MATLAB时间最优PID控制算法

合集下载

基于matlab的pid控制仿真课程设计

基于matlab的pid控制仿真课程设计

这篇文章是关于基于Matlab的PID控制仿真课程设计的,主要内容包括PID控制的基本原理、Matlab的应用、课程设计的目的和意义、课程设计的具体步骤和具体操作步骤。

文章采用客观正式的语气,结构合理,旨在解释基于Matlab的PID控制仿真课程设计的重要性和实施方法。

1. 简介PID控制是一种常见的控制算法,由比例项(P)、积分项(I)和微分项(D)组成,可以根据被控对象的实际输出与期望输出的偏差来调整控制器的输出,从而实现对被控对象的精确控制。

Matlab是一种强大的数学建模与仿真软件,广泛应用于工程领域,尤其在控制系统设计和仿真方面具有独特优势。

2. PID控制的基本原理PID控制算法根据被控对象的实际输出与期望输出的偏差来调整控制器的输出。

具体来说,比例项根据偏差的大小直接调整输出,积分项根据偏差的积累情况调整输出,微分项根据偏差的变化速度调整输出。

三者综合起来,可以实现对被控对象的精确控制。

3. Matlab在PID控制中的应用Matlab提供了丰富的工具箱,其中包括控制系统工具箱,可以方便地进行PID控制算法的设计、仿真和调试。

利用Matlab,可以快速建立被控对象的数学模型,设计PID控制器,并进行系统的仿真和性能分析,为工程实践提供重要支持。

4. 课程设计的目的和意义基于Matlab的PID控制仿真课程设计,旨在帮助学生深入理解PID控制算法的原理和实现方法,掌握Matlab在控制系统设计中的应用技能,提高学生的工程实践能力和创新思维。

5. 课程设计的具体步骤(1)理论学习:学生首先需要学习PID控制算法的基本原理和Matlab在控制系统设计中的应用知识,包括控制系统的建模、PID控制器的设计原理、Matlab的控制系统工具箱的基本使用方法等。

(2)案例分析:学生根据教师提供的PID控制实例,在Matlab环境下进行仿真分析,了解PID控制算法的具体应用场景和性能指标。

(3)课程设计任务:学生根据所学知识,选择一个具体的控制对象,如温度控制系统、水位控制系统等,利用Matlab建立其数学模型,设计PID控制器,并进行系统的仿真和性能分析。

PID控制算法及MATLAB仿真分析

PID控制算法及MATLAB仿真分析

题目:以PID控制进行系统仿真学院自动化学院专业班级工业自动化111班学生姓名黄熙晴目录1 引言 (1)1.1本论文研究内容 (1)2 PID控制算法 (1)2.1模拟PID控制算法 (1)2.2数字式PID控制算法 (3)2.3PID控制算法的改进 (5)2.3.1微分项的改进 (5)2.3.2积分项的改进 (9)2.4模糊PID控制算法 (11)2.4.1模糊推理的系统结构 (12)2.4.2 PID参数在线整定原则 (12)2.5PID控制器研究面临的主要问题 .................................. 错误!未定义书签。

3 MATLAB编程和仿真 (13)3.1PID控制算法分析 (13)3.2MATLAB仿真 (15)4结语 (20)参考文献...................................................................................... 错误!未定义书签。

1 引言PID控制器以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

光学表面等离子共振生物传感技术受温度影响很大,因此设计高精度的温度控制器对于生物分析仪十分重要。

研究PID的控制算法是PID控制器整定参数优化和设定的关键技术之一。

在工业过程控制中,目前采用最多的控制方式依然是PID方式。

它具有容易实现、控制效果好、鲁棒性强等特点,同时它原理简单,参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。

在实际的应用中,许多被控过程机理复杂,具有高度非线性、时变不确定性和纯滞后等特点,特别是在噪声、负载扰动等因素的影响下,参数复杂烦琐的整定过程一直困扰着工程技术人员。

为了减少参数整定的工作量,克服因环境变化或扰动作用造成系统性能的降低,就要提出一种PID控制参数的自动整定。

1.2本论文研究内容本文在介绍传统的PID控制算法,并对传统算法改进后,在学习的基础上提出一种模糊参数自整定方法,这种模糊控制的PID算法必须精确地确定对象模型。

PID控制算法的MATLAB仿真研究

PID控制算法的MATLAB仿真研究

目录一、课程设计的目的和要求.............................................. - 3 -二、课程设计的基本内容及步骤 ..................................... - 3 -三、设计过程...................................................................... - 4 -四、小结............................................................................. - 11 - 参考资料................................................................................ - 11 -一、课程设计的目的和要求1.目的(1)通过本课程设计进一步巩固PID算法基本理论及数字控制器实现的认识和掌握,归纳和总结PID控制算法在实际运用中的一些特性。

(2)熟悉MATLAB语言及其在控制系统设计中的应用,提高学生设计控制系统程序的能力。

2.要求通过查阅资料,了解PID算法的研究现状和研究领域,充分理解设计内容对PID算法的基本原理与运用归纳和总结,并独立完成设计实验和总结报告。

二、课程设计的基本内容及步骤1.任务的提出采用带纯滞后的一阶惯性环节作为系统的被控对象模型,传递函数为G(s)= Ke−τd s,其中各参数分别为K=30,T f=630,τd=60。

对PID控制算法的仿1+T f s真研究可以从以下四个方面展开。

(1)PID控制器调节参数K p、K I、K D的整定。

PID参数的整定对控制系统能否得到较好的控制效果是至关重要的,PID参数的整定方法有很多种,可采用理论整定法(如ZN法)或者实验确定法(如扩充临界比例度、试凑法等),也可采用模糊自适应参数整定、遗传算法参数整定等新型的PID 参数整定方法。

Matlab控制系统工具箱的PID控制设计指南

Matlab控制系统工具箱的PID控制设计指南

Matlab控制系统工具箱的PID控制设计指南导言控制系统工具箱是Matlab提供的一个用于分析和设计控制系统的工具包。

其中,PID控制是最常用且广泛应用的一种控制算法。

本文将介绍Matlab控制系统工具箱中PID控制的设计指南,帮助读者快速掌握PID控制的原理和实践技巧。

一、PID控制简介PID控制是一种基于比例、积分和微分的控制方法,适用于各种不确定性和变化的系统。

PID控制器通过实时测量系统的误差(e),并计算比例项(P)、积分项(I)和微分项(D)的乘积和,调整输出控制信号(u),进而实现对系统的稳定控制。

二、PID控制的数学模型PID控制器可以用以下的数学模型表示:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * △e(t)/dt其中,u(t)表示控制器的输出,e(t)表示误差,Kp、Ki和Kd分别代表比例、积分和微分控制器的增益参数。

PID控制的目标是调整这些参数以使误差最小化。

三、PID控制器的参数调节PID控制器的性能和稳定性取决于增益参数的设置。

Matlab控制系统工具箱提供了多种方法来自动或手动地调节这些参数。

1. 自动调参方法Matlab提供了一些自动调参的函数,如pidtune和pidtool。

这些函数可以根据系统的频率响应和稳定性指标,自动选择合适的PID参数。

使用这些方法可以节省调试时间,但需要注意调参结果的合理性和系统实际需求的匹配性。

2. 手动调参方法手动调参是一种通过试验和调整来寻找最佳PID参数的方法。

Matlab中可以使用step函数或PID Controller Tuner App来进行手动调参。

这种方法需要对系统的特性和动态响应有一定的了解,并经过多次试验和优化来寻找最佳参数。

四、PID控制器的性能分析在设计PID控制器时,除了调节参数之外,还需要进行性能分析来评估控制质量和稳定性。

Matlab控制系统工具箱提供了一些常用的性能指标和分析工具。

先进PID控制及MATLAB仿真第3章专家PID学习心得及疑问

先进PID控制及MATLAB仿真第3章专家PID学习心得及疑问

先进PID控制及MATLAB仿真第3章专家PID学习心得及疑问因为课题需要,刚开始学习专家控制器matlab仿真,用的是刘金锟先进PID控制及MATLAB仿真。

有一些问题想和大家交流,向大家请教。

1、第三章专家PID中,第一条规则应按最大输出。

在p96例3-1中输出分别为0.45、0.40、0.12、0.01。

如果我的输入信号不是阶跃信号,而是从0到1缓慢变化的s形曲线,如v=[1-cos(pi/50*t)]*735。

输出还可以设定为0.45、0.40、0.12、0.01吗?2、专家PID控制中第二条规则当误差处在增大阶段,前面讲的输出为,而例3-1中rule2输出u(k)=u_1+1.5*kp*x(1)。

这与上式为什么不同?我觉得kp*x(2)+ki*x(1)+kd*[x(2)-x2_1]等于u(k)的导数,对不对?它与kp*x(1)相等吗?为什么在例3-1中不用?3、假设某时刻误差处在变大阶段,且x(1)=0.25。

程序执行时首先执行rule1,因为误差大于0.2,则u(k)= 0.12。

然后再判断rule2,因为条件也满足,误差值在变大,也大于0.05所以u(k)又变为u_1+1.5*kp*x(1)。

这样程序是不是存在二义性?而且在我应用此算法仿真一五阶系统时(详见附件),rule5误差值小于0.001,则输出震荡,而改为0.1,则输出正常。

这样,很多时候,只要误差小于0.1,则执行rule1,u(k)先等于0.1,再执行rule2,等于u_1+1.5*kp*x(1),再执行rule5,等于0.4*x(1)+0.475*x(3)。

这样,使得rule2、rule4根本就不起作用。

我觉得各误差段应既无遗漏又不重叠。

不知我的理解对否?4、本来我对采样时间的理解是采样时间越短,仿真精度越高。

但我发现只改变采样时间,其它不变,则输出大不相同,甚至震荡。

一开始我以为我的控制器没设计好,后来我找了书上不少例子试了试,例3-1、1-9、1-12都有此现象。

控制系统pid参数整定方法的matlab仿真

控制系统pid参数整定方法的matlab仿真

控制系统PID参数整定方法的MATLAB仿真1. 引言PID控制器是一种常见的控制算法,广泛应用于自动控制系统中。

其通过调节三个参数:比例增益(Proportional gain)、积分时间常数(Integral time constant)和微分时间常数(Derivative time constant),实现对被控对象的稳态误差、响应速度和稳定性等性能指标的调节。

PID参数的合理选择对控制系统的性能至关重要。

本文将介绍PID控制器的经典整定方法,并通过MATLAB软件进行仿真,验证整定方法的有效性。

2. PID控制器的整定方法2.1 手动整定法手动整定法是根据经验和试错法来选择PID参数的方法。

具体步骤如下:1.将积分时间常数和微分时间常数设为零,仅保留比例增益,将比例增益逐渐增大直至系统产生较大的超调现象。

2.根据超调响应的情况,调整比例增益,以使系统的超调量接近所需的范围。

3.逐步增加微分时间常数,观察系统的响应速度和稳定性。

4.增加积分时间常数,以减小系统的稳态误差。

手动整定法的优点是简单易行,但需要经验和反复试验,对控制系统要求较高。

2.2 Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于试探和试错法的自整定方法,该方法通过调整系统的输入信号,观察系统的输出响应,从而确定PID参数。

具体步骤如下:1.将I和D参数设为零,仅保留P参数。

2.逐步增大P参数,直到系统的输出出现大幅度的振荡。

3.记录下此时的P参数值,记为Ku。

4.根据振荡的周期Tp,计算出系统的临界增益Kc = 0.6 * Ku。

5.根据系统的类型选择相应的整定法则:–P型系统:Kp = 0.5 * Kc,Ti = ∞,Td = 0–PI型系统:Kp = 0.45 * Kc,Ti = Tp / 1.2,Td = 0–PID型系统:Kp = 0.6 * Kc,Ti = Tp / 2,Td = Tp / 82.3 Cohen-Coon整定法Cohen-Coon整定法是基于频域曲线拟合的方法,主要应用于一阶和二阶系统的整定。

先进PID控制及其MATLAB仿真

先进PID控制及其MATLAB仿真

1.1 PID控制原理
PID控制器各校正环节的作用如下:
比例环节:成比例地反映控制系统的偏差信号e(t),偏差 一旦产生,控制器立即产生控制作用,以减小偏差。 积分环节:主要用于消除静差,提高系统的无差度。积 分作用的强弱取决于积分时间常数T,T越大,积分作用 越弱,反之则越强。 微分环节:反映偏差信号的变化趋势,并能在偏差信号 变得太大之前,在系统中引入一个有效的早期修正信号, 从而加快系统的动作速度,减少调节时间。
j 0 k 1
增量式PID的算法:
u(k ) u(k ) u(k 1)
u(k ) k p (e(k ) e(k 1)) kie(k ) kd (e(k ) 2e(k 1) e(k 2))
1.3.4 增量式PID控制算法及仿真
根据增量式PID控制算法,设计了仿真程序。 设被控对象如下:
1.3.3 离散系统的数字PID控制仿真
阶跃响应结果
1.3.4 增量式PID控制算法及仿真
当执行机构需要的是控制量的增量(例如驱动 步进电机)时,应采用增量式PID控制。根据 递推原理可得:
u(k 1) k p (e(k 1) ki e( j ) kd (e(k 1) e(k 2)))
积分分离控制算法可表示为:
u(k ) k p e(k ) ki e( j )T kd (e(k ) e(k 1)) / T
j 0
k
式中,T为采样时间,β项为积分项的开关系数
1 0
e(k )
e(k )
1.3.5 积分分离PID 控制算法及仿真
根据积分分离 式PID控制算 法得到其程序 框图如右图。
1.3.5 积分分离PID控制算法及仿真

matlab自整定pid算法

matlab自整定pid算法

matlab自整定pid算法
MATLAB中有多种方法可以自整定PID算法,以下是其中两
种常见的方法:
1. Ziegler-Nichols方法:
- 首先,将PID控制器的P和I增益设置为零,将D增益设置
为一个较小的非零值。

- 增加P增益,直到系统出现持续的高频振荡。

记录下此时的
P增益,记为Ku。

- 根据振荡的周期T,计算出临界增益Kc:Kc = 0.6 * Ku。

- 将PID控制器的增益重新设置为零,根据以下公式计算PID
控制器的增益:Kp = 0.6 * Kc,Ki = 1.2 / (T * Kc),Kd = 0.075 / (T * Kc)。

- 将这些增益值设置到PID控制器中,进行实际的控制。

2. AMIGO方法:
- 首先,收集系统的开环响应数据,包括输入信号和输出信号。

- 使用AMIGO工具箱读取数据并进行预处理。

- 选择合适的模型结构,例如一阶传递函数、二阶传递函数等。

- 使用AMIGO工具箱中的模型校准方法,例如最小二乘法或
极大似然法,将模型参数校准到实际数据中。

- 根据得到的模型参数,计算PID控制器的增益值。

- 将这些增益值设置到PID控制器中,进行实际的控制。

根据具体的系统和要求,可以选择适合的自整定方法,并使用MATLAB进行实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB时间最优PID控制算法
function [ output_args ] = Untitled3( input_args )
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
clear all;
close all;
ts=20;
sys=tf([1],[60,1],'inputdelay',80);
dsys=c2d(sys,ts,'zoh');
[num,den]=tfdata(dsys,'v');
u1=0;u2=0;u3=0;u4=0;u5=0;
y1=0;y2=0;y3=0;
error1=0;error2=0;
ei=0;
for k=1:1:200
time(k)=k*ts;
yd(k)=1.0;
y(k)=-den(2)*y1+num(2)*u5;
error(k)=yd(k)-y(k);
kp=0.45;kd=12;ki=0.0048;
A=0.4;B=0.6;
ei=ei+(error(k)+error1)/2*ts;
M=1;
if M==1
if abs(error(k))<=B
f(k)=1;
elseif abs(error(k))>B&abs(error(k))<=A+B
f(k)=(A-abs(error(k))+B)/A;
else f(k)=0;
end
elseif M==2
f(k)=1;
end
u(k)=kp*error(k)+kd*(error(k)-error1)/ts+ki*f(k)*ei;
if u(k)>=10
u(k)=10;
end
if u(k)<=-10
u(k)=-10;
end
u5=u4;u4=u3;u3=u2;u2=u1;u1=u(k);
y3=y2;y2=y1;y1=y(k);
error2=error1;error1=error(k);
end
figure(1);
plot(time,yd,'r',time,y,'k:','linewidth',2);
xlabel('time(s)');ylabel('yd,y');
%legend('理想位置','信号位置');
figure(2);
plot(time,f,'r','linewidth',2);
xlabel('time(s)');ylabel('Intergration rate f');
end
时间最优控制图
一般PID控制图
时间最优控制使所用的时间最短,即目标函数是过度过程时间最短,但是这种时间短是建立在牺牲准确度的基础上的,当时间所用最短时,最后达到的稳定状态相应偏移预期稳定状态。

相关文档
最新文档