量子点的制备及特性分析

量子点的制备及特性分析
量子点的制备及特性分析

班级:物理1201班

姓名:吴为伟

学号:20121800121

时间:2014年7月1日 ——量子点的制备及特性分析 大学物理实验报告

课题意义:

量子点是一种准零维半导体纳米晶体,其三个维度的尺寸都在几到几十纳米,外观恰似一极小的点状物,其内部电子在各方向的运动都受到限制,可以产生类似于原子的分立能级。量子点具有量子尺寸效应、量子限域效应以及表面效应等特殊效应。量子尺寸效应是指半导体量子点的带隙相对于体材料发生蓝移,并且随着量子点尺寸的减小,蓝移量增大,在光学性质方面引起吸收和发射光谱的蓝移现象:而且,相对于体材料,量子点还具有吸收和发光效率高的优点。量子点的这些有益光学特性使其在生物荧光标记、太阳能电池、发光二极管、激光器、探测器、量子计算机等新型光电子器件方面都具有非常重要的应用前景,成为各国科研人员研究的热点,并在多个学科中引起很大的反响。

实验目的:

本课题实验要求通过有机液相法制备CdS量子点、以及对其吸收和荧光光谱的测量,了解量子点的生长过程、吸收和荧光光谱基本原理和特点,以及量子尺寸效应的基础知识。

实验器材:

实验仪器:量子点制备设备一套、分析天平、离心机、吸收谱仪和荧光谱仪等。

化学试剂:硫粉(S)、氧化镉(CdO)、油酸(OA)、十八碳烯(ODE)、甲醇、正己烷、高纯氩气(Ar)等。

实验原理:

有机液相法

即以有机溶液为介质,以具有某些特殊性质的无机物和有机物作为反应原料,在适当的化学反应条件下合成纳米晶材料的方法。通常这些反应物、中间产物、生成物都是对水、空气敏感,在水溶液中不能稳定存在。最常用的方式是在无水无氧条件下的有机溶剂中进行的化学反应。通过改变反应温度、时间、反应物浓度、配体种类、含量等参数,可以制备出具有不同尺寸的纳米晶体。该方法制备的纳米晶体在尺寸和形貌上通常具有很好的单分散性,纳米晶质量高;而且,由于反应是在有机介质中进行,生成的纳米晶在有机溶剂中具有良好的分散性,非常有利于实际应用。

液相法生长纳米晶一般包括三个阶段:成核过程、生长过程和熟化过程。当溶质的量高于溶解度时,溶液过饱和,晶体就会从液体中析出,形成晶核,这就是成核过程。晶核的数量和成核速度是由溶液的过饱和度决定的。溶质从饱和溶液中运输到晶体表面,并按照晶体的结构重排,这就是生长过程。该过程主要是

在热力学和动力学平衡下进行。熟化过程就是大颗粒“吃”小颗粒的过程,它对于最终产品的形貌、尺寸和性质有着显著的影响。

实验步骤:

CdS量子点的制备:

1.S先驱体溶液的制备:用移液管量取ODE液体8mL,放入一个三口烧瓶A

中,以硫粉作为S源,准确称取硫粉0.032g(1mmol),加入到烧瓶A中。

将烧瓶A放置于制备仪器中,通入高纯氩气,快速搅拌并加热到200℃以上,使硫粉充分溶解于ODE中得到均一稳定的溶液,即为S先驱体溶液。

2.Cd先驱体溶液的制备:用移液管量取油酸液体2mL,放入另一个三口烧瓶

B中,以CdO粉末作为Cd源,准确称取CdO粉末0.0128g(0.1mmol),加入到烧瓶B中。将烧瓶B放置于制备仪器中,通入高纯氩气,快速搅拌并加热到200℃以上,使CdO粉末充分溶解于OA中,得到Cd先驱体溶液。

3.CdS量子点的制备:在200℃以上时用注射用针筒抽取烧瓶A中的S先驱体

溶液快速添加到烧瓶B中的Cd先驱体溶液去,在200℃,快速磁力搅拌下两种溶液发生反应,开始生成CdS:分别在反应1min、5min、10min、30min 后用注射用针筒量取反应液体3ml,快速加入到甲醇溶液中,静置时CdS量子点形成絮状沉淀,用高速离心机分离量子点,去掉上层清液后将CdS量子点沉淀重新分散到正己烷溶液中。

4.得到的CdS溶液呈现淡黄色,且有荧光。

特性分析:

1.量子点的发射光谱可以通过改变量子点的尺寸大小来控制。通过改变量子点

的尺寸和它的化学组成可以使其发射光谱覆盖整个可见光区。以CdTe量子为例,当它的粒径从2.5nm生长到4.0nm时,它们的发射波长可以从510nm 红移到660nm

2.量子点具有很好的光稳定性。量子点的荧光强度比最常用的有机荧光材料

“罗丹明6G”高20倍,它的稳定性更是“罗丹明6G”的100倍以上。因此,量子点可以对标记的物体进行长时间的观察,这也为研究细胞中生物分子之间长期相互作用提供了有力的工具。

3.量子点具有宽的激发谱和窄的发射谱。使用同一激发光源就可实现对不同粒

径的量子点进行同步检测,因而可用于多色标记,极大地促进了荧光标记在中的应用。而传统的有机荧光染料的激发光波长范围较窄,不同荧光染料通常需要多种波长的激发光来激发,这给实际的研究工作带来了很多不便。此外,量子点具有窄而对称的荧光发射峰,且无拖尾,多色量子点同时使用时不容易出现光谱交叠。

4.量子点具有较大的斯托克斯位移。量子点不同于有机染料的另一光学性质就

是宽大的斯托克斯位移,这样可以避免发射光谱与激发光谱的重叠,有利于

荧光光谱信号的检测。

5.生物相容性好。量子点经过各种化学修饰之后,可以进行特异性连接,其细

胞毒性低,对生物体危害小,可进行生物活体标记和检测。

6.量子点的荧光寿命长。有机荧光染料的荧光寿命一般仅为几纳秒(这与很多生

物样本的自发荧光衰减的时间相当)。而量子点的荧光寿命可持续数十纳秒(20ns一50ns),这使得当光激发后,大多数的自发荧光已经衰变,而量子点荧光仍然存在,此时即可得到无背景干扰的荧光信号。

物理效应:

量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观体材料的物理化学性质,在非线形光学、磁介质、催化、医药及功能材料等方面具有极为广阔的应用前景,同时将对生命科学和信息技术的持续发展以及物质领域的基础研究发生深刻的影响。

量子尺寸效应

通过控制量子点的形状、结构和尺寸,就可以方便地调节其能隙宽度、激子束缚能的大小以及激子的能量蓝移等电子状态。随着量子点尺寸的逐渐减小,量子点的光吸收谱出现蓝移现象。尺寸越小,则谱蓝移现象也越显著,这就是人所共知的量子尺寸效应。

表面效应

表面效应是指随着量子点的粒径减小,大部分原子位于量子点的表面,量子点的比表面积随粒径减小而增大。由于纳米颗粒大的比表面积,表面相原子数的增多,导致了表面原子的配位不足、不饱和键和悬键增多.使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。这种表面效应将引起纳米粒子大的表面能和高的活性。表面原子的活性不但引起纳米粒子表面原子输运和结构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。表面缺陷导致陷阱电子或空穴,它们反过来会影响量子点的发光性质、引起非线性光学效应。金属体材料通过光反射而呈现出各种特征颜色,由于表面效应和尺寸效应使纳米金属颗粒对光反射系数显著下降,通常低于1%,因而纳米金属颗粒一般呈黑色,粒径越小,颜色越深,即纳米颗粒的光吸收能力越强,呈现出宽频带强吸收谱。

介电限域效应

由于量子点与电子的De Broglie波长、相干波长及激子Bohr半径可比拟,电子局限在纳米空间,电子输运受到限制,电子平均自由程很短,电子的局域性和相干性增强,将引起量子限域效应。对于量子点,当粒径与Wannier激子Bohr 半径aB相当或更小时,处于强限域区,易形成激子,产生激子吸收带。随着粒

径的减小,激子带的吸收系数增加,出现激子强吸收。由于量子限域效应,激子的最低能量向高能方向移动即蓝移。最新的报道表面,日本NEC已成功地制备了量子点阵,在基底上沉积纳米岛状量子点阵列。当用激光照射量子点使之激励时,量子点发出蓝光,表明量子点确实具有关闭电子的功能的量子限域效应。当量子点的粒径大于Waboer激子Bohr半径岭时,处于弱限域区,此时不能形成激子,其光谱是由干带间跃迁的一系列线谱组成。

量子隧道效应

传统的功能材料和元件,其物理尺寸远大于电子自由程,所观测的是群电子输运行为,具有统计平均结果,所描述的性质主要是宏观物理量.当微电子器件进一步细微化时,必须要考虑量子隧道效应。100nm被认为是微电子技术发展的极限,原因是电子在纳米尺度空间中将有明显的波动性,其量子效应将起主要功能.电子在纳米尺度空间中运动,物理线度与电子自由程相当,载流子的输运过程将有明显电子的波动性,出现量子隧道效应,电子的能级是分立的.利用电子的量子效应制造的量子器件,要实现量子效应,要求在几个μm到几十个μm的微小区域形成纳米导电域。电子被“锁”在纳米导电区域,电子在纳米空间中显现出的波动性产生了量子限域效应。纳米导电区域之间形成薄薄的量子垫垒,当电压很低时,电子被限制在纳米尺度范围运动,升高电压可以使电子越过纳米势垒形成费米电子海,使体系变为导电.电子从一个量子阱穿越量子垫垒进入另一个量子阱就出现了量子隧道效应,这种绝缘到导电的临界效应是纳米有序阵列体系的特点。

库仑阻塞效应

当一个量子点与其所有相关电极的电容之和足够小的时候,只要有一个电子进入量子点,系统增加的静电能就会远大于电子热运动能力,这个静电能将阻止随后的第二个电子进入同一个量子点,这就是库仑阻塞效应。

制备方法:

高温熔融--淬冷法

高温熔融——淬冷法是一种传统的玻璃制备方法,具有工艺简单、价格低廉等特点。配比合适的化学原料经高温熔融-淬冷后,在经过两步热退火工艺可以值得量子点掺杂的玻璃。

有机金属法

有机金属法主要是采用在有机溶剂中能够稳定存在的金属有机化合物和某些具有特殊性质的无机物为反应原料,通过改变反应物浓度、反应温度等条件可以配置出不同尺寸的纳米微粒或纳米棒。

溶胶凝胶法

以无机盐或金属醇盐为先驱体,经水解缩聚过程凝胶化,而后进行相应处理可得到所需纳米颗粒,溶液PH值,溶液浓度,反应时间和温度是影响溶液、凝胶质量的主要因素。

热蒸发法

小结:

在制备CdS量子点中,用毒性较小的CdO作为镉源,用S粉作为硫源,环境友好、绿色的非极性溶剂ODE代替TOP作为反应的溶剂,OA作为溶剂溶解CdO,形成镉离子,此外油酸还可以作为生成的CdS量子点的表面包覆剂。较小的(大约19am)的Stock位移和相当窄的FWHM(25nm)都表明所获得的CdS量子点具有规整的表面和窄的尺寸分布。透射电镜测试表明所获得的CdS量子点具有很好的分散性和接近球形的形状。高分辨透射电镜图片上清楚的格子面证实了CdS量子点具有良好的结晶度。

量子点的制备及应用进展

龙源期刊网 https://www.360docs.net/doc/263714329.html, 量子点的制备及应用进展 作者:于潇张雪萍王才富倪柳松等 来源:《科技视界》2013年第29期 【摘要】本文分别从量子点的概念、特性、制备方法、表面修饰等方面对量子点进行了 描述及讨论,在此基础上,对量子点在生物传感器方面的应用进行了,最后分析了量子点生物传感器的存在的问题,对其未来发展趋势进行了展望。 【关键词】量子点;光学;生物传感器 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。国内外关于量子点传感器的研究非常广泛,例如在生命科学领域,可以用于基于荧光共振能量转移原理的荧光探针检测,可以用于荧光成像,生物芯片等;在半导体器件领域,量子点可以用于激光器,发光二极管、LED等。本文对量子点 的制备方法和应用领域及前景进行了初步讨论。 1 量子点的基本特性及其制备方法 1.1 量子点的特性及优势 量子点的基本特性有:量子尺寸效应、表面效应、量子限域效应、宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应,这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。 (2)量子点可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。正是由于量子点具有以上特性使其在生物识别及检测中具有潜在的应用前景,有望成为一类新型的生化探针和传感器的能量供体,因此备受关注。 1.2 量子点的制备方法 根据原料的不同分为无机合成路线和金属-有机物合成路线,两种合成方法各有利弊。

量子点qled深度解析

量子点QLED电视解析或成LED后又一背光革命 2014年12月04日 过去10年,液晶技术成为显示领域的唯一主宰,未来10年,被誉为次时代显示技术的OLED(Organic Light Emitting Diode,有机发光二极管)理应取缔液晶技术,成就一番霸业,就像当年液晶技术取缔体积庞大的CRT技术一样。然而,液晶技术并不愿坐以待毙,2015年将实现终极进化,如果您想知道什么才是液晶的“完美形态”,请不要错过这篇文章。 液晶是一种自身不能发光的物质,需借助要额外的光源才能工作,这一物理特性是无法改变的,因此液晶技术的“终极进化”自然需要从背光系统下手。液晶技术的背光系统主要经历了 CCFL(Cold Cathode Fluorescent Lamp,冷阴极荧光灯管)和 WLED(White Light Emitting Diode,白色发光二极管)两个阶段。 量子点QLED将液晶技术进化至“完美的终极形态”

2015年,液晶技术将迎来背光系统的“终极进化”——量子点QLED 技术,无论是性能还是功耗都有革命性的突破,然而,考虑到液晶技术先天物理特性完全处于劣势,量子点QLED背光极有可能是继CCFL 背光和WLED背光之后,液晶发展史上的最后一次革命,这也是我们将其定义为“终极进化”的原因。 2015年:三星将引领量子点QLED技术做强做大内幕可靠消息,电视领域的龙头老大,三星将会在2015年推出基于量子点QLED背光技术的液晶电视(意味着三星将无限期搁浅OLED电视计划),国产方面TCL最快年底就会上市量子点QLED电视产品,LG Display作为顶尖的液晶面板制造商,已经宣布量子点QLED 面板将会量产,此外还有京东方、华星光电等面板厂都会力挺量子

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

量子点的制备及特性分析

班级:物理1201班 姓名:吴为伟 学号:20121800121 时间:2014年7月1日 ——量子点的制备及特性分析 大学物理实验报告

课题意义: 量子点是一种准零维半导体纳米晶体,其三个维度的尺寸都在几到几十纳米,外观恰似一极小的点状物,其内部电子在各方向的运动都受到限制,可以产生类似于原子的分立能级。量子点具有量子尺寸效应、量子限域效应以及表面效应等特殊效应。量子尺寸效应是指半导体量子点的带隙相对于体材料发生蓝移,并且随着量子点尺寸的减小,蓝移量增大,在光学性质方面引起吸收和发射光谱的蓝移现象:而且,相对于体材料,量子点还具有吸收和发光效率高的优点。量子点的这些有益光学特性使其在生物荧光标记、太阳能电池、发光二极管、激光器、探测器、量子计算机等新型光电子器件方面都具有非常重要的应用前景,成为各国科研人员研究的热点,并在多个学科中引起很大的反响。 实验目的: 本课题实验要求通过有机液相法制备CdS量子点、以及对其吸收和荧光光谱的测量,了解量子点的生长过程、吸收和荧光光谱基本原理和特点,以及量子尺寸效应的基础知识。 实验器材: 实验仪器:量子点制备设备一套、分析天平、离心机、吸收谱仪和荧光谱仪等。 化学试剂:硫粉(S)、氧化镉(CdO)、油酸(OA)、十八碳烯(ODE)、甲醇、正己烷、高纯氩气(Ar)等。 实验原理: 有机液相法 即以有机溶液为介质,以具有某些特殊性质的无机物和有机物作为反应原料,在适当的化学反应条件下合成纳米晶材料的方法。通常这些反应物、中间产物、生成物都是对水、空气敏感,在水溶液中不能稳定存在。最常用的方式是在无水无氧条件下的有机溶剂中进行的化学反应。通过改变反应温度、时间、反应物浓度、配体种类、含量等参数,可以制备出具有不同尺寸的纳米晶体。该方法制备的纳米晶体在尺寸和形貌上通常具有很好的单分散性,纳米晶质量高;而且,由于反应是在有机介质中进行,生成的纳米晶在有机溶剂中具有良好的分散性,非常有利于实际应用。 液相法生长纳米晶一般包括三个阶段:成核过程、生长过程和熟化过程。当溶质的量高于溶解度时,溶液过饱和,晶体就会从液体中析出,形成晶核,这就是成核过程。晶核的数量和成核速度是由溶液的过饱和度决定的。溶质从饱和溶液中运输到晶体表面,并按照晶体的结构重排,这就是生长过程。该过程主要是

量子点与生物标记

量子点与生物标记 应化1002班王艳 荧光分析法是生物学研究中十分重要的方法之一,其检测灵敏度很大程度上取决于标记物的发光强度和光化学稳定性。目前使用的大多数荧光试剂如有机荧光染料等存在着光学稳定性较差、激发光谱范围窄、发射光谱较宽、与生物分子的背景荧光难以区分等不可忽视的弱点,导致应用中灵敏度下降。量子点作为一种新型的荧光纳米材料,弥补了有机染料的上述缺点,引起分析化学和生命科学领域的广泛关注。 量子点即半导体纳米粒子,也称半导体纳米晶,是指半径小于或接近于激子玻尔半径的半导体纳米晶粒。它们由n-VI族或n l-V族元素组成,性质稳定,能够接受激发光产生荧光,具有类似体相晶体的规整原子排布。在量子点中,载流子在三个维度上都受到势垒的约束而不能自由运动。需要指出的是,并非小到100nm以下的材料就是量子点,真正的关键尺寸取决于电子在材料内的费米波长。只有当三个维度的尺寸都小于一个费米波长时,才称之为量子点。 量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起库仑阻塞效应、尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观材料的物理化学性质 作为荧光探针,量子点的光学特性比在生物荧光标记中常用的传统有机染料有明显的优越性: (l)宽的激发波长范围及窄的发射波长范围,可以使用小于其发射波长的任意波长激发光来激发,并且可以通过改变QDs的物理尺寸对荧光峰位进行调控。这样就可以使用同一种激发光同时激发多种量子点,从而发射出不同波长的荧光,进行多元荧光检测。相反多种染料的荧光(多种颜色)往往需要用多种激光加以激发,这样不仅增加了实验费用,而且使分析系统变得更加复杂。此外,由于QDs的这种光学特性,可以在其连续的激发谱中选取更为合适的激发波长,从而使生物样本的自发荧光降到最低点,提高分辨率和灵敏度。 (2) 量子点具有较大的斯托克斯位移(stokes shift),能够避免发射光谱与激发光谱的重叠,从而允许在低信号强度的情况下进行光谱学检测。生物医学样本通常有很强的自发荧光背景,有机荧光染料由于其Stokes位移小,检测信号通常会被强的组织自发荧光所淹没,而Q Ds的信号则能克服自发荧光背景的影响,从背景中清楚地辨别检测信号。QDs的荧光发射光谱相对狭窄,因此能同时显现不同颜色而无重叠,这样就能在实验中同时进行不同组分的标记。 (3) 量子点的发射峰窄而对称,重叠小,相互干扰较小,在一定程度上克服了光谱重叠所带来的问题。 (4) 量子点的发射波长可通过控制其大小和组成调节,因而有可能任意合成发射所需波长的量子点,大小均匀的量子点谱峰为对称的高斯分布; 此外,量子点hiP、InAs能够发射700~1500nm多种波长的荧光,可以填补普通荧光分子在近红外光谱范围内种类很少的不足。对于一些不利于在紫外和可见区域进行检测的生物材料,可以利用半导体量子点在红外区域染色,进行检测,完全避免紫外光对生物材料的伤害,特别有利于活体生物材料的检测,同时大幅度降低荧光背景对检测信号的干扰。 (5) 量子点的抗光漂白能力强,有高度光化学稳定性,是普通荧光染料的100

量子点免疫层析检测技术

量子点免疫层析检测技术方兴未艾 免疫层析技术是一种快速、简便、灵敏、直观、价格低廉、可真正实现现场检测的检测方法。具有很多气相色谱、高效液相色谱、气质联用色谱、液质联用色谱、毛细管电泳等仪器检测方法以及其他传统方法无法企及的优点。在检测领域中处于特殊重要的地位,同时也是传统检测和仪器检测的良好补充。尤其在经济高速发展,生活水平提高的今天,人类重大疾病,环境污染,食品安全等问题日益受到极大的关注,让免疫层析检测技术更具有巨大的潜力和蓬勃的生命力。 目前,免疫层析产品主要为胶体金免疫层析试纸条,其最早应用于医学检验,在早孕检测中的应用取得了极大的成功,随后在各个领域迅速渗透漫延,其在毒品检测、环境检测、以及食品安全检测领域得到了迅速的发展,但是又出现新的问题,在很多方面,尤其是食品安全检测领域,有些农兽药残留限度极度苛刻,甚至要求0.1 ng/ml的检测限度,同时食品类物质如肉类、禽类、果蔬、谷物等成分复杂,前处理难度也很大,造成胶体金免疫层析检测灵敏度无法胜任。除了进一步提高前处理方法以外,寻求高灵敏度的免疫层析方法也显得尤为重要。 量子点是近20 年来发展起来的半导体纳米晶材料,因为它的优良特性,受到了很大的关注,并且已经显示出一定的潜力,近几年来从细胞标记等应用已逐渐开始向多个领域的检测与诊断方向渗透。 一、量子点特性 量子点(简称QDs,又称半导体纳米粒子)是由Ⅱ~Ⅵ族或Ⅲ~V族元素组成的,半径小于或接近于激光玻尔半径,能够接受激发光产生荧光的一类半导体纳米颗粒,其中研究较多的主要是CdX(x=S、Se、Te),直径约为2nm-6nm。量子点由于存在显著的量子尺寸效应和表面效应,从而使它具有常规材料所不具备的光吸收特性,使其应用领域越来越广泛,特别是其在免疫生物学和临床检验学等研究中的潜在的应用价值,已引起了广大科学工作者的极大关注,发光量子点作为荧光试剂探针标记生物大分子,正是近年来迅速发展的纳米材料在生物分析领域的重要应用之一。与普通的荧光染料相比较,量子点具有以下特点: (1) 有机染料荧光分子激光谱带较窄,每一种荧光分子必须用合适能量的光来激发,而且产生的荧光峰较宽,不对称,有些拖尾。这给区分不同的探针分子带来困难,很难利用有机染料分子同时检测多种组分。量子点由于量子限域效应使其激发波长的范围很宽,可以被波长短于发射光的光(一般短10nm以上)激发,并产生窄(半波宽约13nm)而对称的发射光谱,从而避免了相邻探测通道的串扰。 (2) 量子点具有“调色”功能,不同粒径大小的量子点具有不同的颜色,激发量子点的激发波长范围很宽,且连续分布,所以可以用同一波长的光激发不同大小的量子点而获得多种颜色标记,是一类理想的荧光探针。 (3)量子点的荧光强度强,稳定性好,抗漂白能力强,Chan和Nie通过实验证明ZnS包覆的CdSe比罗丹明6G分子要亮20倍和稳定100-200倍,可以经受多次激发,且标记后对生物大分子的生理活性影响很小,因此为研究生物大分子之间的长期作用提供了可能。

(完整word版)量子点LED

量子点LED专题报告 一、什么是量子点LED? 量子点LED是把有机材料或者LED芯片和高效发光无机纳米晶体结合在一起而产生的具有新型结构的量子点有机发光器件。相对于传统的有机荧光粉,量子点具有发光波长可调(可覆盖可见和近红外波段)、荧光量子效率高(可大于90%)、颗粒尺寸小、色彩饱和度高、可 低价溶液加工、稳定性高等优点,尤其值得注意的是高色纯度的发光使得其色域已经可以超过HDTV标准色三角。因此基于量子点的发 光二极管,有望应用于下一代平板显示和照明。

表征量子点的光电参数: 1、光致发光谱(PL谱):光致发光谱反映的是发射光波长与发光强度的关系。从PL谱上可以得到发光颜色的单色性、复合发光的机制、量子点的颗粒尺寸大小及分布均匀性、本征发射峰波长等基本光学信息。量子点光致发光谱的半高宽越窄,说明量子点的发光单色性越好,器件的缺陷和杂质复合发光越少。 2、紫外可见吸收谱:量子点的紫外可见吸收谱反映的是量子点对不同波长光的吸收程度,从谱中吸收峰的位置可计算出量子点的禁带宽度。量子点吸收谱的第一吸收峰与光致发光谱的发射峰的偏移是斯托

克斯位移,斯托克斯位移越大,量子点的自吸收越弱,量子点的荧光强度越高。 3、光致发光量子产率:量子点溶液的光致发光量子产率是通过与标准荧光物质(一般用罗丹明6G)的荧光强度对比而测出。量子点高的量子产率能有效提升器件的发光效率,但纯核量子点沉积成薄膜后量子产率将比在溶液中的量子产率下降1到2个数量级。量子点也存在荧光自淬灭现象,这是由存在于不均匀尺寸分布的量子点中的激子通过福斯特能量转移到非发光点进行非辐射复合所引起。 二、量子点LED在照明显示中的应用方案 量子点的发射峰窄、发光波长可调、荧光效率高、色彩饱和度好,非常适合用于显示器件的发光材料。量子点LED在照明显示领域中的应用方案主要包括两个方面:a、基于量子点光致发光特性的量子点背光源技术(QD-BLU,即光致量子点白光LED);b、基于量子点电致发光特性的量子点发光二极管技术(QLED)。

量子点敏化太阳能电池研究进展_刘晓光

量子点敏化太阳能电池研究进展 111,2* 刘晓光,吕丽丽,田建军 12 (北京科技大学新材料技术研究院,北京 100083;中国科学院北京纳米能源与系统研究所,北京 100083) 摘要:半导体量子点(Quantum Dot,简称QD)因其具有多种优异的光电性能而在太阳能转换方面得到了广泛地应用。量子点敏化太阳能电池(Quantum Dot Sensitized Solar Cell,简称QDSC),因其工艺简单、制造成本低和理论光电转换效率高,被认为是极具发展潜力的新一代太阳能电池。本文介绍了QDSC的基本结构和工作原理、QDSC的转换效率及影响因素、QDSC的研究进展等。另外,我们还对量子点敏化太阳能电池的发展进行了展望。 关键词:量子点;太阳能电池;量子点敏化太阳能电池;研究进展 引言 随着世界经济的快速发展,人们对能源的需求量与日俱增,化石能源作为不可再生能源,已无法满足全球的能源消耗。此外,化石能源的大量使用会造成全球变暖和环境污染等问题。因而,寻求可高效利用并且对环境友好的可再生能源是世界各国的共同目标。太阳能作为一种清洁的可再生能源,已经引起了广泛的关注,被认为是传统能源的最佳替代品。根据所用材料的不同,太阳能 [1] 电池可分为:硅基太阳能电池、化合物薄膜太阳能电池、光电化学太阳能电池、有机太阳能电池和多结太阳能电池等。 量子点,是三维尺寸小于或接近激子波尔半径,具有量子局限效应的准零维纳米粒[2,3] 子。光敏性量子点是一种窄禁带宽度的半 [4][5][6]导体材料,如CdS,CdSe,PbS, [7] InAs等,它可通过吸收一个光子能量产生多个激子或电子-空穴对,即多重激子效应(Multiple Exciton Generation,简称ME G),进而形成多重电荷载流子对,以更加有效地利用太阳能。根据美国物理学家 [8] Shockley和Queisser提出的S-Q极限模型,半导体PN结太阳能电池的光电转换效率极限为31%,如单晶硅、多晶硅太阳能电池等均受限于这一模型。然而以QD为光敏剂构筑的量子点敏化太阳能电池,在MEG效应作用下,则能突破S-Q极限效率模型,具有更高 [9,10] 的理论光电转换效率。并且,QDSC制造成本远低于硅基太阳能电池。因此,QDSC被认为是极具发展潜力的新一代太阳能电池,成为世界范围内研究的热点之一。 1 QDSC的基本结构和工作原理 QDSC是由有机染料敏化太阳能电池(Dye Sensitized Solar Cell,简称DSC)衍生而来,与之不同的是QDSC采用窄禁带宽度的QD取代DSC中的有机染料分子作为电子激发的敏化剂。与有机染料相比,QD不仅 [11~13]具有MEG效应,而且还具有其它优点:(1)QD光谱吸收范围更广,其带隙可以根据其尺寸大小来调节;(2)QD具有比有机染料分子更大的消光系数和光化学稳定性;(3)QD具有大的固有偶极矩,利于激发态电子-空穴的分离。QDSC的工作原理如图1所示,其电池主要是由导电透明电极 (如FTO)、多孔光阳极(如TiO薄膜)、 2 量子点敏化剂(QD)、电解质(如多硫化 物)和对电极(如Cu S)组成。在入射光子 2 的作用下,QD中的电子从价带跃迁到导 带,激发态的电子快速注入到光阳极TiO导 2带中,在FTO玻璃上富集并通过外电路流向 2-对电极,QD中留下的空穴与电解质中 的S

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

量子点的制备方法综述及展望

量子点的制备方法综述及展望 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。英语论文。 量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点” 。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。硕士网为你提供计算机硕士论文。 量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。 本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有可制备量子点的种类多、改进纳米颗粒性能的方法多及所量子点的量子产率高等优点,其粒径分布可用多种手段控制,因而成为目前制备量子点的主要方法。 2.1 单核量子点的制备1993 年,Murray 等采用有机金属试剂作为反应前驱物,在高温有机溶剂中通过调节反应温度,合成了量子产率约为10%、单分散(± 5%)的CdSe 量子点。他们采用TOPO 作为有机配位溶剂,用Cd(CH3)2 和TOP-Se 作为反应前驱物,依次将其注入到剧烈搅拌 的350℃TOPO 溶液中,在短时间内生成大量的CdSe 纳米颗粒晶核,然后迅速降温至240℃以阻止CdSe 纳米颗粒继续成核,随后升温 到260~280℃并维持一段时间,根据其吸收光谱监测晶体的生长,当晶体生长到所需要的尺寸时,将反应液冷却至60℃。加入丁醇防止TOPO 凝固,随后加入过量的甲醇,由于CdSe 纳米颗粒不溶于甲醇,通过离心便可得到CdSe 纳米颗粒。通过改变温度,可以将粒径控制在2.4~13nm 之间,且表面的TOPO 可以用吡啶、呋喃等代替。此后,Peng 等又通过进一步优化工艺条件 ,将两组体积不同,配比一定的Cd (CH3) 2、 Se、TOP 的混合溶液先后快速注入高温 TOPO 中的方法制得了棒状的 CdSe量子点,从而扩展了该合成方法对量子点纳米晶粒形状的控制。利用这种方法合成的量子点受到杂质和晶格缺陷的影响,因此量子产率较低。由于Te 更容易被氧化,所以制备高质量的CdTe 要比制备CdSe,CdS 难得多。2001 年,Dmitri.V 等用DDA(十二胺)代替TOPO作反应溶剂合成高质量的CdTe 量子点,量子产率可达65%,且窄的发射光谱覆盖红色和绿色

双量子点系统输运性质的研究【毕业作品】

BI YE SHE JI (20 届) 双量子点系统输运性质的研究

双量子点系统输运性质的研究 内容摘要:随着量子点的应用逐渐广泛,双量子点输运性质的研究引起人们越来越多的关注。本文主要介绍了双量子点系统的电子构型和模型,以及双量子点的研究现状。在lindblad形式量子主方程的基础上,推导出粒子数分辨量子主方程,利用全计数统计方法,推导出隧穿电流的各阶累积矩,从而研究在一般电极的情况下,双量子系统的输运性质(输运电流,电流噪声谱)。 关键词:双量子点量子主方程全计数统计 The research about transport properties of double quantum dots system Abstract:With the increasingly widespread use of quantum dots,more and more people are intrested in studing the transport properties of double quantum dots.This paper describes the electronic structure and model of double quantum dots system and introduces the research status of double quantum dots.Based on the quantum master equation which is in the Lindblad form,we deduce the particle-number-resolved master equation. Using the full counting statistics methods,we deduce the cumulative moment of the tunneling current in each order.Thus we can study the transport properties(transport current, the current noise spectrum) of double quantum system with ageneral electrodes. Key words:double quantum dots quantum master equation full counting statistics

量子点的制备方法

量子点的制备方法综述及展望 来源:https://www.360docs.net/doc/263714329.html, 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。中国硕士论文网提供大量免费英语论文。 量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。硕士网为你提供计算机硕士论文。 量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。 本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有

量子点发光材料综述

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

量子点的制备实验报告

量子点的制备实验报告 篇一:碳量子点的制备及性能表征 “大学生创新性实验计划”立项申请表 申请级别:□国家□北京市■学校项目名称:碳量子点的制备及性能表征负责人:所在学院:联系电话:电子邮件:填表时间: XX-10-26 北京理工大学教务处制表 大学生创新性实验计划 注意事项 1. 2. 3. 填写申请级别时,将“□”替换为“■”,或手写打“√”;项目负责人应为本科生,鼓励跨年级、跨学科组成项目组;项目成员(含负责人)不超过5人,成员中至少有一名非四年级的学生,每名学生原则上不允许同时参加多个项目; 4. 申报国家级、北京市级项目应明确指导教师,指导教师应具备中级以上职称,每位指导教师同时指导的项目原则上不能超过两项; 5. 经费预算严格按照通知要求进行申请,最终以专家委员会批准的额度执行; 6.

项目周期统一为一年。 负责人情况 项目基本信息 -1- -2- -3- 篇二:量子点总结 1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志

量子点制备方法的研究进展

第29卷,第11期红外l文章编号:1672-8785(2008)11?0001—07 量子点制备方法的研究进展 王忆锋 (昆明物理研究所,云南昆明650223) 摘要:量子点以其类似于原子的性质近年来受到很大关注.通过Stranski—Krastanow (SK)生长模式外延自组织生长的量子点具有诸多有利于红外应用的性质,例如工作温 度较高、信噪比较大、暗电流较低、波段较宽以及垂直入射光响应等。对于新型红外探 测器的研发而言,它们是一类很有潜力的候选者.本文主要对近期国外文献报道的量 子点制备方法的部分研究进展做了总结和评述. 关键词:量子点;量子点红外光子探测器;红外探测器;制备方法 中图分类号:0471.1文献标识码:A DevelopmentStatusofQuantumDotFabricationTechniques WANGYi.feng (KunmingInstituteofPhysics,Kunming650223,China) Abstract:Quantumdotshaveattractedconsiderableinterestfortheiratomic-likepropertiesinrecent years.Thequantumdotsgrownbyepitaxialself-assemblyvia Stranski—Krastanowgrowthmodehavemanyfavorablepropertiesforinfraredapplication,suchashigheroperationaltemperature,increased signal-to-noiseratio,reduceddarkcurrent,widerspectralrangeandsensitivitytonormalincidentr扣 diation.Theyarepotentialcandidatesfordevelopinganewclassofinfrareddetectors.Someofthe latestpublisheddevelopmentsinthefabricationtechniquesofquantumdotsabroadaresummarizedand reviewedinthispaper. Keywords:quantumdot;quantum-dotinfraredphotodetector;infrareddetector;fabricationtechnique 1引言 量子点又称为半导体纳米晶体,其体积小于相应半导体玻尔半径所定义的体积.量子点红外光子探测器(QDIP)具有垂直入射光响应、暗电流低,光电导增益大、响应率和探测率高等优点,已成功应用于单元探测器、焦平面器件等各种结构中.量子点的制备是QDIP发展的基础.本文主要介绍近年来国外在与红外有关的量子点制备研究方面的进展。 2胶体量子点 胶体量子点由化学反应合成,典型地是通过某种有机金属反应路径,不需要超高压设备或者有毒气体.对于Ⅱ一Ⅵ族半导体,其量子点的制备过程是,将反应物分子迅速注入热溶剂中,使其发生成核和生长过程。如图1所示,溶剂中所含的有机分子(配体,ligand)阻止成核中心变大,并在成核粒子表面生成一层包裹,从而形成胶体量子点。 胶体量子点悬浮在有机溶剂中,可以通过旋涂(spincoating)等方式定型在各种衬底上,不需要考虑晶格匹配的问题.反应化学物的浓度、 收稿日期?2008--05--08 作者简介?王忆锋(1963——),男,湖南零陵人,高级7-程师,目前主要从事器件仿真研究.

碳量子点的制备与应用

Journal of Advances in Physical Chemistry 物理化学进展, 2017, 6(3), 128-136 Published Online August 2017 in Hans. https://www.360docs.net/doc/263714329.html,/journal/japc https://https://www.360docs.net/doc/263714329.html,/10.12677/japc.2017.63016 文章引用: 叶明富, 陈丙才, 方超, 吴延红, 陈国昌, 孔祥荣. 碳量子点的制备与应用[J]. 物理化学进展, 2017, 6(3): Synthesis and Applications of Carbon Quantum Dots Mingfu Ye 1*, Bingcai Chen 1, Chao Fang 1, Yanhong Wu 2, Guochang Chen 1, Xiangrong Kong 3 1School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, Maanshan Anhui 2Shandong Huayu University of Technology, Dezhou Shandong 3Beijing Building Materials Sciences Research Academy, Beijing Received: Jul. 10th , 2017; accepted: Jul. 23rd , 2017; published: Jul. 26th , 2017 Abstract Carbon quantum dots (CQDs), a novel class of carbon nanomaterials, have received wide attention due to their strong quantum confinement effect and stable photoluminescence property. This ar- ticle reviews the different synthetic methodologies to achieve good performance of CQDs. At the same time, the applications of CQDs are also reviewed in the article. Keywords Carbon Quantum Dots, Nanomaterials, Preparation Methods, Applications 碳量子点的制备与应用 叶明富1*,陈丙才1,方 超1,吴延红2,陈国昌1,孔祥荣3 1 安徽工业大学和县化工产业发展研究院化学与化工学院,安徽 马鞍山 2山东华宇工学院,山东 德州 3北京建筑材料科学研究总院有限公司,北京 收稿日期:2017年7月10日;录用日期:2017年7月23日;发布日期:2017年7月26日 摘 要 碳量子点(Carbon quantum dots, CQDs)是一种新型的碳纳米材料,因其强的量子限域效应和稳定的荧*通讯作者。

量子点系统中的热输运研究

量子点系统中的热输运研究 【摘要】:近年来,随着微加工技术和纳米技术的快速发展,理解纳米尺度结构中热是如何被运载、分布、储存以及转换等问题成为人们越来越关注和重视的研究课题。探索了解纳米尺度结构中的发热规律与研究如何降低和利用纳米器件的发热量对于深刻理解电子输运信息、缓解世界能源危机有着非常重要的意义。最近,由于人们在纳米结构材料中得到了较高的热电品质因子,因此合理利用纳米系统的热电效应将成为回收利用废热非常有效的办法。本文将这些问题具体到量子点系统中,一方面通过构建不同的量子点结构来寻求更高的热电品质因子,另一方面对与超导电极和金属电极相连的量子点中的发热特性做了深入的研究。论文首先介绍了量子点及其输运特性、局域发热效应和热电效应及其研究现状,接着详细介绍了量子输运的非平衡格林函数方法,给出了电流、热流和发热量的普遍表达形式。基于这些表达式,本文主要研究内容如下:首先,我们研究了串联耦合双量子点中自旋相关的热电输运特性。耦合双量子点与两端铁磁电极相连,而且在耦合双量子点间的势垒中外加一个稳定的磁场,因此量子点与电极之间以及量子点之间的隧穿耦合都是自旋相关的。我们发现当两端铁磁电极处于平行磁化结构时,如果自旋向下电子对应的有效点间耦合以及点与电极耦合比较小,自旋向下共振能级附近的热电转换效率就会很大地增强。当存在外加磁场的时候,铁磁电极上的自旋累积将抑制热电转换效率。在合适的温度条件下点内库仑相互作用也会很大地提

高热电转换和热自旋转换效率。而且我们得到一个纯自旋热电势。其次,我们研究了由一个中间量子点与两个侧向量子点耦合组成的三量子点结构中的热电输运特性,主要讨论了线性响应区域Dicke效应对热电输运的影响。我们发现在低温情形下,电导和热导率都呈现出了电子版本的Dicke效应。当能级间距比较小(或者是特别大)和点间隧穿耦合比较大的时候,在亚辐射态附近,由于局域态密度函数类似于δ函数,所以热电势得到了很大的增强,而且电导和热导率强烈地违背Wiedemann-Franz定律,因此热电转换效率得到了很大的提高。当温度升高时,调节点间隧穿耦合到较大的值时同样可以得到一个非常高的热电转换效率。另外我们也讨论了点间耦合的不对称参数和点内库仑作用对热电输运的影响。最后,我们考虑了一个耦合到左端正常金属电极和右端超导电极的量子点系统,并研究了这一系统的局域发热特性。在点与电极弱耦合情形下,我们发现发热量并不正比于电流,而且可以通过调节门电压、偏压和温度来控制。我们讨论了装置的最佳工作状态所对应的参数区域。在高温情形下,我们发现吸收一个声子的声子辅助的Andreev隧穿(或者是声子辅助的直接隧穿)可以导致发热量成为负数。负的发热量表明当电流流过量子点时热流是从声子系统流向电子系统的。所以从应用的角度来看,这种装置可以作为一个局域量子冰箱来使用。【关键词】:量子点热电效应局域发热Dicke效应Andreev隧穿 【学位授予单位】:山西大学

相关文档
最新文档