4、5、6掌握第三节:理论部分(自己认真学)另其中例1、2、3、4、5了解;例6、7理解;定理1、2、3、推论3、定理4掌握;习题1-3:第1、2、3、4、5、6、7、8、9理解;第10、11、12掌握;第四节:理论部分(自己认真学)另本节结论掌握,证明全部理解即可习题1-4:第1题掌握;第2、3、4理解;第5、6、7、8掌握第五节:理论部分:(自己认真学)另本节结论掌握,证明全部理解即可习题1-5:第1题:(11)(14);第3、4、5、6题第六节:理论部分:(自己认真学)准则I, I‘掌握;准则II掌握,II’了解,柯西收敛准则(略)习题1-6:全做第七节:理论部分:记结论,理解说明习题1-7:全做第八节:理论部分:掌握连续的概念(掌握证明)和间断点的类型(掌握计算);习题1-8:全做第九节:理论部分:记结论(掌握计算)习题1-9:全做第十节:理论部分:掌握有界性定理、最大值最小值定理,零点定理(不需证明)介值定理(证明);一致连续性(略)习题1-10:第1、2、3、4、5、6;第7题(略)总习题一:全做【注】本文来源:文都孙雯微信公众号希望以上梳理出的关于2021考研数学第一章范围及复习提点的内容可以为同学们的复习提供帮助,小编会不断更新2021考研数学备考知识,欢迎广大考生持续关注!。
考研数学线性代数教材和习题范围(同济五版)

第四章 向量组的线性相关性 核心考点: 1 表示性问题:线性表示的概念、结论与原理 2 相关性问题:向量组的线性相关与线性无关 3 等价性问题:向量组的等价的条件与本质 4 代表性问题:向量组的秩与向量组的极大无关组 习题范围: 习题四: 第 1 题、第 2 题、第 3 题、第 4 题、第 5 题、第 6 题、第 8 题、
更多最新考研数学资料,可关注新浪微博@易丰老师
第 18 题、第 19 题、第 20 题、第 22 题、第 23、24 题、第 25 题、 第 26 题、第 27 题、第 28 题、
第三章 矩阵的初等变换与线性方程组 核心考点: 1 矩阵的初等变换的原理与初等矩阵 2 矩阵的秩及秩的性质的应用 3 线性方程组解的结构与性质 4 含参数的线性方程组的解法及方程组的公共解讨论 习题范围: 习题三: 第 1 题、第 4 题、第 5、6 题、第 7 题、第 10 题、第 12 题、第 13 题 第 14 题、第 15 题、第 16 题、第 17 题、第 18 题、第 19 题、 第 21 题
《线性代数》教材内容与习题范围浓缩版 同济大学第五版
同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 导数与微分(圣才出品

区间 Ix={x|x=f(y),y∈Iy}内也可导,且
f 1 x
f
1
y
或
dy dx
1 dx
dy
3.复合函数的求导法则
如果 u=g(x)在点 x 可导,而 y=f(u)在点 u=g(x)可导,则复合函数 y=f[g(x)]
在点 x 可导,且其导数为
dy f ug x或 dy dy du
dx
dx du dx
u nv
nu n1v
nn
1
u
n2 v
...
n
n
1... n
k
1
u
nk
v
k
... uv
n
2!
k!
或
uv n n Cnkunkvk k 0
四、隐函数及由参数方程所确定的函数的导数
1.隐函数的导数
(1)隐函数 F(x,y)=0 导数的求法
把函数方程两边分别对 x 求导,然后化简得到 dy/dx 的结果。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 2 章 导数与微分
2.1 复习笔记
一、导数概念
1.导数
(1)导数与导函数
①导数的定义
f
x0
lim
x0
y x
lim
x0
f
x0
x
x
f
x0
(2)单侧导数
①左导数
f ( x0
)
lim
h0
f
x0 h
h
f
x0
②右导数
(1)参数方程的一阶导数公式
dy dx
dy dt dt dx
考研数学知识点总结归纳

考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
考研数学二课本要点指导

考研数学二课本要点指导文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]高数部分:(配同济六版教材)第一章函数与极限(考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1--5集合部分只需简单了解P5--7不用看P7--17重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20不用看P21习题1.11、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28例1、2、3均不用证p28--29定理1、2、3的证明不用自己证但要会理解P30定理4不用看P30--31习题1-21大题只需做(4)(6)(8)2--6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题一、(了解)二、(了解)P33--34例1、2、3、4、5只需大概了解即可P35例6要会做例7不用做P36--37定理2、3证明不用看定理3’4”完全不用看p37习题1--31--4均做5--12均不用做第四节(重要)一、无穷小(重要)二、无穷大(了解)p40例2不用做p41定理2不用证p42习题1--41做2--5不全做6做7--8不用做第五节(注意运算法则的前提条件是各自存在)p43定理1、2的证明要理解p44推论1、2、3的证明不用看p48定理6的证明不用看p49习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14)2、3要做4、5重点做6不做第六节极限存在准则(重要)两个重要极限(重要两个重要极限要会证明p50准则1的证明要理解p51重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)p58--59定理1、2的证明要理解p59习题1--7全做第八节(基本必考小题)p60--64要重点看第八节基本必出考题p64习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节(了解)p66--67定理3、4的证明均不用看p69习题1--91、2要做3大题只做(3)——(6)4大题只做(4)——(6)5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)一、(重要)二、(重要)p72三、一致连续性(不用看)p74习题1--101、2、3、5要做,要会用5的结论.4、6、7不用做p74总习题一除了7、8、9(1)(3)(4)之外均要做其中要重点做的是3(1)(2)、5、11、14第二章(小题必考章节)第一节(重要)一、引例(数三可只看切线问题举例)二、导数的定义(重难点,考的频率很高)三、导数的几何意义(重要)另:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四、函数的可导性与连续性关系(要会证明,重要)p79导数的定义要重点掌握,基本必出考题p81--82例1--例6认真做以便真正掌握导数的定义p85可导性与连续性的关系要会证明)p86习题2--1不用做的是1、2、9(1)--(6)、10、12、13、14其余都要做其中重点做的是6、7、8、16、18、19第二章第二节(考小题)四、基本求导法则与求导公式(要非常熟)p88--89(1)(2)(3)的证明均不用看p89例1不用做p90定理2的证明要理解p91--92例6--8重点做p92定理3证明不用看p96例7不用做p97习题2--22题(1)(5)(7)(10)、3(1)、4、12均不用做其余全做其中13、14要重点做第二章第三节(重要,考的可能性大)p100例3不用做p103习题2--35、6、7、11均不用做,其余全做其中4、12要重点做第二章第四节(考小题)p107--110由参数方程所确定的函数的导数数三不用看p111三、相关变化率(不用看)p111习题2--41大题(1)(4)、3(1)(2)、9--12均不用做数三5--8也不用做其中4重点做第二章第五节(考小题)p119四、微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲均不作要求)习题2--55--12均不用做其他的全做p125总习题二4、10、15--18均不用做,其余全做其中2、3、6、7、14要重点做数三不用做12、13第三章(考大题难题经典章节,绝对重点章节)第一节(最重要,与中值定理应用有关的证明题)一、罗尔定理(要会证)二、拉格朗日中值定理(要会证)三、(柯西中值定理(要会证)另外,要会证明费马定理p128--133费马定理罗尔定理拉格朗日中值定理柯西中值定理一定要会独立证明,极其重要p134习题3--1除13、15不用做,其余全部重点做第三章第二节(重要,基本必然要考)p134--135洛必达法则要会证明习题3--2习题全做其中1、(1)(5)(10)(12)(15)(16)、3、4要重点做第三章第三节(掌握其应用,可以不用证明公式其本身)p140--141泰勒公式的证明不用看p145习题3--38、9不用做,其余全做,其中,10(1)(2)(3)要重点做第三章第四节(考小题)p152习题3--43(1)(2)(5)、5(1)(2)、8(1)(2)、9(1)(3)(5)、10(2)不用做,其余全做,重点做3(3)(6)(8)、4、5(3)(5)、6、13、15第三章第五节(考小题为主)p160例5不用做p161例6不用做p162例7不用做p162习题3--51(2)(3)(6)(9)、8--16均不用做,其余全做第三章第六节(重要基础章节)p169习题3--61不用做2--5都要做第三章第七节(了解,只有数一数二考,数三不用看)一、弧微分(不用看)二、(了解)三、(了解)p175四、(不用看)p177习题3--7数三均不用做数一数二只需做1—6第三章第八节(只要有近似,考研不考,不用看)p182总习题三数一、数二全做数三15不用做其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第四章(重要、相对于数一、数三,数二考大题的可能性更大)第一节(重要)一、(理解)二、(会背,且熟练准确)三、(理解)p186例4不用做p188--189基本积分表一定要记得熟练、准确p192习题4--12(1)--(4)(6)(7)(9)(10)(11)(16)、3、4、6均不用做其余全做第四章第二节(重要,其中第二类换元法更加重要)p207习题4--21、2(1)(2)(3)(8)(9)(10)(13)(25)均不用做,其余全做第四章第三节(考研必考)p212习题4--3全做(分部积分法极其重要)第四节(重要)p218习题4--4全做第五节(不用看)p221总习题四全做第五章(重要,考研必考)第一节(理解)一、定积分问题举例(了解,其中变速直线运动的路程,数三不用看)二、定积分定义(理解)p228三、定积分的近似计算(不用看)p231--234四、定积分的性质(理解)性质1--7要理解,且能熟练应用,其中性质7最重要,要会独立证明p234习题5--11、2、3、6、8、9、10均不用做,其余全部做,且重点做5、11、12第五章第二节(重要)一、变速直线运动中的位置……的联系(了解,数三不用看)二、积分上限的函数极其导数(极其重要,要会证明)三、牛顿--莱布尼茨公式(重要、要会证明)p237定理1,要求会独立证明,极其重要p239定理3要求会独立证明p241例5不用做例6经典例题,极其重要,记住结论p243习题5--26(1)(2)(4)--(7)(9)、7、8均不用做,其余全做,其中数三2不用做需要重点做的为9(2)、10—13第五章第三节(重要,分部积分法更重要)p247--249例5、6、7经典例题,重点做,并记住其相应结论p252例12经典例题,记住结论p253习题5--31(1)(2)(3)(6)(12)(14)(15)(16)(21)(22)、7(1)(3)(8)(9)不用做,其余全部做,且重点做1(4)(7)(17)(18)(2 5)(26)、2、6、7(7)(10)(12)(13)第五章第四节(考小题)p260习题5--4全做,重点做1(4)、3.3题为经典公式,一定发要熟记第五节(不用看)注考纲不做要求,最好记住F(伽马,打不出来那个)函数的部分性质,可能给解题带来方便,可参考汤家凤视频)p268总习题五1(3)、2(3)(4)(5)、15、16均不用做其余全部做其中,重点做的是3、5、7、8、9、10(1)(2)(3)(8)(9)(10)、13、14、17第六章(考小题)第一节(理解)第二节(面积最重要)一、平面图形的面积p276--277极坐标情形只有数一数二看数三不用看二、体积(数三只看旋转体的体积)p280--281平行截面面积为已知的立体体积只有数一数二看三、平面曲线的弧长(数三不用看,数一数二记住公式即可)习题6--2数一全做数二21--30不用做数三5、6、7、8、15(4)、17、18、21--30不用做第三节(数三不用看,数一数二了解)p291--292习题6.3只有数一数二做数三不用做p292--293总习题六数一全做数二6不做数三只需做3、4、5第七章(本章对于数二相对最重要)第一节(了解)p294例2数三不用看p298习题7--1只需做1(3)(4)、2(2)(4)、3(2)、4(2)(3)、5第七章第二节(理解)p301--304例2、3、4只有数一数二看,数三不用看p304习题7--2只做1、2第七章第三节(理解)二、可化为齐次的方程(不用看)p306例2--p309均不用看p309习题7--31只做(1)(5)(6)2只做(2)3、4不用做第七章第四节(重要,熟记公式)p312例2不用看p314伯努利方程只有数一看p315习题7--41只做(3)(5)(8)(10)、2只做(2)(3)、3做4--7均不用做、8只有数一做第七章第五节(只有数一数二考,理解)p317例2不用看p319例4不用做p321例6不用做p316--p323数三均不用看p323习题7--5(数三不用做)数一数二只做1(3)(4)(5)(10)、2(1)(2)(6)3、4不用做第七章第六节(理解)一、(不用看)二、(重要)三、(不用看)p323--324二阶线性微分方程举例不用看p325--328定理1、2、3、4重点看p328--330常数变易法不用看p331习题7--6只做1(3)(4)(6)(7)(10)、3、4(1)(5)(6)第七章第七节、第八节(最重要,考大题备选章节)p335例4不用做p336--338例5不用做习题7--7只做1(1)(4)(7)(9)(10)、2(1)(2)(4)p346例5不用看p347习题7--8只做1(2)(4)(5)(6)(9)(10)、2(3)(4)、6其中6重点做第七章第九节(只有数一考,理解)p348--349欧拉方程只有数一看p349习题7--9数一只做(5)(8)第十节(不用看)p353总习题七数一做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7、8、10数二做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7数三做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7第八章(只有数一考,考小题,了解)(本章只有数一考,单独命题以考小题为主,但数一特有的绝对重要考点,曲线曲面积分要以本章为基础,建议数一同学好好复习本章)本章需要数一多加注意的考点有:曲面方程与空间曲线方程.球面‘柱面、旋转曲面,常用的二次曲面方程及其图形.本章题目没有给画....第九章(考大题经典章节,但难度一般不大)第一节(了解)p54n维空间部分不用看,只有数一同学需要记住空间两点之间的距离公式p55例2、3不用看p57最后四行只有数一看p58例4证明不用看,只需记住:求多重极限依然满足:无穷小量有界量=无穷小量p59例5以上多元函数极限存在与否重点看例5做p60例6不用做定义4不用看p61例7了解p62例8做p62性质1和性质2一般重要备注:连续函数的有界性定理,最值定理,介值定理的考察,一元函数远比多元函数重要p62习题9--11--4、7--10均不用做只做5(3)(4)(6)、6(4)(5)(6)第九章第二节(理解)二、高阶偏导数(重要)p63偏导数的定义及其计算法(重点看)p65例1、2不用做只做例3、4p66二元函数偏导数的几何意义不用看例5不用做p66--67多元函数偏导数的存在与连续的关系重点看例6不用做p68--69定理只记住结论即可例7、8均做习题9--21只做(3)(5)(6)(7)(8)、4、5(只有数一做)、6(2)(3)7、8、9、与2、3均不用做第九章第三节(理解)p70--71全微分的定义与可微分的定理1及其证明重点看p72--73可微分的定理2记住结论即可,证明不用看例1、2不用做,只做例3二、全微分在近似计算中的应用(不用看)p74--75均不用看p76习题9--3只做1(2)(4)、2、3、5其余均不用做第九章第四节p77定理1证明不用看p78其他情形不用做p79做例1、3、4例2不用做其中重点做例4p80--81例5不用做,全微分形式不变性重点看p82--83例6做习题9--4只做3、4、7、8(1)(3)、9、10、11、12(2)(4)其余均不用做第九章第五节(理解、小题)二、方程组的情形(不用看)p83--85隐函数存在定理(只有数一数二看)例1、2数一数二做p86--88不用看p89习题9--5只做1、2、5、7、8其余均不做第九章第六节(只有数一考,考小题)一、一元向量值函数及其导数(不用看)p94--99只有数一看例4、5、6、7均要做p100习题9--6(只有数一做)要做6、7、10、11、12其余均不用做第九章第七节(只有数一考,考小题)p102--103定理记住,证明不用看例1、2做p103--107例3、4数一做p107数量场、向量场不用看例7不用做p108--109习题9--7只做2、5、8、10.其余均不用做第九章第八节(重要,答题常考题型)p109定义与例1、2、3均要重点做和看p110定理1及其证明均要仔细看,定理2只要记住,证明不用看p111例4做p112--113例5例6不用做p113--115条件极值与拉格朗日乘数法重点看p116--117例7、9不用做只做例8p118习题9--8只做1、4、8(只有数一做)、12其余均不用做第九章第九节(只有数一考,了解)一、了解二(不用看)p119定理记住结论,证明不用看p121例1做p122--129极值充分条件的证明与第十节均不用看p129总习题九1、2、4、5、811、12、14(数一)、17(数一),其余全不做第十章(重要,数二数三相对于数一,本章更加重要,数二数三基本必考答题)第一节(了解)p132--133二重积分的概念与性质(重要)p133平面薄片的质量可以不看p134--135定义与性质重点看p136习题10--1只做2、4(2)(3)、5(3)(4)其余均不用做第十章第二节(重要,数二数三及其重要)p--148直角坐标与极坐标均看(重要)例1、2、3、5做例6只有数一做例4不用做p149--153二重积分的换元法不用看p153习题10--2只做1(1)(4)、2(1)(3)、3记住结论、4(重点做)、6(2)(4)(6)8、9、10(只有数一做)、11(2)(4)、12(2)(3)(4)、13(1)(3)、14(2)(3)、15(2)(3)、18(数一)其余均不做第十章第三节(只有数一考)一、(了解)二、(重要)p157--163三重积分的概念与计算数一重点看例1、2、3、4均要做p164习题10--3(只有数一做)只做4、7、9、11其余均不用做第十章第四节(了解)p165--176(只有数一考,可以先不用看,上过强化班以后,再专门解决一些不太重要的边边角角的考点)p176--181含参变量的积分的章节与习题10--5均不用看与做p181总习题十只做1(1)(数一)(2)(3)、2(2)(4)、3(2)(3)、4、6、7(数一)、8(1)(3)、9(数一)其余均不用做第十一章(只有数一考,数二数三均不考,数一考大题考难题的经典章节)第一节(重要)一、对弧长曲线的概念(理解)与性质(了解)重点看二、对弧长曲线积分的计算法(重要)p187记住定理的结论,证明不用看p189只做例1.例2、3不用做p190习题1--1只做3(3)(4)(5)(8),其余不用做第十一章第二节(重要)一、对坐标的曲线积分的概念(理解)与性质(了解)重点看二、.........计算法(重要)p194--195定理及其证明要重点看p196--198例1--4均重点做例5不用做p199两类曲线积分之间的关系(记住结论)一般看p200--201习题11-2只做3(2)(4)(8)、4(3)(4)、7其余不用做第十一章第三节(重要)一、(重要)二、(重要)三、(理解)四、(不用看)p202定理1及其证明(重点看)p204例1、2不用做p204--205例3、4重点做p205平面上曲线积分与路径无关的条件(重点看)p206定理2记住结论,证明不用看p208定理3记住结论,证明不用看p209推论记住结论p210例5做p211例6不用做例7做p212--213曲线积分的基本定理不用看p213--215习题11-3只做3、5(2)(3)、8(2)(4)(7)其余不用做第十一章第四节(重要)一、(了解)二、(重要)p215--216对面积的曲面积分的概念与性质及计算法均要重点看p217--218例1、2重点做p219--220习题11--4只做3、4、5、6(1)其余均不用做第十一章第四节(重要)一、(了解)二、(重要)p215--216对面积的曲面积分的概念与性质及计算法均要重点看p217--218例1、2重点做p219--220习题11--4只做3、4、5、6(1)其余均不用做第十一章第五节(重要)一、(了解)二、(重要)三、(了解)p220对坐标的曲面积分(重点看)p220--228对坐标的曲面积分与性质计算法与两类曲面积分之间的联系均要重点看例1、2、3均要重点做习题11-5只做3(1)(2)(3)、4(1)(2)其余均不用做第十一章第六节高斯公式(重要)通量(不用看)与散度(了解)、一、(重要)二、(不用看)三、(了解)p229定理1及其证明重点看p231例1不用做例2重点做p232例3做p233定理2记住结论证明不用看p234例4不用做p235记住散度定义及公式p236例5做p236--237习题11--6只做1(2)(3)(5)、3(2)、4其余均不作第十一章第七节斯托克斯公式(重要)环流量(不用看)与旋度(了解)一、重要二、(不用看)三、(了解)p237定理1及其证明重点看p240例1、2重点做p241定理2只记住结论,证明不用看p242定理2只记住结论p243旋度记住定义与公式p244例4做p245习题11--7只做2(2)(3)(4)、3(2)、4(1)其余均不用做p246总习题十一只做1(1)(2)、2、3(1)(3)(5)(6)、4(1)(2)、7、9(1)(2).其余均不用做第十二章(1、数二不考,不用看.2、数一数三考大题、考难题的经典章节)第一节(一般考点)一、(了解)二、(考选择题章节)三、(不用看)p248常数项级数的概念(重点看)p250例1、2、3均要做记住例1的结论p251--253熟练记住五大基本性质p254柯西审敛原理不用看p254习题12--1只做2(3)(4)、3(1)(2)(3)、4(3)(5)其余不用做第十二章第二节(理解、重要)四、(不用看)p256--p261正项级数的审敛法定理1--6均要重点看例1--8均要做p262交错级数及其审敛法(重要)定理7及其证明重点看p263定理8及其证明重点看p265l例9做四、(p265--267)不用看p268习题12--2只做1(2)(4)(5)、2(2)(3)(4)、3(2)(3)(4)、4(2)(4)、5(2)(4)(5)其余均不用做第十二章第三节(重要、重点看)一、(了解)二、(最重要)三、(乘或除不用看)p271定理1阿贝尔定理及其证明重点看p272定理2及其证明重点看p273--274例1--5均做p276幂级数的和函数的性质要熟练记住例6做(重点做)p277习题12--3只做1(2)(4)(6)(7)(8)、2(1)(3)其余均不用做第十二章第四节(数一相对于数三,本节更重要)p278--279定理及其证明重点看p280--285例1--6均要做公式(1)到(11)必须牢记其中p278的公式(4)最重要p285习题12--4只做2(2)(4)(6)、4、6其余均不用做p285--302第五节、第六节(不用看)第十二章第七节(数三不用看,数一了解)一、(不用看)p305公式(6)重要、牢记p306定理重要例1做p307例2做p309例3不做p311例4、5做p313例6做p315习题12--7只做2(2)、3、4、5其余均不用做第十二章第八节(了解,数三不用看)p317(6)记住公式,证明不用看例1做p318例2不用做p319傅里叶级数的复数形式(不用看)p322习题12--8只做1(2)(3)、2(2)其余不用做p322--323总习题十二全做,且全部重点做其中11、12只有数一做线代部分(配同济5版)第一章行列式(行列式很少单独考大题,但考大题必然会用到行列式)第一节(了解)第二节(了解)第三节(了解)p6从中间偏上一行“仿比,可以把行列式...情形”到p7上第三行(例5上面)可以不用看p7例6证明不用看,记住上下三角行列式即可四、(不用看)五、(理解)p9行列式性质1证明不用看只需举例说明p10......2............p11中间从“例如以数k...”到“以上诸性质请读者证明之”可以不用看p12例8经典例题p14例10证明不用看,记住结论即可p15例11不用做六、(理解)p16中间偏下引理及其证明不用看p17记住定理3,证明不用看p18例12证明不用看,只需记住范德蒙德行列式p19中间偏下,定理3的推论证明好好看一下p21例13经典例题七、(理解,考大题有时会用到)p22例14仔细算一下p23例15可以不用做p25--28习题一1(1)(2)、2(2)(5)、3、4(2)(4)、5(重点做一下)、6(2)(3)、8(1)(2)(3)、9(重点做,经典习题)、10(2)、12(重点做)线代第二章(考小题为主,但毫无疑问考大题必然会用到矩阵及其运算)第一节、(了解)p30从例1到p31倒数第三行“对应n阶方阵”以上可以不用看p32可以不用看第二节(理解)p34定义4上面的均不用看(知道法则即可)p37中从第五行“上节例1中..”到p38倒数第四行“等式得证”均可以不用看p40例8经典例题p41例9经典结论务必会证明p42六、(不用看)第三节(理解)p45例12经典例题(提升计算能力)第四节、(正在变得越来越重要)p51例17经典例题p53克拉默法则的证明重点看一下p54--56习题二要做的题1(2)(3)(5)、2、4、5(重点做)、6--9、10(2)(3)(4)、11(2)(3)、12(2)、14--17、18--21(均重点做)、22、23--24(重点做)、26、27、28(1)线代第三章(重要,基本必考大题)第一节(理解)第二节(掌握,基本每年考大题都会用到的概念)p66第八行定义4重点看p69--70矩阵秩的性质(1)--(8)与例8、9均要重点看、重点做第三节(重要,每年必考)p73例10重点做p74例11不用做例12重点做p75例13重点做p77定理7.证明重点做p78--80习题三要做的题1(1)、2、3、4(1)、5--8、9(重点做)、10(2)、11--12(重点做)、13(4)、14(3)、15--16(重点做)、18--21(均要重点做)线代第四章(重要,每年必考,可能考大题,也可能考小题)第一节(重要,考大题为主)p81从倒数第8行“在解析几何中..”到p82正中间“当R(A)..”往上均可以不用看第二节(重要,小题为主,但有时会考大题,证明向量组线性无关)第三节(重要,必考的概念)第四节(重要,常考大题)p97例12重要例题p100例13、14、15经典例题p101例16重要例题第五节(数二、数三不考,数一只需了解)p106--110习题四1--3、4(1)、5--7、8(重点做)、9、10、11(2)、12(2)、13、14、15(重点做)、16--18、20(2)、21--22(重点做)、23、24(重点做)、25(经典结论,务必会证明)、26(1)、27(重点做)、28--29(只有数一做)、30、31、32(重点做)、33--38(只有数一做)线代第五章(重要,每年考大题的必考章节)第一节(理解,以考小题为主)p111从中间偏下“内机具有下列性质”到p112前三行均不用看p112定义2的性质证明不用看定理1的证明要看p115从第四行到例3上面的解析几何术语解释不用看第二节(大题必然会用到)p118例5不用做例6重点做p119例7不用做p120例8、9重点做p120--121定理2证明不用看p121例10重点例题第三节(重要,考大题为主)p123定理4重要定理第四节(重要,考大题为主)p124定理5的证明不用看定理6、7重点看p125例12重点做p126例13重点做第五节(重要,大小题均有可能考)p127到定义8上面不用看p130例14重点做第六节(了解)第七节(理解,大小题均有可能考)p133倒数2、3、4行即负定不用看p134--习题五1、2(2)(3)、4--5(重点做)、6(2)、7、8(重点做)、9--11、12--14(重点做)、15、16(重点做)、17、19(2)、20、21--24(重点做)、25(2)、26(3)、27(2)、28(2)、29(只有数一做)、30(重点做)、31(3)、32--34(重点做)。
考研数学二推荐教材高等数学同济

考研数学二推荐教材高等数学同济高等数学同济是一本备受考研数学二考生推荐的教材。
该教材以其全面、准确和易于理解的特点,成为广大考生备考数学二的首选教材。
下面我将从教材的内容、难度、习题和其他方面进行详细介绍。
高等数学同济的内容非常全面,涵盖了数学二考研的各个重要知识点。
教材以清晰的逻辑结构,将数学概念、定理和公式有机地串联起来,使考生能够更好地理解和掌握数学知识。
无论是微积分、数学分析、线性代数还是常微分方程等内容,在高等数学同济中都有详细的叙述和解释,让考生能够系统地学习这些知识。
同时,高等数学同济的难度控制得非常合理。
教材将内容难度由低到高地进行设置,使考生能够逐渐提高自己的数学水平。
在每个章节的开头,教材还特别设置了预备知识,为考生复习和学习提供了便利。
教材中的例题和习题也是经过精心挑选,能够循序渐进地帮助考生巩固和运用所学的知识。
高等数学同济的习题非常丰富,适合考生进行练习和巩固。
教材中的习题既包括基础习题,也包括拓展习题,能够满足不同层次考生的需求。
在每个章节的末尾,教材还附有详细的习题解答,供考生核对和参考,帮助考生更好地理解和掌握数学概念和解题方法。
除了以上几个方面,高等数学同济还有一些其他值得注意的特点。
首先,教材的表达清晰简洁,语句通顺自然,排版整洁美观,读起来非常流畅。
其次,教材中的示例和图表设计得简单明了,能够帮助考生更好地理解数学概念和解题思路。
最后,教材还附有许多考研数学二的经典题目和真题,供考生进行针对性的练习和复习,帮助考生更好地备战考试。
综上所述,高等数学同济是一本令考研数学二考生称赞的教材。
其内容全面、准确,难度适中,习题丰富,排版整洁美观,语句流畅。
如果你是一位考研数学二的考生,我强烈推荐你选择高等数学同济作为备考教材。
相信通过认真学习和练习,你一定能够在考研中取得优异的成绩!。
考研数学二各科目复习重点总结

考研数学二各科目复习重点总结考研数学二各科目复习重点总结我们在准备进行考研数学的二次备考的时候,需要做好备考的资料参考。
店铺为大家精心准备了考研数学二备考,欢迎大家前来阅读。
考研数学二各科目复习安排高数第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的`问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵考研数学:数二复习锦囊一、高等数学同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;二、线性代数数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;三、数学二不考概率与数理统计研究典型题型对于数二的来说,需要做大量的试题。
《高等数学》考研同济大学数学系2021考研真题库

《高等数学》考研同济大学数学系2021考研真题库第一部分 考研真题精选向量代数与空间解析几何填空题(把答案填在题中横线上)点(2,1,0)到平面3x +4y +5z =0的距离d =______。
[数一2006研]【答案】【解析】由点到平面的距离公式多元函数微分法及其应用一、选择题1设函数f (x ,y )在点(0,0)处可微,f (0,0)=0,,且非零向量d →与n →垂直,则( )。
[数一2020研]A .存在B .存在C .存在D .存在【答案】A 查看答案【解析】∵f (x ,y )在(0,0)处可微,f (0,0)=0,∴;即。
∵,∴存在。
∴选A项。
2关于函数给出下列结论①∂f/∂x|(0,0)=1②∂2f/∂x∂y|(0,0)=1③④正确的个数为()。
[数二2020研]A.4B.3C.2D.1【答案】B查看答案【解析】①因,故①正确。
②因,先求f x′(0,y),而当y≠0时,不存在;当y=0时,;综上可知,f x′(0,y)不存在。
故∂2f/∂x∂y|(0,0)不存在,因此②错误。
③当xy≠0时,,当(x,y)沿着y轴趋近于(0,0)点时,;当(x,y)沿着x轴趋近于(0,0)点时,;综上可知,,故③正确。
④当y=0时,;当y≠0时,,故,则,故④正确。
综上,正确个数为3。
故应选B。
3函数f (x ,y ,z )=x 2y +z 2在点(1,2,0)处沿向量u →=(1,2,2)的方向导数为( )。
[数一2017研] A .12 B .6 C .4 D .2【答案】D 查看答案【解析】计算方向余弦得:cos α=1/3,cos β=cos γ=2/3。
偏导数f x ′=2xy ,f y ′=x 2,f z ′=2z 。
得∂f/∂u =f x ′cos α+f y ′cos β+f z ′cos γ=4·(1/3)+1·(2/3)+0·(2/3)=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学部分(配同济6版)第一章函数与极限(必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.1 1、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9 均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28 例1、2、3均不用证P28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-2 1大题只需做(4)(6)(8)2--6均不用做第三节函数的极限(一般章节)一、函数极限的定义(了解)二、函数极限的性质(了解)P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3’4”完全不用看P37习题1--3 1--4 均做5--12 均不用做第四节无穷小与无穷大(重要)一、无穷小(重要)二、无穷大(了解)P40 例2不用做P41 定理2不用证P42习题1--4 1做2--5 不全做6 做7--8 不用做第五节极限运算法则(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1—5 1题只需做(3)(6)(7)(8)(10)(11)(13)(14) 2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明)p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限) p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1—7 1大题只做(1)(4)(6) 2全做3不用做4全做,其中(2)(3)(5)重点做第七节无穷小的比较(重要)p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节函数的连续性与间断点(基本必考小题)p60--64 要重点看第八节基本必出考题p64 习题1—8 1、2、3、4、5要做其中4、5要重点做6--8不用做第九节连续函数的运算与初等函数的连续性(了解)p66--67 定理3、4的证明均不用看p69 习题1—9 1、2要做3大题只做(3)——(6)4大题只做(4)——(6)5、6均要重点做第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一、有界性与最大值最小值定理(重要)二、零点定理与介值定理(重要)p72三、一致连续性(不用看)p74习题1—10 1、2、3、5要做,要会用5的结论。
4、6、7不用做p74 总习题一除了7、8、9(1)(3)(4)之外均要做其中要重点做的是3(1)(2)、5、11、14第二章导数与微分(小题必考章节)第一节导数概念(重要)一、引例(数三可只看切线问题举例)二、导数的定义(重难点,考的频率很高)三、导数的几何意义(重要)另:【数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四、函数的可导性与连续性关系(要会证明,重要)p79 导数的定义要重点掌握,基本必出考题p81--82 例1--例6 认真做以便真正掌握导数的定义p85 可导性与连续性的关系要会证明)p86 习题2--1 不用做的是1、2、9(1)--(6)、10、12、13、14其余都要做其中重点做的是6、7、8 、16、18、19第二节函数的求导法则(考小题)四、基本求导法则与求导公式(要非常熟)p88--89 (1)(2)(3)的证明均不用看p89 例1 不用做p90 定理2的证明要理解p91--92 例6--8重点做p92 定理3证明不用看p96 例7不用做p97 习题2—2 2题(1)(5)(7)(10)、3(1)、4、12均不用做其余全做其中13、14要重点做第三节高阶导数(重要,考的可能性大)p100 例3不用做p103 习题2—3 5、6、7、11均不用做,其余全做!其中4、12要重点做第四节隐函数及由参数方程所确定的函数的导数相关变化率(考小题)p107--110 由参数方程所确定的函数的导数数三不用看p111三、相关变化率(不用看)p111 习题2—4 1大题(1)(4)、3(1)(2)、9--12均不用做数三5--8也不用做其中4重点做第五节函数的微分(考小题)p119四、微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲均不作要求)习题2—5 5--12均不用做其他的全做p125 总习题二4、10、15--18均不用做,其余全做!其中2、3、6、7、14要重点做!数三不用做12、13第三章微分中值定理与导数的应用(考大题难题经典章节,绝对重点章节)第一节微分中值定理(最重要,与中值定理应用有关的证明题)一、罗尔定理(要会证)二、拉格朗日中值定理(要会证)三、(柯西中值定理(要会证)另外,要会证明费马定理p128--133 费马定理罗尔定理拉格朗日中值定理柯西中值定理一定要会独立证明,极其重要p134 习题3--1 除13、15不用做,其余全部【重点】做第二节洛必达法则(重要,基本必然要考)p134--135 洛必达法则要会证明习题3--2习题全做其中1、(1)(5)(10)(12)(15)(16)、3、4要重点做第三节泰勒公式(掌握其应用,可以不用证明公式其本身)p140--141 泰勒公式的证明不用看p145 习题3--38、9不用做,其余全做,其中,10 (1)(2)(3)要重点做第四节函数的单调性与曲线的凹凸性(考小题)p152 习题3--43(1)(2)(5)、5(1)(2)、8(1)(2)、9(1)(3)(5)、10(2)不用做,其余全做,重点做3(3)(6)(8)、4、5(3)(5)、6、13、15 第五节函数的极值与最大值最小值(考小题为主)p160 例5不用做p161 例6不用做p162 例7不用做p162 习题3--51(2)(3)(6)(9)、8--16均不用做,其余全做第六节函数图形的描绘(重要基础章节)p169 习题3--61 不用做2--5都要做第七节曲率(了解,只有数一数二考,数三不用看)一、弧微分(不用看)二、曲率及其计算公式(了解)三、曲率园与曲率半径(了解)p175四、(不用看)p177 习题3--7数三均不用做数一数二只需做1--6第八节方程的近似解(只要有近似,考研不考,不用看)p182 总习题三数一、数二全做数三可不用做其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第四章不定积分(重要、相对于数一、数三,数二考大题的可能性更大)第一节不定积分的概念与性质(重要)一、原函数与不定积分的概念(理解)二、基本积分表(会背,且熟练准确)三、不定积分的性质(理解)p186 例4不用做p188--189 基本积分表一定要记得熟练、准确p192 习题4--12(1)--(4)(6)(7)(9)(10)(11)(16)、3、4、6均不用做其余全做第二节换元积分法(重要,其中第二类换元法更加重要)p207 习题4--21、2(1)(2)(3)(8)(9)(10)(13)(25)均不用做,其余全做第三节分部积分法(考研必考)p212 习题4--3 全做(分部积分法极其重要)第四节有理函数的积分(重要)p218 习题4--4 全做第五节积分表的应用(不用看)p221 总习题四全做第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一、定积分问题举例(了解,其中变速直线运动的路程,数三不用看)二、定积分定义(理解)三、定积分的近似计算(不用看)四、定积分的性质(理解)性质1--7要理解,且能熟练应用,其中性质7最重要,要会独立证明p234 习题5--11、2、3、6、8、9、10均不用做,其余全部做,且重点做5、11、12第二节微积分基本公式(重要)一、变速直线运动中的位置……的联系(了解,数三不用看)二、积分上限的函数极其导数(极其重要,要会证明)三、牛顿--莱布尼茨公式(重要、要会证明)p237 定理1 ,要求会独立证明,极其重要p239 定理3 要求会独立证明p241 例5不用做例6 经典例题,极其重要,记住结论p243 习题5--26(1)(2)(4)--(7)(9)、7、8均不用做,其余全做,其中【数三】2不用做需要重点做的为9(2)、10--13 第三节定积分的换元法和分部积分法(重要,分部积分法更重要)p247--249 例5、6、7经典例题,重点做,并记住其相应结论p252 例12 经典例题,记住结论p253 习题5--31(1)(2)(3)(6)(12)(14)(15)(16)(21)(22)、7(1)(3)(8)(9)不用做,其余全部做,且重点做1(4)(7)(17)(18)(25)(26)、2、6、7(7)(10)(12)(13)第四节反常积分(考小题)p260 习题5--4全做,重点做1(4)、3 。
3题为经典公式,一定发要熟记第五节(不用看)【注】考纲不做要求,最好记住F(伽马,打不出来那个)函数的部分性质,可能给解题带来方便,可参考汤家凤视频)p268 总习题五1(3)、2(3)(4)(5)、15、16均不用做其余全部做其中,重点做的是3、5、7、8、9、10(1)(2)(3)(8)(9)(10)、13、14、17 第六章定积分的应用(考小题)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一、平面图形的面积p276--277 极坐标情形只有数一数二看数三不用看二、体积(数三只看旋转体的体积)p280--281 平行截面面积为已知的立体体积只有数一数二看三、平面曲线的弧长(数三不用看,数一数二记住公式即可)习题6--2数一全做数二21--30 不用做数三5、6、7、8、15(4)、17、18、21--30 不用做第三节定积分在物理学上的应用(数三不用看,数一数二了解)p291--292 习题6.3只有数一数二做数三不用做p292--293 总习题六数一全做数二6 不做数三只需做3、4、5第七章微分方程(本章对于数二相对最重要)第一节微分方程的基本概念(了解)p294 例2数三不用看p298 习题7--1只需做1(3)(4)、2(2)(4)、3(2)、4(2)(3)、5第二节可分离变量的微分方程(理解)p301--304 例2、3、4只有数一数二看,数三不用看p304 习题7--2只做1、2第三节齐次方程(理解)二、可化为齐次的方程(不用看)p306 例2--p309 均不用看p309 习题7--31只做(1)(5)(6)2只做(2)3、4不用做第四节一阶线性微分方程(重要,熟记公式)p312 例2 不用看p314伯努利方程只有数一看p315 习题7--41只做(3)(5)(8)(10)、2只做(2)(3)、3做4--7均不用做、8只有数一做第五节可降阶的高阶微分方程(只有数一数二考,理解)p317 例2 不用看p319 例4 不用做p321 例6不用做p316--p323 数三均不用看p323 习题7--5(数三不用做)数一数二只做1(3)(4)(5)(10)、2(1)(2)(6)3、4不用做第六节高阶线性微分方程(理解)一、二阶线性微分方程举例(不用看)二、线性微分方程的解的结构(重要)三、常数变易法(不用看)p323--324 二阶线性微分方程举例不用看p325--328 定理1、2、3、4重点看p328--330 常数变易法不用看p331 习题7--6只做1(3)(4)(6)(7)(10)、3、4(1)(5)(6)第七节常系数齐次线性微分方程第八节常系数非齐次线性微分方程(最重要,考大题备选章节)p335 例4不用做p336--338 例5不用做习题7--7只做1(1)(4)(7)(9)(10)、2(1)(2)(4)p346 例5不用看p347 习题7--8只做1(2)(4)(5)(6)(9)(10)、2(3)(4)、6 其中6重点做第九节欧拉方程(只有数一考,理解)p348--349 欧拉方程只有数一看p349 习题7--9数一只做(5)(8)第十节常系数线性微分方程组解法举例(不用看)p353 总习题七数一做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7、8、10数二做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7数三做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7 第八章空间解析几何与向量代数(只有数一考,考小题,了解)(本章只有数一考,单独命题以考小题为主,但数一特有的绝对重要考点,曲线曲面积分要以本章为基础,建议数一同学好好复习本章)本章需要数一多加注意的考点有:曲面方程与空间曲线方程。