板翅式换热器的设计计算

合集下载

板换换热器计算公式

板换换热器计算公式

板换换热器计算公式板换换热器是一种常见的换热设备,广泛应用于化工、石油、食品、医药等行业。

它通过板式换热器内部的板片将两种流体进行换热,达到升温或降温的目的。

在工程实际中,需要对板换换热器进行计算和设计,以确保其换热效果和运行安全。

本文将介绍板换换热器的计算公式及其应用。

一、板换换热器的热传导计算。

板换换热器的热传导计算是指在给定的工况下,计算板换换热器内部的传热系数和传热面积。

其计算公式如下:1.传热系数的计算。

板换换热器的传热系数可以通过Nusselt数计算得到,Nusselt数的计算公式为:Nu = hL/k。

其中,Nu为Nusselt数,h为传热系数,L为板片间距,k为传热介质的导热系数。

通过该公式可以计算出板换换热器内部的传热系数。

2.传热面积的计算。

传热面积的计算是指在给定的工况下,计算板换换热器内部的传热面积。

传热面积的计算公式为:A = Q/(UΔT)。

其中,A为传热面积,Q为换热量,U为总传热系数,ΔT为温度差。

通过该公式可以计算出板换换热器内部的传热面积。

二、板换换热器的压降计算。

板换换热器的压降计算是指在给定的工况下,计算板换换热器内部的流体压降。

其计算公式如下:ΔP = f(ρv^2/2)。

其中,ΔP为压降,f为摩擦阻力系数,ρ为流体密度,v为流速。

通过该公式可以计算出板换换热器内部的流体压降。

三、板换换热器的换热面积计算。

板换换热器的换热面积计算是指在给定的工况下,计算板换换热器内部的换热面积。

其计算公式如下:A = (mCpΔT)/(UΔTm)。

其中,A为换热面积,m为质量流量,Cp为比热容,ΔT为温度差,U为总传热系数。

通过该公式可以计算出板换换热器内部的换热面积。

四、板换换热器的换热器表面积计算。

板换换热器的换热器表面积计算是指在给定的工况下,计算板换换热器内部的换热器表面积。

其计算公式如下:A = (mCpΔT)/(UΔTm)。

其中,A为换热器表面积,m为质量流量,Cp为比热容,ΔT为温度差,U为总传热系数。

板式换热器计算及公式

板式换热器计算及公式
(9)求Re,Nu
Re=W.de / ν
Nu=a1.Rea2.Pra3
(10)求a,K传热面积F
a=Nu.λ / de
K=1/ 1/ah+1/ac+γc+γc+δ/λ0
F=Q/K.Δtm.β
(11)由传热面积F求所需板片数NN
NN=F/ Fp+2
(12)若N<NN,做(8)。
(13)求压降Δp
Eu= a4.Rea5
α
对流换热系数
W/ m2℃
f
单通道截面积
m2
ν
运动粘度
m2/s
λ
介质导热系数
W/ m℃
Δp
阻力损失
Mpa
Eu
Eu =Δp/ρ. W2
无量纲
Re
雷诺数Re=W.de /ν
无量纲
de
当量直径
m
Nu
Nu =de.α / γ
无量纲
Pr
普朗特数
λ0
板片导热系数
W/ m℃
t
板厚
m
β
修正系数
h、c
热、冷介质角标
γP
(5)选择板型
若所有的板型选择完,则进行结果分析。
(6)由K值范围,计算板片数范围Nmin,Nmax
Nmin=Q/Kmax.Δtm.F P.β
Nmax=Q/Kmin.Δtm.F P.β
(7)取板片数N(Nmin≤N≤Nmax)
若N已达Nmax,做(5)。
(8)取N的流程组合形式,若组合形式取完则做(7)。
Δp= Eu.ρ.W2.ф
(14)若Δp>Δ允,做(8);
若Δp≤Δ允,记录结果 ,做(8)。
注:1.(1)、(2)、(3)根据已知条件的情况进行计算。

翅片式换热器计算

翅片式换热器计算
0.31369 m^2 197.9734073
3.25 m/s 1.1465 5.606430964 6.4277731 23.64301807 0.003290895 153.6100197 1.0194925 m^3/s 3670.173 m^3/h 17.10596081
换热量的计算 风侧换热量
求解tw 47.7
66.53893573 248.5431069 10.78591376 239.4472855
1948.854032
内螺纹修正系数
固定参数 固定参数 固定参数
总的换热量
假定
222.6884456 2.038985
风侧换热量
cp(kJ/(kg*K)) 1.005 1.005
λ×102(W/(m*K)) 2.67 2.76
设计基本参数 冷凝温度
盘管基本参数 管排数 每排管的管数量 每英寸的翅片数量 每根铜管的长度
换热器结构计算 传热管直径do 传热管壁厚δ 流动方向管间距s1 排间距s2 片厚δ 翅片间距Sf 翅片根部外沿直径db 每米翅片侧外表面积af 每米翅片间基管外表面积ab 每米翅片侧总表面积aof 铜管内径di 每米长管内面积ai 每米长管外面积ao 每米管平均直径处的表面积 肋化系数τ 肋通系数α 迎风风速w 净面比ε 最窄截面风速Wmax 空气侧表面传热系数 沿气流方向翅片长度b 当量直径de 雷诺系数Re b/de A c n m α0
C m ψ n λ α0
50 ℃
9 rows 19 条 13 FIN 0.65 m
0.009525 m 0.00035 m 0.0254 m 0.02200 m 0.000115 m 0.00195 m 0.009755 m 0.495457975 m^2 0.02882783 m^2 0.524285806 m^2 0.008825 m 0.027724555 m^2 0.0306307 m^2 0.0291706 18.91052215 20.64117345

板翅式换热器的设计

板翅式换热器的设计

Development of plate-fin heat exchangerAbstract:A technical development of developing, designing and manufacturing of plate-fin heat exchanger for petroleum and chemical engineering are described . The developmental succes of plate-fin heat exchanger of high-pressure increase s a complete ability of China s large plant of petroleum and chemical engineer ing ,and the use of China s plate-fin heat exchanger in impoted units. The produc t has been exported to U.S.A.It marks the advanced technical level of China s plate-fin heat exchanger in the world.Key words: plate-fin heat exchanger;calculation d esign; equal destribution of two phase-flowages; material;manufacture▲随着我国内陆和沿海油田开发,进入70年代以来,我国石油化学工业得到迅速发展,先后引进多套乙烯和合成氨大型装置,因而这些装置国产化也就提到议事日程,其中的板翅式换热器冷箱是成套装置国产化关键设备之一。

乙烯深冷分离、合成氨氮洗和油田气回收中的冷箱,是由多个板翅式换热器用管道连接并组装在一起放入箱体内,以珠光砂填充作绝热材料组装而成。

概述板翅式换热器芯体零件的强度计算

概述板翅式换热器芯体零件的强度计算

概述板翅式换热器芯体零件的强度计算各种在一定温度、压力条件下进行的紧凑式换热器,均应能满足一定的强度要求。

我国两个主要的有关国家标准“钢制压力容器”GB/T150和“钢制管壳式换热器”GB/T151都是针对钢制设备制订的。

其中许多计算方法与美国ASME锅炉及压力容器规范一致或相似。

绝大多数板翅式换热器由铝合金制成,其它类型紧凑式换热器也不局限只用钢材制造。

从原则上讲,由铝合金制成的受压构件的强度完全可以采用钢制压力容器规范上所规定的方法来计算或校核。

1 理论分析通常情况下,换热器的工作压力并不是很高,一般都在低压条件下即0.3~0.7MPa下工作,因此,换热器芯体和封头的设计主要是散热性能和安装要求的设计,一般不进行机械强度的设计。

但是,如果换热器工作在高压或是交变压力的环境下,那么,对换热器芯体和封头的机械强度的设计就不容忽略了,这是因为这两种部件不仅承受着系统工作所带来的内压,而且,封头还会承受与系统安装时接管所带来的外部负荷。

对于可逆式的换热器,其工作时由于流通通道会频繁的进行切换,从而引起了压力的交变,因此,在设计换热器芯体、封头和其他辅助部件时就必须考虑到疲劳效应。

因此,根据“ASME”中的“检查和检验”部分的规定,如果没有合适的强度计算的公式时,可以采用以下规定的任何一种方法进行强度的计算。

一是如果在设计换热器之前没有进行强度计算,那么,在换热器样件生产出来后,应对需要进行强度验算的部件内部通以5倍于设计压力的压缩空气进行强度的试验,如果部件没有产生任何的变形或撕裂等影响产品使用的破坏现象,就证明其强度试验符合设计的要求。

二是在设计换热器的初级阶段就进行换热器的强度计算的时候,如果所选换热器的材料的最小屈服强度σ0.2和最小抗拉强度σb的比值小于0.626时,那么就按照以下的方法进行强度的计算。

设计压力:主机厂规定的换热器的正常工作压力、1.1倍的常用压力、换热器的最高工作压力,取三者之中较大者。

翅片式换热器计算

翅片式换热器计算
1.186 -0.222 0.2225 0.569 0.0276 472.2718053
ቤተ መጻሕፍቲ ባይዱ凝器进出口空气参数 Q0 系数φ0 Qk 室外干球温度ta1 进出口温差 出风温度ta2
空气平均温度
对数平均温差θm 比热容Cpa 运动粘度ν 热导率 密度ρ 冷凝器外表面效率 铝翅片热导率 肋片当量高度h 翅片特性参数m 翅片效率ηf 冷凝器外表面效率ηo 管内换热系数 物性集合系数B 传热系数 总传热系数 r0 rb 铜管导热率 第一系数 第二系数 第三系数 Ko 传热面积Aof 换热量
0.31369 m^2 197.9734073
3.25 m/s 1.1465 5.606430964 6.4277731 23.64301807 0.003290895 153.6100197 1.0194925 m^3/s 3670.173 m^3/h 17.10596081
换热量的计算 风侧换热量
a*106(m2/s) 22.9 24.3
μ*106(kg/(m*s)) 18.6 19.1
ν*106(m2/s) 16
16.96
Pr
0.701 0.699
计算风速 迎风面积 翅片宽度b 假定风速 35度时空气密度ρa 最窄截面风速Wmax ρa*Wmax (ρa*Wmax)1.7 最窄截面当量直径 静压 单片盘管单元的风量 风机风量 校核气温差
15 1.318 19.77
35 ℃ 19 ℃ 16 ℃ 25.5 ℃ -23.22 ℃ 1.005 0.000015568 0.026295 1.1465
3.25 m/s 0.579691433 5.606430964 m/s
0.197973407 m 0.003290895 m 1185.134493 60.15792878 0.010278544 1.075567722 0.84704233 -0.185189241 16.60481175 21.91835151

板翅式换热器的设计

板翅式换热器的设计
氦气检漏仪
测试设备爆破试验台
测试设备冷热冲击试验台
冷热冲击试验台
测试设备脉冲试验台 脉冲试验台
0~3,0-50
测试设备风洞试验
风洞试验
§ 板翅式换热器的计算
换热器的计算分二种情况: 1.设计计算:设计一个新的换热器,以确 定所需的换热面积。客户提供的要求越细, 反复修改的次数会越少,所设计的结果就 会越接近客户的要求。 2.校核计算:对己有或己选定了换热面积 的换热器,根据所提供的参数要求,核算 它是否能满足相应的参数要求。
制造过程包括零件准备、板束组装、钎焊和封 头接管氩弧焊接等工序。
工艺过程如下图所示。
生产流程(1)
生产流程(2)
生产流程(3)
生产设备
先进的真空 钎焊设备
生产设备
翅片冲压
剪板
生产设备
数控加工
自动焊机
清洗()
装配、焊接、检验 、、
§ 板翅式换热器的测试
测试试验气密性试验
测试设备氦气检漏仪
设计计算例子
校核计算例子
客户需要提供的参数如下表:
提供客户计算书的格式
Thank you!
二、 板翅式换热器应用
空气分离装置 可逆式换热器,冷凝蒸发器,液化器, 液氮和液态空气过冷器;
石油化工 在天然气的液化、分离装置,及合成氨工 业中逐步获得应用;
动力机械 内燃机车散热器,汽车散热器、挖掘机 循环油冷却器和压缩机空冷器、油冷器,动力传动液 压系统油散热器 原子能和国防工业 氢液化器和氮液化器。
机车水冷式中冷器
风冷式换热器
压缩机风冷式油、气换热器
工程机械风冷式油换热器 风冷式气冷却器
液压传动液压油冷却器
空分主换热器

板翅散热器性能计算报告

板翅散热器性能计算报告

空气—水热交换器性能计算报告前言:空气-水热交换器利用风扇驱动环境空气来冷却系统内的乙二醇-水混合液。

根据GE公司提供的参数,本文计算了该板翅式热交换器(结构尺寸最大为879mm ×460mm×58mm)的换热性能和流阻。

1 技术参数和技术要求1.1 技术参数要求热交换器热边出口温度60℃,冷边空气入口温度取45℃。

热边:乙二醇-水混合液,t1//=60℃ G1=37.85L/min(10gpm)冷边:环境空气,t2/=45℃ G2=0.85m3/s(1800ft3/min)1.2 技术要求换热量Q≥11kW,热边流阻不大于8.72kPa, 冷边流阻不大于74.7Pa。

2 计算数学模型分析该热交换器的计算,实际上是在结构尺寸基本给定情况下的校核计算。

根据已知的资料,该热交换器为热边两流程、冷边单流程纯叉流热交换器,去掉必要的结构尺寸,其芯体尺寸为750×396×58,如图1(a)所示。

这可看作是两个完全相同,热容比C*相等的的单程叉流热交换器芯体的组合,可折算为一个如图1(b)所示芯体进行计算。

L 1=1500mm L2=58mm Ln=198mm 隔板厚度δZU=0.4mm,热边封条宽度B1=4mm,冷边封条宽度B2=6mm。

图1 芯体示意图3 设计计算设计计算由热交换器的热力性能计算和流体阻力计算两部分组成。

3.1 热力性能计算热边(乙二醇-水混合液边)采用矩形锯齿形波纹板,波纹板的结构示意图见图2a,数据如下:b 1=3.5mm h1=3mm 切开长度ls=5mm δ1=0.15mm图2a 矩形锯齿波纹板示意图冷边(空气边)采用百叶窗式波纹板,波纹板的结构示意图见图2b,数据如下:p=4.7mm 2l0=9.3mm δ2=0.10mm百叶窗节距lp =1.1mm 百叶窗高度lh=0.54mm 百叶窗长度lj=7mm图2b 百叶窗式波纹板示意图计算热边层数N 1、冷边层数N 2由热交换器芯体结构可知,冷边层数N 2要比热边层数N 1多一层,即N 2=N 1+1,取隔板厚度为δZU =0.4mm ,(h 1+2×δZU )N 1+2l 0N 2=L n(3+2×0.4)N 1+9.3(N 1+1)=198 N 1=14 N 2=15则实际L n /=(3+2×0.4)×14+9.3×15=192.7 3.1.1 计算当量直径d e乙二醇-水边de 1:X 1=b 1-δ1=3.5-0.15=3.35mm Y 1=h 1-δ1=3-0.15=2.85mm则 d e1=2X 1Y 1/(X 1+Y 1)=2×3.35×2.85/(3.35+2.85) =3.080×10-3m 空气边d e2:21波高实长l =()2222027.43.9212221⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+P l =4.796mm则 d e2=4(Pl 0-2l δ2)/(P+4l )=4×(4.7×4.65-2×4.796×0.10)/(4.7+4×4.796) =3.499×10-3m 3.1.2 计算流体流通面积F fF 1f =N 1X 1Y 1(L 2-2×B 1)/b 1 (应考虑热边封条宽度) =14×3.35×2.85×(58-2×4)/3.5 =0.1910×10-2m 2F 2f =N 2(L 1-2×B 2)(2l 0-4l δL /P ) (应考虑冷边封条宽度) =15×(1500-2×6)(9.3-4×4.796×0.10/4.7) =0.1985m 23.1.3 计算迎风面积F yF 1y =L 2×L n /=58×192.7=0.0112m 2 F 2y =L 1×L n /=1500×192.7=0.2891m 23.1.4 计算孔度σσ1=F1f/F1y=0.1910×10-2/0.0112=0.171σ2=F2f/F2y=0.1983/0.2891=0.6873.1.5 共用主传热面积FzuF zu =2N1L1L2=2×14×1500×58=2.436m23.1.6 定性温度tf根据公式Q=Gm ·Cp·(t1/-t1//),其中:Q-要求的换热量,kcal/hGm-介质质量流量,kg/sCp-介质定压比热,kcal/(kg·℃)计算后取t1/=65℃ t2//=57℃则 tf1=(t1/+t1//)/2=62.5℃tf2=(t2/+t2//)/2=51℃3.1.7 查物性参数乙二醇-水边空气边C P1=0.8066kcal/(kg·℃) CP2=0.240kcal/(kg·℃)λ1=0.3975kcal/(m·h·℃)λ2=2.436×10-2kcal/(m·h·℃)ρ1=1.0325kg/L ρ2=1.0897kg/m3μ1=1.5255×10-4kg·s/m2μ2=2.005×10-6kg·s/m2Pr2=0.69783.1.8 水当量W,热容比C*,假设效率ηW 1=G1CP1=37.85L/min/60×1.0325kg/L×0.8066kcal/(kg·℃) =0.5254kcal/(s·℃)W 2=G2CP2=0.85m3/s×1.0897kg/m3×0.240kcal/(kg·℃) =0.2223kcal/(s·℃)C*=Wmin /Wmax=0.2223/0.5254 =0.4231则热交换器假设效率η0=456560652223.05254.0'2'1"1'1min1--⨯=--⋅ttttWW=0.59093.1.9 质量流速ωω1=G1/F1f=(37.85L/min×1.0325kg/L)/(60×0.1910×10-2m2) =341.01kg/m2·sω2=G2/F2f=0.85m3/s×1.0897kg/m3/(0.1985m2) =4.669kg/(m2·s)3.1.10 计算雷诺数Re、普郎特数PrRe1=ω1de1/(μ1g)=341.01kg/(m2.s)×3.080×10-3m/(1.5255×10-4kg.s/m2×9.81m/s2) =701.84Re2=ω2de2/(μ2g)=4.669kg/(m2.s)×3.50×10-3m/(2.005×10-6kg.s/m2×9.81m/s2) =830.82Pr1=μ1gCP1/λ1=(1.5255×10-4×9.81×0.8066)×3600/0.3975 =10.933.1.11 计算放热系数α和摩擦因子f乙二醇-水边为矩形锯齿形波纹板,根据资料[2]P173,对于Re≤1000,其准则方程适用于式(6-65)、(6-66):l 1/de1=1.623 a1*=b1/h1=1.167 de1=3.080 Re1=701.84f 1=7.661(l1/de1)-0.384a1*-0.092Re1-0.712=7.661×1.623-0.384×1.167-0.092×701.84-0.712 =0.0590j 1=0.483(l 1/de 1)-0.162a 1*-0.184Re 1-0.536=0.483×1.623-0.162×1.167-0.184×701.84-0.536 =0.0129则 α1=j 1ω1C P1/Pr 10.67 =0.0129×341.01×0.8066×3600/10.930.67=2581.17kcal/(m 2·h ·℃)空气边为百叶窗式波纹板,根据资料[3]P166,Davenport 公式:f 2=5.47Re 2P -0.72l h 0.37(l 2)0.23l P 0.2(ll j 2)0.89 (适用条件:70<Re 2=830.82<1000)=5.47×261.12-0.72×0.540.37×(2×4.796)0.23×1.10.2×(796.427⨯)0.89=0.1026j 2=0.249Re 2P -0.42l h 0.33()l 20.26(ll j 2)1.1 (适用条件:300<Re 2=830.82<4000==0.249×261.12-0.42×0.540.33×(2×4.796)0.26×(796.427⨯)1.1=0.0250式中Re 2P 以百叶窗的节距l P 为特征长度,即以l P 为当量直径:Re 2P =ω2l P /(μ2g)=4.669kg/(m 2.s)×1.1×10-3m/(2.005×10-6kg.s/m 2×9.81m/s 2) =261.12由努谢尔特数公式Nu=λαed 及柯尔朋(Colburn )公式j=Re Pr 31-Nu 得α2=313231222226978.082.8300250.010499.310436.2Pr Re d ----⨯⨯⨯⨯=∙j e λ =128.10kcal/(m 2·h ·℃)3.1.12 计算肋片效率乙二醇-水边为矩形锯齿形波纹板,计算m 时需考虑波纹板边缘暴露面积,由资料[2]P154式(6-15)(6-16):m 1=⎪⎭⎫ ⎝⎛+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-215.011015.018017.258121231111l f δδλα =443.77m -1l 1=3/2-0.15=1.35mmm 1l 1=473.77×1.35×10-3=0.599η1L =th(m 1l 1)/m 1l 1=th(0.659)/0.659=0.895空气边为百叶窗式波纹板,由资料[2]P154式(6-15)(6-16):m 2=3221010.018010.12822-⨯⨯⨯=δλαf =119.30m -1l 2=4.796-0.10=4.696mm m 2l 2=119.30×4.696×10-3=0.560η2L =th(m 2l 2)/m 2l 2=th(0.560)/0.560=0.907 3.1.13 肋片有效传热面积F LF 1L =2N 1(L 2-2B 1)L 1Y 1η1L /b 1 (应考虑冷边封条宽度) =2×14×(58-2×4)×1500×2.85×0.895/3.5 =1.5305m 2F 2L =N 2[(L 1-2B2)4lL 2×2/P]η2L (应考虑冷边封条宽度) =15×[58×(1500-2×6)×4×4.796×2/4.7]×0.907 =9.5852m 23.1.14 总有效传热面积F eF 1e =F zu +F 1L=2.436+1.5305=3.9665m 2 F 2e =F zu +F 2L=2.436+9.5852=12.0212m 2 3.1.15 计算KF 值,NTU 值 KF=0212.1210.1289665.317.25810212.1210.1289665.317.258122112211⨯+⨯⨯⨯⨯=+e e e e F F F F αααα=1338.58kcal/(h ·℃)NTU=KF/W min=1338.58kcal/(h ·℃)/(0.2223kcal/s ·℃×3600) =1.6733.1.16 计算效率η两边流体均不混合,按资料[2]P161式(6-35)计算ηi 值:ηi =1-exp {NTU 0.22[exp (-C *NTU 0.78)-1]/ C *}=1-exp {1.6730.22[exp (-0.4231×1.6730.78)-1]/0.4231} =0.71063.1.17 散热性能分析本文计算的效率值(0.7106)大于假设效率(0.5909)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档