神经网络应用及发展
神经网络的发展历程与应用

神经网络的发展历程与应用神经网络是一种仿生的人工智能技术,它模拟了人类大脑中神经元之间的连接和信息传递方式,具有自学习和适应性强的特点。
神经网络的发展历程可以追溯到上世纪50年代,经过了长期的理论研究和应用实践,如今已经成为了人工智能领域中的重要技术之一。
本文将从神经网络的发展历程、基本模型、优化算法以及应用领域等方面进行介绍。
一、神经网络的发展历程神经网络的发展历程可以分为三个阶段,分别是感知机、多层前馈神经网络和深度学习。
1. 感知机感知机是神经网络的起源,由美国心理学家罗森布拉特于1957年提出。
感知机是一种单层神经网络,由若干感知器(Perceptron)组成。
每个感知器接收输入信号并进行加权和,然后经过一个阈值函数得到输出。
该模型的最大缺点是只能处理线性可分问题,无法解决非线性问题。
2. 多层前馈神经网络为了克服感知机的局限性,科学家们开始尝试使用多层前馈神经网络来处理非线性问题。
多层前馈神经网络由输入层、隐藏层和输出层组成。
每个神经元都有一个激活函数,用于将输入信号转换为输出。
这种结构可以处理非线性问题,并且可以通过反向传播算法来训练网络参数。
多层前馈神经网络在图像识别、语音识别、自然语言处理等领域得到了广泛应用。
3. 深度学习深度学习是指使用多层神经网络来学习高层次特征表示的一种机器学习方法。
深度学习在计算机视觉、自然语言处理等领域有着广泛的应用。
其中最著名的就是卷积神经网络(CNN)和循环神经网络(RNN)。
卷积神经网络主要用于图像识别和分类问题,循环神经网络主要用于序列预测和语言建模。
二、神经网络的基本模型神经网络的基本模型可以分为三类,分别是前馈神经网络、反馈神经网络和自组织神经网络。
1. 前馈神经网络前馈神经网络是指信息只能从输入层到输出层流动的神经网络。
其中最常用的是多层前馈神经网络,它由多个隐藏层和一个输出层组成。
前馈神经网络的训练主要使用反向传播算法。
2. 反馈神经网络反馈神经网络是指信息可以从输出层到输入层循环反馈的神经网络。
神经网络的应用和发展

神经网络的应用和发展近年来,人工智能技术的快速发展,特别是神经网络技术的应用与发展,引起了广泛的关注。
神经网络技术通过模仿人脑神经元之间的相互作用,使得计算机能够具备“学习”的能力,更加接近于人类思维方式。
在不断的发展中,神经网络技术逐渐成为人工智能领域中最受关注的技术之一。
一、神经网络技术的应用1、图像识别神经网络技术被广泛用于图像识别,例如人脸识别、目标检测、自然语言处理等方面。
自从Alex Krizhevsky等人2012年用深度神经网络模型在ImageNet图像数据集上获得压倒性胜利以来,深度学习技术在图像识别领域中得到了蓬勃发展。
图像识别的应用场景非常广泛,涉及到安防、医疗、车载导航等领域。
近年来,各种不同类型的神经网络模型和算法被提出,使得实时、高精度的图像识别成为可能。
2、自然语言处理自然语言处理是指人机之间用自然语言进行交互的计算机技术。
神经网络技术在自然语言处理领域的应用非常广泛,例如文本分类、机器翻译、情感分析等。
对于语言处理任务,神经网络可以通过学习语言的规则和特征,实现更加准确和自然的表达。
3、智能系统智能系统是指模拟人智能行为的计算机系统。
神经网络技术在智能系统领域的应用也非常广泛,例如智能家居、智能机器人、智能交通等。
智能系统通过集成传感器、执行器、智能控制器等多种技术手段,实现与人的协同工作和智能化互动,提升人类生活和工作的效率和质量。
二、神经网络技术的发展1、模型的深度化深度神经网络模型是指多层神经网络结构,目前已成为神经网络发展的主要方向。
模型的深度化能够提高模型的准确性和可扩展性,使得神经网络在图像识别、自然语言处理等领域中的应用效果进一步提升。
2、特征学习特征学习是指在神经网络中,通过学习高层次的抽象特征来替代传统的手工设计特征。
通过特征学习,神经网络可以更好的抽取数据的内在特征,提高模型性能和适应性。
3、增强学习增强学习是指通过奖励来指导智能体的学习过程。
神经网络的应用领域及前景展望

神经网络的应用领域及前景展望神经网络作为一种模拟人脑神经系统的计算模型,近年来在各个领域得到了广泛的应用。
它的出现不仅为科学研究提供了新的思路和工具,也为工业界带来了许多创新和突破。
本文将从医疗、金融、交通和农业等领域,探讨神经网络的应用前景。
在医疗领域,神经网络被广泛应用于疾病诊断、药物研发和医学影像处理等方面。
通过分析大量的病例数据,神经网络可以帮助医生更准确地诊断疾病,提高医疗效率。
此外,神经网络还可以模拟药物的作用机制,加速药物研发过程。
在医学影像处理方面,神经网络可以帮助医生更好地识别和分析X光片、MRI等影像,提供更精确的诊断结果。
金融领域是另一个神经网络的应用热点。
神经网络可以通过学习历史数据和市场趋势,预测股票价格的走势,帮助投资者做出更明智的投资决策。
此外,神经网络还可以用于信用评估和欺诈检测等方面。
通过分析客户的历史交易数据和行为模式,神经网络可以判断客户的信用风险,并及时发现潜在的欺诈行为。
交通领域也是神经网络的重要应用领域之一。
神经网络可以通过学习交通流量数据和历史交通模式,预测交通拥堵情况,提供交通优化方案。
此外,神经网络还可以用于智能交通系统的设计和管理。
通过与传感器和摄像头等设备的结合,神经网络可以实时监测交通状况,并根据实际情况调整信号灯时间和路线规划,提高交通效率和安全性。
农业领域也可以借助神经网络进行创新和改进。
神经网络可以通过学习土壤和气象数据,预测农作物的生长情况和病虫害发生的可能性,帮助农民做出更科学的种植决策。
此外,神经网络还可以用于农产品质量检测和智能化农业设备的控制。
通过分析农产品的外观、口感和气味等特征,神经网络可以判断农产品的质量,并提供相应的处理建议。
神经网络在以上领域的应用只是冰山一角,随着科技的不断进步和数据的不断增长,神经网络的应用前景将更加广阔。
未来,随着神经网络算法的不断优化和硬件的不断升级,我们可以期待更高精度和更快速的神经网络模型的出现。
神经网络技术的发展和应用前景

神经网络技术的发展和应用前景神经网络是一种模仿生物神经系统工作原理而设计的计算模型,其主要作用在于从大量数据中挖掘出数据的内部联系和规律性。
神经网络模型的原理和独特的数据处理手段,使它在计算机学习、图像处理、语音识别、自然语言处理等领域有着广泛的应用。
随着计算机技术的发展和神经科学领域的发展,神经网络技术也在不断进步,应用范围也不断扩大,其在许多领域的应用前景十分广阔。
一、神经网络技术的历史与发展神经网络技术的概念最早可以追溯到上世纪40年代的神经学研究。
1943年,心理学家麦克卡洛克和皮茨等人首次提出了神经元模型,以模拟人脑的工作原理。
随着计算机技术的发展,神经网络开始在计算机科学领域得到越来越多的研究关注。
1969年,J.L.Kohonen提出了自组织神经网络的概念,此后,神经网络在模式识别和分类等领域得到了广泛应用。
1986年,Hinton和Rumelhart提出BP神经网络学习算法,大大提高了神经网络的训练效果和速度,标志着神经网络发展进入了一个新的阶段。
此后,随着深度学习算法和各种新型神经网络模型的出现,神经网络技术得到极为迅猛的发展,应用范围也更是扩大。
二、神经网络技术的应用1. 计算机视觉计算机视觉是将计算机应用于从图像或者多维数据中识别、分析信息的一种技术。
神经网络技术在计算机视觉领域有着广泛的应用。
其通过对图像进行分类、分割、对象检测等处理,实现了对图像的识别和分析。
例如,常见的面部识别技术、人脸识别技术等均是基于神经网络算法实现的。
2. 语音识别语音识别技术利用计算机对语音信号进行分析和处理,将声学信号转化为文本或者指令。
神经网络技术在语音识别领域的应用也非常广泛。
它可以通过将语音信号转换成频率等参数,加以预处理,利用循环神经网络模型进行特征提取和语音识别,实现更加准确和快速的语音识别效果。
3. 自然语言处理自然语言处理是一种对自然语言进行处理和分析的技术。
随着语音识别技术得到发展,自然语言处理技术也应运而生。
神经网络的发展与应用

神经网络的发展与应用人工神经网络,简称神经网络,是一种模拟人脑神经系统的计算模型,它通过模拟神经元之间的信息传递和计算过程,实现了信息处理和智能决策。
从20世纪50年代起,神经网络就开始吸引越来越多的研究者,至今已有数十年的发展历程。
本文将回顾神经网络的发展史,介绍其主要应用场景和未来趋势。
一、神经网络的发展历史题海战术是练好神经网络的关键。
在1960年代到1980年代,美国、英国、日本、德国等国家和地区的专家纷纷投身于神经网络的研究当中。
这一时期,神经网络的基本理论,包括前馈神经网络、反馈神经网络、Hopfield 网络、Boltzmann机等模型先后被提出。
其中,前馈神经网络主要用于解决分类、识别、回归等问题,反馈神经网络主要用于时序预测、神经信号处理、优化问题等;而Hopfield网络和Boltzmann机则用于解决优化问题和联想记忆问题。
然而,由于数据量小、计算能力有限、学习算法不稳定等因素的限制,神经网络的应用一度受到限制。
1990年代以后,随着计算机和网络技术的迅速发展,大数据时代的到来,神经网络得到了前所未有的发展机遇。
神经网络的各个领域都经历了飞跃式的发展,特别是深度学习的应用,更是引领了神经网络技术的潮流。
二、神经网络的应用场景神经网络已经成为人工智能、机器学习中最重要的技术手段之一,几乎涉及到所有方面的应用场景。
以下将介绍几个具有代表性的应用案例。
1. 图像识别在图像识别领域,卷积神经网络(CNN)是当今最流行的神经网络之一。
它可以对图像进行特征提取和识别,广泛应用于人脸识别、车辆识别、智能安防等领域。
例如,当今最先进的人脸识别技术,就是基于CNN网络实现的。
2. 语音识别语音识别是另一个广泛应用神经网络的领域。
深度循环神经网络(RNN)和长短时记忆网络(LSTM)都是可以处理语音信号序列的网络模型,它们的应用范围包括语音识别、文本转语音(ConvTTS)等,可以极大地提高语音识别的准确率和稳定性。
神经网络的现状与发展趋势

神经网络的现状与发展趋势一、引言人工神经网络(Artificial Neural Network, ANN)是一种通过模拟人类神经系统实现信息处理、表达和识别的计算模型。
自 1943 年 McCulloch 和 Pitts 提出 ANNs 模型以来,神经网络成为了人工智能领域研究的热点之一,并在计算机视觉、语音识别、自然语言处理、数据挖掘、模式识别等方面取得了卓越成果。
随着技术和应用的不断深入,神经网络技术也在不断发展和成熟。
本文将阐述神经网络的现状与发展趋势。
二、神经网络的现状1.神经网络应用领域广泛神经网络现在应用在各个领域中,包括医疗、金融、保险、制造业、游戏等。
在医疗领域中,神经网络广泛应用于癌症筛查、药物研发、疾病预测等方面;在金融领域中,神经网络被用于股票价格预测、风险评估、欺诈检测等方面;在游戏领域中,神经网络被广泛用于图像处理、行为预测等方面。
神经网络在这些领域中具有较高的精度和灵活性,成为了人工智能技术中不可或缺的一部分。
2.深度学习技术的广泛应用深度学习作为神经网络技术的分支之一,逐渐成为了人工智能应用的主流。
深度学习通过多个隐层来逐步提取数据的高层次特征,大幅度提高了模型的准确性和鲁棒性。
目前,深度学习模型已经迅速应用于语音识别、机器翻译、自然语言处理、图像、视频等多个领域中。
深度学习的发展极大地促进了人工智能技术的研究和应用。
3.大数据技术的支持大数据技术是神经网络技术得以快速发展和应用的重要因素。
神经网络需要大量的数据进行训练和调整,而大数据时代的到来使得海量数据的存储和挖掘变得更加容易。
此外,人工智能应用也逐渐从精准分析转向预测和决策,并需要从大规模数据中发现规律和趋势。
大数据技术在神经网络技术的发展和应用中发挥了重要的作用。
三、神经网络的发展趋势1.自适应神经网络的发展传统的神经网络技术需要大量的人工调试和参数设置,而自适应神经网络技术可以根据自身的表现动态调整参数,自我进化。
神经网络的应用与发展

神经网络的应用与发展第一章:介绍神经网络是一种模拟人类神经系统的计算机程序,可以进行复杂数据处理和模式识别等任务。
它的应用范围涉及计算机视觉、语音识别、自然语言处理、预测分析等众多领域。
本文将探讨神经网络的应用和发展。
第二章:神经网络的应用2.1 计算机视觉在计算机视觉领域,神经网络被广泛应用于图像识别和分类。
人脸识别、物体检测、目标跟踪、自动驾驶等都需要神经网络来实现。
近年来,深度学习技术的发展使得计算机视觉的准确率和速度大幅提升,这为人工智能的发展带来了革命性变化。
2.2 语音识别神经网络在语音识别领域有着广泛应用,可以转化声音信号成为文本数据。
语音识别不仅可以用于智能家居、智能助理等场景,还可以用于特定群体,比如失聪人士的语音学习。
科技的进步加速了这个过程,从而改变了人们的生活方式。
2.3 自然语言处理自然语言处理是指将人类语言转化成计算机可以理解、处理和分析的信息。
神经网络在这个领域的应用非常广泛,包括文本分类、情感分析、机器翻译、问答系统等。
自然语言处理的发展可以使得人工智能更好地为人们服务。
2.4 预测分析神经网络在预测分析中的应用也越来越多,可以用于股票预测、航空运输等领域。
预测分析的准确率很大程度上决定了相关企业的发展情况,因此神经网络在这个领域的应用也具有很大的意义。
第三章:神经网络的发展3.1 深度学习深度学习是指使用神经网络从数据中自动学习特征表示的方法。
其最大的优势是可以处理大量高维数据,从而提高了预测的准确率。
深度学习_technology_的发展促进了神经网络在各个领域的应用。
3.2 计算能力的提高随着计算能力的提高,神经网络的规模和复杂度也在不断提高,可以应用于更广泛的领域。
同时,也促进了专用加速器的发展,使得神经网络的运行速度大幅提升。
3.3 算法的优化神经网络的优化算法也在不断发展。
一些新的优化算法使神经网络收敛速度更快、更稳定。
同时,优化算法的提高也使得神经网络模型更适合于不同的应用场景。
神经网络的发展与应用

神经网络的发展与应用神经网络是一种人工智能技术,它模仿了人脑的神经元之间的互相联系,可以通过处理数学模型的方式,在大量数据中学习规律,并进行分类、预测等任务。
神经网络的发展和应用在近年来一直备受关注。
本文将介绍神经网络的发展历程和应用情况。
一、神经网络的发展历程神经网络最早可以追溯到上世纪50年代。
当时科学家们就开始研究如何利用计算机去模拟人脑神经元之间的联系,以期实现人工智能。
但是由于当时计算机技术和数据量等因素的限制,神经网络的发展一度滞缓。
直到上世纪80年代才迎来突破。
首先,现代神经网络的基本架构——多层感知机,得到了进一步完善。
其次,反向传播算法被发明,可以使得机器自动进行设定目标的优化,并在训练数据集上反复调整神经网络的权重和偏差等参数,从而达到最优效果。
此后,神经网络的应用不断增加,深度神经网络、卷积神经网络等各种类型的神经网络也不断涌现。
这些技术的发展,让神经网络在图像识别、自然语言处理、语音识别、推荐系统等领域得到了广泛应用。
二、神经网络的应用1. 图像识别在图片识别上,卷积神经网络(CNN)表现突出。
CNN是一种通过卷积(Conv)运算进行特征提取的神经网络,它通过特异性计算,可以从大量的图片数据中学习出图像的特征,比如轮廓、边缘、纹理等。
这个技术的发明史,也是以向人们证明就算是计算机却也能很好地和图像做出相应的互动和解析的传奇。
CNN技术已经被广泛应用于计算机视觉和自动驾驶等领域。
2. 自然语言处理自然语言处理是研究计算机与自然语言的相互关联、互动的一门交叉学科。
对于这方面,基于神经网络的模型尤为突出。
可以使用递归神经网络(RNN)实现自然语言的序列化,使得机器能够理解语言结构、推断意图等。
RNN可以用来进行机器翻译、文本分类、词性标注、情感分析等。
3. 语音识别语音识别领域的突破主要依靠的是前馈神经网络,即采用多层感知器结构的神经网络。
语音识别在这里的任务也比较容易理解,那就是把说话人的语音转换到文本形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络应用及发展届别2013届系别计算机系专业计算机科学与技术姓名**指导教师***二〇一二年六月目录一、前言 (3)二、神经网络应用现状 (4)三、常用算法举例 (4)四、神经网络发展趋势及研究热点 (5)1.神经网络研究动向 (5)2.研究热点 (5)五、结论 (6)神经网络应用及发展——浅谈神经网络学生姓名:**指导老师:***摘要:该文介绍了神经网络的发展、优点及其应用现状和发展动向,对神经网络的一些常用算法进行简单的讲解,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、模糊控制、小波分析的结合。
关键词:常用算法遗传算法灰色系统模糊控制小波分析一、前言神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。
神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等。
1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。
在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。
1984年,Hiton 教授提出Boltzman机模型。
1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。
目前,BP网络已成为广泛使用的网络。
1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。
神经网络是对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。
它是智能科学和计算智能的重要部分,以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径。
神经网络具有以下优点:(1)具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。
(2)并行处理方法,使得计算快速。
(3)自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。
(4)可以充分逼近任意复杂的非线性关系。
(5)具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。
二、神经网络应用现状神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下:(1)图像处理。
对图像进行边缘监测、图像分割、图像压缩和图像恢复。
(2)信号处理。
能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。
(3)模式识别。
已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别等。
(4)机器人控制。
对机器人眼手系统位置进行协调控制,用于机械手的故障诊断及排除、智能自适应移动机器人的导航。
(5)卫生保健、医疗。
比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。
(6)焊接领域。
国内外在参数选择、质量检验、质量预测和实时控制方面都有研究,部分成果已得到应用。
(7)经济。
能对商品价格、股票价格和企业的可信度等进行短期预测。
(8)另外,在数据挖掘、电力系统、交通、军事、矿业、农业和气象等方面亦有应用。
三、常用算法举例聚类分析:聚类分析可指明预先未辨明的客户、交易或事件的类型。
没有相关变量,就不要求已知的分类。
这种观点是在事先不了解或很少了解数据结构的情况下将数据分类。
这也就是为什么聚类分析通常被称为未被监督的发现技术。
然而当聚类分析独立作为强大的分析工具时被典型用于数据挖掘过程的初始阶段是在为深层分析选择变量前探测数据的方法。
时序分析:时序分析使用历史数据进行预测。
不同于其他的算法,时序分析在定期时间间隔使用一个或多个记录点创建模型。
通常,时序有两方面需要进一步理解和预测:趋势(随时间改变的线性或非线性组件)和季节性(随时间重复的信号)。
模式识别:在现实世界中,人类发出的声音、印刷或者书写出的文字、眼睛看到的风景,以及测量器输出的信号等,以各种各样的模式存在着。
如果计算机能够听出并且分辨出这些模式,就能够简单地输入到计算机,并且可以送到工专业人员的作业负担。
四、神经网络发展趋势及研究热点1.神经网络研究动向神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。
(1)神经计算的基础理论框架以及生理层面的研究仍需深入。
这方面的工作虽然很困难,但为了神经计算的进一步发展却是非做不可的。
(2)除了传统的多层感知机、径向基函数网络、自组织特征映射网络、自适应谐振理论网络、模糊神经网络、循环神经网络之外,一些新的模型和结构很值得关注,例如最近兴起的脉冲神经网络(spiking neural network)和支持向量机(support vector machine)。
(3)神经计算技术与其他技术尤其是进化计算技术的结合以及由此而来的混合方法和混合系统,正成为一大研究热点。
(4)增强神经网络的可理解性是神经网络界需要解决的一个重要问题。
这方面的工作在今后若干年中仍然会是神经计算和机器学习界的一个研究热点。
(5)神经网络的应用领域将不断扩大,在未来的几年中有望在一些领域取得更大的成功,特别是多媒体技术、医疗、金融、电力系统等领域。
2.研究热点(1)神经网络与遗传算法的结合。
遗传算法与神经网络的结合主要体现在以下几个方面:网络连接权重的进化训练;网络结构的进化计算;网络结构和连接权重的同时进化;训练算法的进化设计。
基于进化计算的神经网络设计和实现已在众多领域得到应用,如模式识别、机器人控制、财政等,并取得了较传统神经网络更好的性能和结果。
但从总体上看,这方面研究还处于初期阶段,理论方法有待于完善规范,应用研究有待于加强提高。
神经网络与进化算法相结合的其他方式也有待于进一步研究和挖掘。
(2)神经网络与灰色系统的结合。
灰色系统理论是一门极有生命力的系统科学理论,自1982年华中理工大学的邓聚龙教授提出灰色系统后迅速发展,以初步形成以灰色关联空间为基础的分析体系,以灰色模型为主体的模型体系,以灰色过程及其生存空间为基础与内的方法体系,以系统分析、建模、预测、决策、控制、评估为纲的技术体系。
目前,国内外对灰色系统的理论和应用研究已经广泛开展,受到学者的普遍关注。
灰色系统理论在在处理不确定性问题上有其独到之处,并能以系统的离散时序建立连续的时间模型,适合于解决无法用传统数字精确描述的复杂系统问题。
(3)神经网络与模糊逻辑的结合。
模糊逻辑是一种处理不确定性、非线性问题的有力工具。
它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。
但它缺乏有效的自学习和自适应能力。
而将模糊逻辑与神经网络结合,则网络中的各个结点及所有参数均有明显的物理意义,因此这些参数的初值可以根据系统的模糊或定性的知识来加以确定,然后利用学习算法可以很快收敛到要求的输入输出关系,这是模糊神经网络比单纯的神经网络的优点所在。
同时,由于它具有神经网络的结构,因而参数的学习和调整比较容易,这是它比单纯的模糊逻辑系统的优点所在。
模糊神经网络控制已成为一种趋势,它能够提供更加有效的智能行为、学习能力、自适应特点、并行机制和高度灵活性,使其能够更成功地处理各种不确定的、复杂的、不精确的和近似的控制问题。
模糊神经控制的未来研究应集中于以下几个方面:①研究模糊逻辑与神经网络的对应关系,将对模糊控制器的调整转化为等价的神经网络的学习过程,用等价的模糊逻辑来初始化神经网络;②完善模糊神经控制的学习算法,以提高控制算法的速度与性能,可引入遗传算法、BC算法中的模拟退火算法等,以提高控制性能;③模糊控制规则的在线优化,可提高控制器的实时性与动态性能;④需深入研究系统的稳定性、能控性、能观性以及平衡吸引子、混沌现象等非线性动力学特性。
关于神经网络与模糊逻辑相结合的研究已有很多,比如,用于氩弧焊、机器人控制等。
(4)神经网络与小波分析的结合。
小波变换是对Fourier分析方法的突破。
它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。
利用小波变换的思想初始化小波网络,并对学习参数加以有效约束,采用通常的随机梯度法分别对一维分段函数、二维分段函数和实际系统中汽轮机压缩机的数据做了仿真试验,并与神经网络、小波分解的建模做了比较,说明了小波网络在非线性系统黑箱建模中的优越性。
小波神经网络用于机器人的控制,表明其具有更快的收敛速度和更好的非线性逼近能力。
五、结论经过近半个世纪的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。
随着人工智能技术的发展,神经网络与模糊逻辑、专家系统、遗传算法、小波、混沌、粗集、分形、证据理论、灰色系统等技术的融合已经成为智能技术的一个重要发展趋势,有着很好的发展前景,国内外在这方面已经取得了一定的成果。
神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。
比如:神经计算的基础理论框架以及生理层面的研究仍需深入;新的模型和结构的研究;神经网络的可理解性问题;神经网络技术与其他技术更好的结合等。
今后的研究应在充分利用神经网络优点的基础上,关注各个领域的新方法、新技术,发现它们之间的结合点,取长补短,并进行有效的融合,从而获得比单一方法更好的效果。
除此之外,还应当加强神经网络基础理论方面的研究和在实际应用方面的研究,使其在工程应用中进一步发挥越来越大的作用,应用领域越来越广,应用水平越来越高。
参考文献:[1]张曾科.模糊数学在自动化技术中的应用[M].清华大学出版社,1997.[2]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨工业大学出版,1996.250-387.[3]谢联峻.模糊控制在列车自动驾驶中的应用[J].自动化与仪器仪表,1999,(4).[4]Collier W C,Weiland,R J Smart Carts,Smart Highways[J].IEEE Spec-trum,1994,31(4):27-33.[5]Hatwal H,Mikulcik E C.some Inverse Solutions to an Automobile Path Tracking Problem with Input Control of Steeringand Breaks,Ve-hicle system Dynamics,1986,(15):61-71.[6]Kosuge K,Fukuda T,Asada H.Acquisition if Human Skills for Robotic System[C].In:Proc IEEE Int Symp On Intelligen Control,1991.469-489.[7]王小平,曹立明.遗传算法—理论、应用与软件实现.西安交通大学出版社,2002.[8]Maniezzo V.Genetic evolution of the topologh and weight distribution of neural network[J].IEEE Trans on Neural Network,1994,5(1)35-67.[9]Harrald P G,Kamstra M.Evolving artificial neural networks to combine financial forecase[J].IEEE Trans on Evol Computer,1997,1(1):39-54.[10]邓聚龙.灰色系统理论教程.华中理工大学出版社,1990.[11]吕宏辉,钟珞,夏红霞.灰色系统与神经网络融合技术探索.微机发展,2000,23(4):67-109.[12]Zhong L,Yuan J L,Zou C M.Parameter whiten method for neural network modeling for gray problem.SPIE,Vol.4739,Orlando,2002.[13]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术.科学出版社,2007,(1):1-35.Neural network application and development——On neural networkStudent:**Teacher:***Abstract:This paper introduced the development,advantages of the nerve network and its application status,and developing trend of neural network algorithm some commonly used simple explanation,focuses on the neural network current several research hot spot,namely the neural network and genetic algorithm,the gray system,the fuzzy control,the combination of wavelet analysis.Keywords:Commonly used algorithm,genetic algorithm,the gray system,fuzzy control,wavelet analysis。