自相关函数 ppt课件
《函数》PPT课件

函数连续性判断方法
01
02
03
定义法
根据函数在某点连续的定 义,判断函数在该点是否 连续。
极限法
通过计算函数在某点的左 右极限,判断函数在该点 是否连续。
定理法
利用连续函数的性质定理 ,如介值定理、零点定理 等,判断函数的连续性。
闭区间上连续函数性质
01
有界性
闭区间上的连续函数一定有界 。
02
最大值和最小值定理
切线斜率,反映了函数在 该点的局部变化性质。
可导与连续的关系
可导必连续,连续不一定 可导。
基本初等函数求导公式汇总
幂函数
y = x^n(n为实数 ),其导数为 nx^(n-1)。
对数函数
y = log_a x(a>0 且a≠1),其导数 为1/(xlna)。
常数函数
y = c(c为常数) ,其导数为0。
闭区间上的连续函数一定存在 最大值和最小值。
03
介值定理
如果函数在闭区间的两个端点 取值异号,则函数在该区间内
至少存在一个零点。
04
一致连续性
闭区间上的连续函数具有一致 连续性。
04
导数与微分学基础
导数概念及几何意义
导数定义
函数在某一点的变化率, 是函数值随自变量增量变 化的极限。
导数的几何意义
体积计算
运用定积分或重积分求解立体(如由曲面和平面围成的立体)的 体积,需熟悉体积公式及积分方法。
微分方程简介及在物理问题中应用
微分方程基本概念
介绍微分方程的定义、分类及解的概念,为后续应用打下基础。
一阶常微分方程求解
掌握一阶常微分方程的求解方法,如分离变量法、积分因子法等。
均值、方差、自相关函数的估计

2
{x(t)
E[x(t)]}2
f
( )d
0
2
0 [sin(0t
)
0]2
1
2
d
1 2
(3)自相关函数
R(t1,t2 ) E[x(t1)x(t2 )]
2
0 [x(t1)x(t2 )] f
( )d
2
0 sin(0t1
) sin(0t1
)
1
n0
此估计均值为:
^
E[ x2 ]
E
1 N
N 1
[x(n) mx ]2
n0
1 N
N 1
E[x(n) mx ]2
n0
1 N
N 1
x2
n0
x2
(2.3.6)
因为估计的均值等于真值,故为无偏估计
估计的方差为:
^
^
^
var(
2 x
)
E{[
2 x
E[x(n)x(m)] E[x(n)]E[x(m)] mx2
2 E[m x ]
1 N
mx2
N 1 N 1
[
m2x ]
n0 m0,mn
1 N
mx2
N N
1
m2
x
上式代入式(2.3.3),有
^
var(mx )
1 N
mx2
N N
1
m2
x
m2x
1 N
E(
2 x
)]2}
将式(2..6)代入上式,得
信号通过线性系统的自相关函数能量谱和功率谱分析

§6.7 信号通过线性系统的自相 关函数、能量谱和功率谱分析
•能量谱和功率谱分析 •信号经线性系统的自相关函数
北京邮电大学电子工程学院 2002.3
2
第 页
时域
前面,从
频
域
s
域
中研究了
激励
响
应
三者的关系
系统
现在,从激励和响应的自相关函数,能量谱,功率谱 所发生的变化来研究线性系统所表现的传输特性。
X
3
一.能量谱和功率谱分析
第
页
et E j
ht rt H j H j
时域
rth t*et
频域
R j H j E j
假e定 t是能量有 et的 限能 信量 号谱 e, , 密度 rt的能量谱 r密度
eEj2
rRj2
X
4
第
显然
页
R j2H j2E j2
所以
rH j2e
Se e j
因为
Re
Rh Rr
F h tH j F h * t H * j
所以 R r R e h t h * t R e R h
其中 R h h t h * t为系统冲激响应的自相关函数。
X
H j 2
Sr r
物理意义:响应的能谱等于激励的能谱与 H j 2的乘积。
同样,对功率信号有
SrH j2Se 物理意义:响应的功率谱等于激励的功率谱与 H j 2
的乘积。
X
5
二.信号经线性系统的自相关函数 第 页
由
rH j2e
SrH j2Se
得
r H j H * j e
S r H j H * j S e
2.3 均值、方差、自相关函数的估计

周期信号的相关函数依然是周期信号,且与原信号的周期相同
3.平稳随机信号的相关函数
平稳随机信号的自相关函数和互相关函数分别定义为:
Rx (m) E[ x ( n) x( n m)]
*
(2.4.10)
(2.4.11)
Rxy (m) E[ x ( n) y ( n m)]
*
平稳随机信号的相关函数的性质:
l
= x[(m l )] y(l )
l
=x(m) y (m)
确定性能量信号的相关函数的性质
6)相关定理 能量信号的相关函数与能量谱是傅立叶变换对。根据 1.1.5节介绍的正反傅立叶变换的定义式、可以将该定理表示 为: 2 X (e j ) F[ Rx ( x)] Rx (m)e jm (2.4.7)
1.确定性能量信号的相关函数 什么是确定性信号?——自变量的确定函数
数字关系式或图表惟一地确定 能量信号是指能量有限的信号。对连续和离散时间信号分别满足:
2
E
1 P lim T 2T
x(t ) dt
2
E
n
x(n)
如果信号能量无限大,比如确定性的用期信号、阶跃信号以及随机信号,就 不能从能量而应从功率的角度去研究它们,这类信号叫功率信号。
功率谱
2.4.2 随机信号的功率谱
平稳随机信号的功率谱具有如下性质:
S 1)不论x(n)是实序列还是复序列, x (e ) 都是 的实函数
j
S 2)如果x(n)是实序列, x (e ) 具有偶对称性
j
S x (e ) S x ( e
并且周期为
j
j
) S x (e )
计量学-ARMA模型的自相关函数(1)

(1)AR(p)模型的自相关函数是拖尾的,即会按
指数衰减,或正弦振荡衰减,偏自相关函数是
截尾的,截尾处为自回归阶数p; (2)MA(q)模型的自相关函数是截尾的,截尾处
对应移动平均阶数q。偏自相关函数则是拖尾
的;
11
(3)ARMA(p,q)模型的自相关函数和偏自
相关函数都是拖尾的,自相关函数是 q p 步拖尾,偏自相关函数是 p q 步拖尾。
12
2、样本自相关函数和样本偏自相关函数
假设有一组观测样本 Y1,,Yn ,一般认为 近似自相关函数最好的样本自相关函数
为:
ˆk
ˆk ˆ0
其中
n
(Yt Y )2
n
(Yt Y )(Ytk Y )
ˆ0 t1 n
, ˆk t 1
n
13
计算样本偏自相关函数(SPACF)的方法: 直接把样本自相关值代入尤勒——沃克方 程进行计算,或者用公式
若q p 0 ,就会有 q p 1 个初始值 0, 1,, q p 不遵从一般的衰减变化形式。
ARMA(p,q)的自相关函数是 q p 步拖尾
的。这一事实在识别ARMA模型时也非常 有用。
2
ARMA(1,1)过程 Yt 1Yt1 t 1t1
1
(1 11)(1 1) 1 12 211
程的联立方程组。
17
如果可以从这个方程组解出 ˆ1,ˆq和 ,
就是ˆ2我们要求的参数估计值。 也可以先解出真实参数与自协方差、自
相关的关系,再代入样本估计值。 因为 k是时间序列过程的二阶矩,上述
估计量是通过q+1个样本矩方程求出的, 所以是矩估计量,具有一致估计的性质。
18
q=1时的参数估计
自相关函数 ppt课件

复杂周期信号波形
数字信号的谐波
分解周期信号的条件
• 狄利希莱条件
要将一周期信号分解为谐波分量,代表这一周期
信号的函数f(t)应当满足下列条件:
–
在一周期内,函数是绝对可积的,即 应为有限值;
| t1 T t1
f t| dt
– 在一周期内,函数的极值数目为有限;
– 在一周期内,函数f(t)或者为连续的,或者具有有限
总响应
n
rtsktthtkt
k0
S(t) 激励函数(输入 信号)的分解
s(kΔt)
0
r(kΔt) 第k个脉冲的 冲激响应(输 出信号)波形
0
r(t)
冲激响应叠加 后的总响应(输 出信号)波形
第k个脉冲函数之面积
skt•t (当Δt 0,脉冲函数
时 可近似表示为冲激函数)
域
kΔt
分 t
系统对第k个冲激函数
连续信号
f(t) 0
f(t)
f0
f1
t
t
0
f2
离散信号
f(tk)
(6)
(4.5)
(3) (1.5)
(2)
-1
t
01 2 3 4
(-1)
周期信号与非周期信号
用确定的时间函数表示的信号,可以分为 周期信号和非周期信号。
当且仅当 ftTf(t) t
则信号f(t)是周期信号,式中常数T 是信号
的周期。换言之,周期信号是每隔固定的 时间又重现本身的信号,该固定的时间间 隔称为周期。 非周期信号无此固定时间长度的循环周期。
|
f(t)|2dt
T/2
– 把该能量值对于时间间隔取平均,得到该时间内信号的平
信号相关分析原理自相关函数互相关函数PPT课件

耗的当能R量=1。时,即可得公压式((电5流.1)—加1)在。1电阻上所消
E
|
f (t) |2
dt
若f(t)为实
数
E 如果在无限f大(2的t时)d间t间隔内(,5.1—1) 信号的能量为有限值,而信号
的平均功率为零
对于能量信号E为有限值。 2
5.1 信号的互能量与互能谱
第五章 信号相关分析原理
5.1 信号的互能量与互能谱 5.2 信号的相关分析 5.3 离散信号的自相关函数 5.4 信号的互相关函数 作业
1
信(一由号)公的.式5能信.:量号1 :的E信能指号量信与的号功互fI(率能2tR)的量d归t与一互化能能谱U量R,2 d即t信号的电
T0 2
Ryx (
)
lim
T0
1 T0
T0
2 y(t)x(t )dt
T0 2
15
5.4 信号的互相关函数
互相关函数性质:
1、互相关函数不是偶函数。
Rxy( ) Rxy( ) Ryx( ) Ryx( )
2、Rxy( ) 和 Ryx( ) 不是同一个函数,即:
Wxy() X ()Y ()
Wxy()称为信号x(t)、y(t)的互能谱密度,简称互能
谱。
retur7 n
5.2 信号的相关分 (一)信号的析自相关函数
为了定量地确定信号x(t) 与时移副本x(t-) 的差
别或
相似程度,通常用 自相关函数:
Rx ( )
x(t)x(t )dt
信号的功率:信号电压(或电流)在1欧姆电阻上所消耗的功率。
在[T1,T2]时间内平均功率可表示为:
自相关函数和自协方差函数

9.2.3 自相关函数和自协方差函数上面介绍的均值、均方值和方差描述的是一维随机变量的统计特性,不能反映不同时刻各数值之间的相互关系。
例如,随机信号X(t) 分别在t 1,t 2时刻的随机取值X(t1),X(t2) 之间的关联程度如何,这种关联称为自关联。
同样,我们也要研究两个随机信号X(t)和Y(t)数值之间的关联程度,这种关联性称为X 与Y 之间的互关联(下一小节介绍)。
1.自相关函数(Autocorrelation function)自相关函数是描述随机信号X(t)在任意两个不同时刻t 1,t 2,的取值之间的相关程度。
定义6 实随机信号X(t)的自相关函数定义为(9.2.7)由于平稳随机信号的统计特性与时间的起点无关,设, 则有。
所以,平稳随机信号的自相关函数是时间间隔t 的函数,记为R xx (t).2.自协方差函数(Autocovariance function)自协方差函数是描述随机信号X(t)在任意两个不同时刻t 1,t 2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。
定义7 实随机信号X(t)的自协方差函数定义为(9.2.8)当 时,有 。
显然,自协方差函数和自相关函数描述的特性基本相同。
对于平稳随机信号,自协方差函数是时间间隔t 的函数,记为C xx (t),且有:(9.2.9) 当均值 时,有 。
当随机过程X(t)的均值为常数,相关函数只与时间间隔有关,且均方值为有限值时,则称X(t)为宽平稳随机过程或广义平稳随机过程。
它是由一维、二维数字特征定义的。
一般所说的平稳过程都是指这种宽平稳随机过程。
3.平稳随机信号自相关函数的性质设X(t)为平稳随机过程,其自相关函数为,自协方差函数,则有如下性质:(1) (9.2.10)(9.2.11)即时的自相关函数等于均方差,自协方差函数等于方差。
(2) (9.2.12)即当平稳随机信号是实函数时,其相关函数是偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续信号
f(t) 0
f(t)
f0
f1
t
t
0
f2
离散信号
f(tk)
(6)
(4.5)
(3) (1.5)
(2)
-1
t
01 2 3 4
(-1)
周期信号与非周期信号
用确定的时间函数表示的信号,可以分为 周期信号和非周期信号。
当且仅当 ftTf(t) t
则信号f(t)是周期信号,式中常数T 是信号
的周期。换言之,周期信号是每隔固定的 时间又重现本身的信号,该固定的时间间 隔称为周期。 非周期信号无此固定时间长度的循环周期。
连续信号与离散信号
如果在某一时间间隔内,对于一切时间 值,除若干不连续点外,该函数都能给 出确定的函数值,此信号称为连续信号。
和连续信号相对应的是离散信号。代表 离散信号的时间函数只在某些不连续的 时间值上给定函数值。
一般而言,模拟信号是连续的(时间和 幅值都是连续的),数字信号是离散的。
连续信号模拟信号
• 图2-4是时域分析法示意图。其中
– (a)表示将激励函数分解为若干个脉冲函数,第k个脉 冲函数值为s(kΔt)
– (b)表示系统对第k个脉冲的冲激响应,该响应的数值
是 rk t s k t th t k t
– (c) 是系统对于(a)所示的激励函数的总响应,可近似地
看作是各脉冲通过系统所产生的冲激响应的叠加。该
• 例:周期性脉冲信号的重复周期的倒数就是该 信号的基波频率,周期的大或小分别对应着低 的或高的基波和谐波频率;
• 信号分析中将进一步揭示两者的关系。
不同频率信号的时域图和频域图
信号还可以用它的能量特点加以区分。
– 在一定的时间间隔内,把信号施加在一负载上,负载上就 消耗一定的信号能量。
E
T/2
确定信号的频率特性
信号还具有频率特性,可用信号的频谱函数来表示。在频谱 函数中,也包含了信号的全部信息量。
频谱函数表征信号的各频率成分,以及各频率成分的振幅和 相位。
– 频谱:对于一个复杂信号,可用傅立叶分析将它分解为许 多不同频率的正弦分量,而每一正弦分量则以它的振幅和 相位来表征。将各正弦分量的振幅与相位分别按频率高低 次序排列成频谱。
|
f(t)|2dt
T/2
– 把该能量值对于时间间隔取平均,得到该时间内信号的平
均功率。
Plim1
T/2
|
f(t)|2dt
T T T/2
– 如果时间间隔趋于无穷大,将产生两种情况。
信号总能量为有限值而信号平均功率为零,称为能量信号; 考察信号能量在时域和频域中的表达式,非周期的单脉冲信 号就是常见的能量信号;信号平均功率为大于零的有限值而 信号总能量为无穷大,称为功率信号,考察信号功率在时域 和频域中的表达式。周期信号就是常见的功率信号。总响应 Nhomakorabean
rtsktthtkt
k0
S(t) 激励函数(输入 信号)的分解
s(kΔt)
0
r(kΔt) 第k个脉冲的 冲激响应(输 出信号)波形
0
r(t)
冲激响应叠加 后的总响应(输 出信号)波形
第k个脉冲函数之面积
skt•t (当Δt 0,脉冲函数
时 可近似表示为冲激函数)
域
kΔt
分 t
系统对第k个冲激函数
– 激励函数s(t) – 响应函数r(t)
• 系统对激励的的响应称为冲激响应函数 h(t)
• 对激励的响应是激励函数与系统冲激响 应函数的卷积
时域分析的方法(1)
• 利用线性系统的叠加原理,把复杂的激励在时域中分解成 一系列单位激励信号,然后分别计算各单位激励通过通信 系统的响应,最后在输出端叠加而得到总的响应。
确定信号的时间特性
表示信号的时间函数,包含了信号的全部 信息量,信号的特性首先表现为它的时间 特性。
时间特性主要指信号随时间变化快慢、幅 度变化的特性。
– 同一形状的波形重复出现的周期长短 – 信号波形本身变化的速率(如脉冲信号的脉
冲持续时间及脉冲上升和下降边沿陡直的程 度)
以时间函数描述信号的图象称为时域图, 在时域上分析信号称为时域分析。
– 频带:复杂信号频谱中各分量的频率理论上可扩展至无限, 但因原始信号的能量一般集中在频率较低范围内,在工程 应用上一般忽略高于某一频率的分量。频谱中该有效频率 范围称为该信号的频带。
以频谱描述信号的图象称为频域图,在频域上分析信号称为 频域分析。
时域和频域
时域特性与频域特性的联系
• 信号的频谱函数和信号的时间函数既然都包含 了信号的全部信息量,都能表示出信号的特点, 那么,信号的时间特性与频率特性必然具有密 切联系。
➢ 严格数学意义上的周期信号,是无始 无终地重复着某一变化规律的信号。 实际应用中,周期信号只是指在较长 时间内按照某一规律重复变化的信号。
➢ 实际上周期信号与非周期信号之间没
有绝对的差别,当周期信号fT(t)的周期 T 无限增大时,则此信号就转化为非 周期信号f(t)。即
Tli m fT(t)f(t)
第二章 信号及其描述
主要内容
–信号的分类与定义 随机信号与确定性信号 连续信号与离散信号 周期信号与非周期信号
–确定性信号的特性 时间特性 频率特性 时间与频率的联系
–确定性信号分析 时域分析 频域分析
–随机信号特性及分析
信号是信息的载体和具体表现形式,信息需转化为 传输媒质能够接受的信号形式方能传输。广义的说, 信号是随着时间变化的某种物理量。只有变化的量 中,才可能含有信息。
的冲激响应函数
析
s k t• t• h t k t
法
kΔt
t
示
确定信号与随机信号
当信号是一确定的时间函数时,给定某一时 间值,就可以确定一相应的函数值。这样的 信号称为确定信号。
随机信号不是确定的时间函数,只知道该信 号取某一数值的概率。
带有信息的信号往往具有不可预知的不确定 性,是一种随机信号。
除实验室发生的有规律的信号外,通常的信 号都是随机的,因为确定信号对受信者不可 能载有信息。
信号分析
• 时域分析 –信号时域分析(线性系统叠加原理) –卷积积分的应用及其数学描述
• 频域分析 –周期信号的频域分析(三角与指数傅立叶级 数) –非周期信号的频域分析(傅立叶积分) –信号在频域与时域之间的变换(正反傅立 叶变换式) –频谱与时间函数的关系
时域分析
• 系统的输入信号称为激励,输出称为响应 • 激励与响应都是时间的函数