板翅式换热器

合集下载

板翅式换热器 标准

板翅式换热器 标准

板翅式换热器标准
板翅式换热器是一种常用的换热设备,广泛应用于化工、电力、冶金、石油、
造纸等工业领域。

它具有结构简单、换热效率高、占地面积小等优点,因此备受青睐。

本文将从板翅式换热器的结构特点、工作原理、性能参数等方面进行详细介绍,以便更好地理解和应用这一设备。

首先,板翅式换热器的结构特点主要包括换热板、翅片、密封垫等组成部分。

其中,换热板是整个换热器的核心部件,其表面布满了翅片,通过翅片的加热或冷却来实现换热过程。

而密封垫则起到密封作用,防止介质泄漏。

整个结构设计紧凑,占地面积小,适用于空间有限的场合。

其次,板翅式换热器的工作原理是通过翅片的加热或冷却来实现换热过程。


热介质流经换热板上的翅片时,翅片吸收热量,将热量传递给冷介质,从而实现热量的传递。

而冷介质则在换热板的另一侧流动,吸收热量后被加热,实现冷却或加热的目的。

这种换热方式有效利用了换热板表面的翅片,换热效率高。

此外,板翅式换热器的性能参数包括换热面积、换热系数、压降等。

换热面积
是影响换热效果的重要参数,一般来说,换热面积越大,换热效果越好。

换热系数是衡量换热器性能的重要指标,它直接影响到换热器的换热效率。

而压降则是换热器在工作过程中需要克服的阻力,影响着设备的运行稳定性。

综上所述,板翅式换热器作为一种常用的换热设备,在工业生产中发挥着重要
作用。

通过本文的介绍,相信大家对板翅式换热器的结构特点、工作原理、性能参数有了更深入的了解,这对于正确使用和维护板翅式换热器具有重要意义。

希望本文能够帮助大家更好地应用板翅式换热器,提高生产效率,实现经济效益。

板翅式换热器介绍

板翅式换热器介绍
• 铝的化学性能较活泼,与氧的亲和力很强。常温空气中, 铝与氧结合会生成致密的AL2O3薄膜,厚度可达0.1μm。该 氧化膜非常致密,其熔点也高达2050℃,远远超过了铝合 金的熔化温度;同时,它还会阻碍金属之间的良好结合, 易形成夹渣和气孔,因此铝合金的焊前处理和在加热状态 下防止或减少氧化膜的形成非常重要。所以在钎焊过程重 尤其在钎料熔化的工艺段保持炉内较高的真空度,以及采 取工艺措施在钎焊过程中减少氧化膜的形成或去除氧化膜 就非常必要。
封条
2019/11/21
封条端部接口型式(纵向)
二、结构及特点
隔板
1、组成:金属复合板 2、作用: (1)分隔流体 (2)复合钎料 它在母体金属表面覆盖有一层钎料合金(Al-SiMg),在钎焊时合金熔化而使翅片、封条与金属 平板焊接成一体。 3、常用隔板一般厚1mm~2mm;
2019/11/21
二、结构及特点
四川空分设备(集团)有限责任公司
2019/11/21
1
主要内容
板翅式换热器的原理
结构和特点
设计、制造过程
生产设备
使用场合、国内外产品简单情况
2019/11/21
2
一、原理
名称:(铝制)板翅式换热器 或 铝制板 翅式热交换器(NB/T47006-2009)
作用:为冷、热流体的换热提供场所。 常用于空分装置中,现在也多用于液 化装置等其他场合。
氧氮液化装置
氧液化器 氮液化器 过冷器
2019/11/21
61
2019/11/21
62
其他应用场合
天然气处理装置 天然气液化装置 石化产品(例如乙烯装置) 致冷系统(如氟里昂冷却器、空调的油散热器) 工程设备(油散热器)

板翅式换热器

板翅式换热器
1942年, 美国的诺利斯首先进行了平直翅片、锯齿翅片、波纹翅片、钉状翅片的传热机理研究, 找出几种主 要翅片的摩擦因子(f), 传热因子(j)与雷诺数(Re)的关系, 为以后的研究与设计奠定了基础。
1947年美国海军研究署、船舶局、航空局合作在斯坦福大学拟定了系统的研究计划并扩大了研究范围。
板翅式换热器发展中另一方面是制造工艺, 对于结构复杂、隔板和翅片又很薄的铝合金钎焊工艺掌握是在经 历了一段相当漫长又曲折过程, 在突破许多关键技术后才达到今天的水平。现在国外板翅式换热器最高设计压力 可达10MPa以上, 最大芯体尺寸(L×W×H)6000~7000×1200×1200mm, 重达10吨以上, 可以有十多种流体同 时换热。
冷凝器管板焊缝渗漏后, 企业通常利用传统补焊的方法进行修复, 管板内部易产生内应力, 且难以消除, 致 使其它换热器出现渗漏, 企业通过打压, 检验设备修复情况, 反复补焊、实验, 2~4人需要几天时间才能修复完 成, 使用几个月后管板焊缝再次出现腐蚀, 给企业带来人力、物力、财力的浪费, 生产成本的增加。
板翅式换热器
最先进的换热设备之一
01 简介
03 特点
目录
02 发展概况 04 结构
05 工作原理
07 应用
目录
06 制造与检验 08 故障处理
板翅式换热器, 通常由隔板、翅片、封条、导流片组成。在相邻两隔板间放置翅片、导流片以及封条组成一 夹层, 称为通道, 将这样的夹层根据流体的不同方式叠置起来, 钎焊成一整体便组成板束, 板束是板翅式换热器 的核心。
1、空气分离设备:空分设备的主换热器、过冷器、冷凝蒸发器等低温换热器采用板翅式换热器后可以节省设 备投资和安装费用,并降低单位能耗。
2、石油化工:板翅式换热器具有处理量大、分离效果好、能耗低等优点,已被用于乙烯深冷分离、合成氨氮 洗、天然气、油田气分离与液化等工艺过程。

板翅式热交换器-1th

板翅式热交换器-1th
特别适合于气体等传热性能差的流体间传热 空气强迫对流换热系数可达35-350W/(m2•℃) 油强迫强迫对流换热系数可达115-1745W/(m2•℃)
水沸腾时可达1745-35000W/(m2•℃)
板翅式热交换器 板翅式换热器特点
紧凑度高
翅片为0.2-0.3mm厚的铝合金材料,布置的很密,故
其是气侧)的场合
板翅式热交换器 ③多孔翅片
在平直翅片上冲出许多圆
孔或方孔而成
开孔率一般在5-10%之间,
孔径与孔距无一定关系, 排列有长方形、平行四边 形和正三角形三种
我国目前多采用ф2.15、
ф1.7,孔距为6.5mm、 3.25mm、正三角排列
板翅式热交换器
③多孔翅片 翅片上的孔使热边界层不 断破裂、更新,提高了传 热效果
坏热边界层十分有效
在压损相同的条件下,传
热系数要比平直翅片高 30%以上
有“高效能翅片”之称
板翅式热交换器 ②锯齿形翅片
锯齿形翅片的传热性能随
翅片切开长度而变化,切 开长度越短,其传热性能 越好,但压力降增加
在传热量相同的条件下,
其压力损失比相应的平直 翅片小
普遍用于需要强化传热(尤
金制造,故特别适用于空气分离和天然气分离, 其使用压力范围也很大
在重量上比管壳式轻约15 ~50%
板翅式热交换器 板翅式换热器特点
不足之处—流道狭小,易堵塞而增大压降
隔板和翅片由很薄的铝板制成,若腐蚀造成内部
串流,则很难找到漏的地方 沉积和堵塞的场合 热器
适用于介质干净、对铝不腐蚀、不易结垢、不易 良好耐腐蚀的聚四氟乙烯材料的非金属板翅式换 不锈钢板翅式
当参加换热的两种流体的换热系数相差悬殊时,

《板翅式换热器》课件

《板翅式换热器》课件

01
高效传热表面
研究新型的板翅式换热器表面材料和结构,以提高传热效率。
02
强化传热技术
探索新型的强化传热技术,如振动、旋转、超声波等,以减小传热热阻。
工业领域应用
板翅式换热器在石油、化工、制药等领域有广泛应用,市场前景广阔。
新能源领域应用
随着新能源产业的发展,板翅式换热器在太阳能、风能等领域的应用逐渐增多。
《板翅式换热器》PPT课件
目录
板翅式换热器简介板翅式换热器的应用板翅式换热器的设计与优化板翅式换热器的制造与维护板翅式换热器的发展趋势与展望
01
CHAPTER
板翅式换热器简介
板翅式换热器是一种高效、紧凑的换热设备,广泛应用于化工、石油、食品等领域。
定义
具有传热效率高、结构紧凑、轻巧、流体阻力小等优点,能够满足各种不同的换热需求。
CHAPTER
板翅式换热器的制造与维护
选择合适的材料,如不锈钢、铜等,确保质量合格。
准备原材料
对板片和翅片进行切割、清洗、加工,确保尺寸和形状符合设计要求。
加工板片和翅片
将板片和翅片按照设计要求进行组对,并进行焊接,确保结构牢固。
组对与焊接
对制造完成的换热器进行质量检测和性能试验,确保符合标准要求。
环保领域应用
随着环保意识的提高,板翅式换热器在废水处理、烟气治理等领域的应用逐渐受到关注。
03
02
01
新型材料与制造技术
研究新型的板翅式换热器材料和制造技术,以提高其性能和降低成本。
多场耦合传热机理
深入研究多场耦合下的传热机理,以提高板翅式换热器的传热性能。
系统优化与集成
研究板翅式换热器的系统优化与集成,以提高其整体性能和应用范围。

板翅式换热器

板翅式换热器

板翅式换热器板翅式换热器是一种常用的换热设备,它具有结构紧凑、传热效果好等优点,被广泛应用于各个工业领域。

本文将对板翅式换热器的原理、结构、工作原理以及应用领域进行详细介绍。

一、板翅式换热器的原理板翅式换热器的原理是通过金属板和金属翅片的组合,将热量从一个介质传递到另一个介质。

金属板由一系列成片组成,这些片之间通过焊接或铆接连接在一起,形成了一个通道。

金属翅片则被固定在金属板上,增加了传热表面积。

二、板翅式换热器的结构板翅式换热器主要由壳体、板束、进出口管道以及支撑结构等组成。

壳体是整个换热器的外壳,用于保护板束和管道。

板束则是由一系列并排固定的金属板和金属翅片组成,它们通过密封圈与壳体连接。

进出口管道用于介质的进出,支撑结构则用于支撑整个换热器的重量。

三、板翅式换热器的工作原理当介质1从进口管道进入板翅式换热器时,通过板束的通道,与介质2进行热量交换。

介质1的热量被传递到介质2,而介质2的热量则被传递到介质1。

这种热量交换是通过金属板和金属翅片的传导和对流来实现的。

热量传递的效果取决于板翅式换热器的传热面积、热传导系数和流体流速等因素。

四、板翅式换热器的应用领域板翅式换热器在各个工业领域都有广泛的应用。

首先,它被广泛应用于空调和制冷系统中。

空调和制冷系统需要将热量迅速从室内排出,以实现室内温度的调节。

板翅式换热器能够提供较大的传热面积和高效的传热效果,使空调和制冷系统更加高效。

此外,板翅式换热器还被广泛应用于化工、石油、电力等工业领域。

在化工领域,板翅式换热器可以用于各种工艺中热量的传递和回收,提高能量利用率。

在石油领域,板翅式换热器可以用于石油精炼过程中的热量交换,提高生产效率。

在电力领域,板翅式换热器可以用于发电过程中的冷却和回收余热,提高能源利用效率。

总之,板翅式换热器作为一种高效的换热设备,得到了广泛的应用。

它具有结构紧凑、传热效果好等优点,在空调、制冷、化工、石油、电力等多个工业领域都扮演着重要的角色。

板翅式换热器介绍剖析

板翅式换热器介绍剖析

板翅式换热器介绍剖析首先,板翅式换热器具有优良的换热效果。

内部的金属翅片可以增大传热面积,提高传热效率。

翅片的设计可以确保流体在内部的均匀分布,使热量能够充分传递。

因此,相比传统的管壳式换热器,板翅式换热器具有更好的换热效果和热传导效率。

其次,板翅式换热器具有较小的体积和重量。

由于翅片的设计,换热器的体积可以大大减小,从而节省了占地面积。

同时,由于采用了轻质材料,整个换热器的重量也比传统换热器轻。

这使得板翅式换热器在空间有限或有重量要求的场合中具备显著的优势。

另外,板翅式换热器的维护和清洁更加方便。

由于翅片的平面结构,清洗和维护工作变得更加容易。

不需要拆卸换热器,只需打开上部或侧边盖板就能进行清洗。

同时,由于翅片的设计,不容易产生堵塞现象,维护周期也大大延长。

此外,板翅式换热器还具有良好的耐腐蚀性能。

翅片和板状材料通常采用耐腐蚀的材料,如不锈钢、铝合金等,能够在各种腐蚀介质中长期稳定工作。

这使得板翅式换热器广泛应用于化工、石油、食品、制药等领域,适用于多种腐蚀介质的换热。

最后,板翅式换热器的热效率高。

由于翅片的设计,能够提供大量的换热面积,使热量能够高效传递。

翅片设计还可以减小翅片之间的间距,从而增加了换热器的传热能力。

这使得板翅式换热器在热过程中具有较高的热效率。

总的来说,板翅式换热器是一种高效、紧凑、方便维护和耐腐蚀的换热设备。

它在工业生产中具有广泛的应用价值,能够满足不同工艺和介质的换热需求。

随着技术的不断发展,板翅式换热器在热能利用方面的应用前景将更加广阔。

板翅式换热器

板翅式换热器

o T tw t
通过一次传热面的热量
Q1 F1 (t w T )
-壁面与流体间的给热系数,W/m2 • K
F1-次传热面积,m2;tW-隔板表面温度;T-流体温度,K
传热 计算
由于沿气流方向的翅片长度大大超过翅片厚度, 所以翅片的导热可以作为一维导热处理。
根据翅片表面温度分布曲线,两端温度最高等 于隔板表面温度tW ,而随着翅片与流体的对流给热, 温度不断降低,在翅片中部趋于流体温度T。
1 Fec 1 1 ( ) c h Feh oc
式中:
K h -对应于热流体通道的总传热系数,W/m2•K K c -对应于冷流体通道的总传热系数,W/m2•K
传热 计算
前两式中忽略了污垢热阻和隔板的导热热阻,考虑 以上因素后,可分别表示为:
Kh 1 1 1 Foh F Fh rh rc h Foc Fc F0
传热 计算
1)翅片壁面总效率:
板翅式换热器的总的传热量等于一次传热面和 二次传热面的传热量之和。 对于二股流换热器,当一个热通道和一个冷通 道间隔排列时,可以表达为:
Q F1 (t w T ) F2 f (t w T )
可以设想这样一个传热面 F0 F 1 F2 和综合的表 面效率 0 ,板翅式换热器的总传热方程式可以写成:
x F ,m2 x y
y F ,m2 n层通道的二次传热面积 F2 x y n层通道的总传热面积 F 2( x y) BLe n ,m2 s
三、传热计算
2 传热设计计算
(1) 翅片效率和翅片壁面总效率 1)翅片效率:翅片的实际传热量和理想的最大可能传热量之比
dx
δ
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板翅式换热器
同组人:张弘达18、张来超14
薛业成06、张太平02
引言:
板翅式换热器:通常由隔板、翅片、封条、导流片组成。

在相邻两隔板间放置翅片、导流片以及封条组成一夹层,称为通道,将这样的夹层根据流体的不同方式叠置起来,钎焊成一整体便组成板束,板束是板翅式换热器的核心。

--------张弘达
一、板翅式换热器的发展
二十世纪三十年代,板翅式换热器首先在航空工业上被采用,它结构紧凑、轻巧、传热效率高等特点引起了研究人员和设计工作者的兴趣。

随后在制冷、石油化工、空气分离、航空航天、动力机械、超导等工业部门得到广泛应用,被公认是高效新型换热器之一。

1942年,美国的诺利斯首先进行了平直翅片、锯齿翅片、波纹翅片、钉状翅片的传热机理研究,找出几种主要翅片的摩擦因子(f),传热因子(j)与雷诺数(Re)的关系,为以后的研究与设计奠定了基础。

1947年美国海军研究署、船舶局、航空局合作在斯坦福大学拟定了系统的研究计划并扩大了研究范围。

板翅式换热器发展中另一方面是制造工艺,对于结构复杂、隔板和翅片又很薄的铝合金钎焊工艺掌握是在经历了一段相当漫长又曲折过程,在突破许多关键技术后才达到今天的水平。

现在国外板翅式换热器最高设计压力可达10MPa以上,最大
芯体尺寸(L×W×H)6000~7000×1200×1200mm,重达10吨以上,可以有十多种流体同时换热。

我国是从20世纪60年代中期开始板翅式换热器试验研究,70年代初期自行开发成功,并首先在空分设备上得到应用。

90年代初,杭氧厂引进美国S.W公司大型真空钎焊炉和板翅式换热器制造技术,板翅式换热器生产在我国得到飞速发展。

现在已在空气分离、石油化工(乙烯、合成氨、天然气分离与液化)、动力机械及航天(神舟号飞船)等工业部门得到广泛应用。

并有部分出口国外(美国、加拿大等国)。

我国板翅式换热器目前的生产水平相当于国际上20世纪90年代中期水平。

杭氧现已开发有近50种不同型式和尺寸规格的翅片,可满足各种换热要求。

二、板翅式换热器特点
(1)传热效率高。

(2)结构紧凑,单位体积换热面积为管壳式换热器5倍以上,最大可达几十倍。

管壳式换热器一般为150~200m2/m3,而板翅式换热器因翅片具有扩展二次表面,使传热面积可达到1500~2500 m2/m3。

(3)轻巧、牢固。

铝材密度ρ为2.7g/cm3,而钢材为7.8g/cm3,铜材为8.9g/cm3。

(4)适应性大,可适用多种介质热交换。

在同一设备内可允许多达十多种介质之间热交换,可作气—气、气—液、液—液之间换热,亦可作冷凝和蒸发。

(5)经济性好。

由于结构紧凑、铝材又轻,降低了设备投资费。

(6)流道易堵塞,维修困难,所以介质要求清洁、干净。

三、板翅式换热器结构
(1)换热器基本元件
板翅式换热器的结构形式很多,但单元体结构基本相同,板式芯体由翅片、导流片、封条、隔板和侧板组成,在相邻两隔板之间放置翅片、导流片和封条,组成一通道,按设计要求对各通道进行不同叠积和适当排列,在600℃左右温度下经钎焊成一整体。

隔板主要用于传递热量和把介质分隔开来,也是承压主要元件。

压力越高,隔板越厚,厚度一般在0.8~2mm。

材料为3003 +Al-Si 合金。

封条在四周起密封和支撑作用,其高度与翅片等同,宽度按其承受压力有15、25、40mm等几种不同规格。

材料为3003 -H112。

导流片起流体的分配与汇集作用,常用于流体进出口,为多孔型且节距较大的翅片。

厚度一般为0.4~0.6mm,材料3003 -O。

侧板是换热器最外侧平板,主要起保护作用和便于换热器支架焊接,厚度一般在5~6mm,材料3003 -O。

翅片是换热器最基本元件,传热过程主要依靠翅片来完成,同时承担两隔板之间支撑作用。

尽管翅片很薄只有0.15~0.5mm,却能承受较高压力。

材料为3003-O。

翅片型式
翅片选择根据工作压力、流体特性、换热要求等因素来考虑。

一般放热系数大的场合(液体之间,相变)选用低而厚翅片,发挥翅片作用,有较高翅片效率;放热系数小场合(气体与气体)选用高而薄翅片,以增加传热面积来弥补放热系数不足。

常用翅片有平直、多孔、锯齿和波纹四种型式。

每种型式的翅片高度和节距不同,每一种形式又有多种规格。

平直翅片—放热系数和压力损失小,放热和流动摩擦特性与圆管相似。

多孔翅片—孔洞使热阻边界层不断发生断裂,提高传热性能,也有利于流体分配。

锯齿翅片—翅片间隔一定距离屡次被切断,并使之向流道突出,对促进湍流和破坏热阻十分有效,放热系数比平直翅片高30%以上。

又称高效翅片。

波纹翅片—增加流体扰动来提高传热性能,有较高承压能力。

(1)导流片的布置形式
导流片一般布置在翅片两端,使流体均匀分配和便于封头布置,导流片布置形式有以下类型,如下图所示。

(2)流道布置
板翅式换热器流道布置形式,根据不同操作条件可布置成顺流、逆流、错流、错逆流等多种形式。

逆流应用最普遍,顺流应用较少。

常用流道布置形式见上图。

四、换热器组合
由于工艺条件和设备限制,板翅式换热器的单元尺寸受到限制,所以在大型空分设备中换热器需要通过多个单元的串联或并联加以组合。

多个单元组合的时候,很重要的一个问题,就是要使流体在各
个单元中能够均匀分配,减小和防止偏流。

单元组合时,基本上有三种方式:对称形、对流形、并流形。

从均布观点尽量采用对称形,避免并流形。

同时由于各单元流体阻力可能不相等,组合时应注意阻力的匹配,工艺管道布置也需注意这点。

量化学介质的腐蚀,管板焊缝处经常出现渗漏,导致水和化工材料出现混合,生产工艺温度难以控制,致使生成其它产品,严重影响产品质量,降低产品等级。

冷凝器管板焊缝渗漏后,企业通常利用传统补焊的方法进行修复,管板内部易产生内应力,且难以消除,致使其它换热器出现渗漏,企业通过打压,检验设备修复情况,反复补焊、实验,2~4人需要几天时间才能修复完成,使用几个月后管板焊缝再次出现腐蚀,给企业带来人力、物力、财力的浪费,生产成本的增加。

通过福世蓝高分子复合材料的耐腐蚀性和抗冲刷性,通过提前对新换热器的保护,这样不仅有效治理了新换热器存在的焊缝和砂眼问题,更避免了使用后化学物质腐蚀换热器金属表面和焊接点,在以后的定期维修时,也可以涂抹福世蓝高分子复合材料来保护裸露的金属;即
使使用后出现了渗漏现象,也可以通过福世蓝技术及时修复,避免了长时间的堆焊维修影响生产。

正是由于此种精细化的管理,才使得换热器渗漏问题出现的概率大大降低,不仅降低了换热器的设备采购成本,更保证了产品质量、生产时间,提高了产品竞争力。

相关文档
最新文档