初一数学第六章

合集下载

七年级初一数学第六章 实数(讲义及答案)含答案

七年级初一数学第六章 实数(讲义及答案)含答案

七年级初一数学第六章 实数(讲义及答案)含答案一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .666 2.2(4)-的平方根与38-的和是( )A .0B .﹣4C .2D .0或﹣4 3.下列结论正确的是( ) A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0D .327-=﹣34.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③5.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .46.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 7.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±98.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个B .2个C .3个D .4个 9.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0 10.下列各组数中互为相反数的是( )A .32(3)-B .﹣|2|2)C .﹣38和38-D .﹣2和12二、填空题11.若已知()21230a b c -+++-=,则a b c -+=_____.12.64的立方根是___________.13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.写出一个3到4之间的无理数____.15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.18.49的平方根是________,算术平方根是______,-8的立方根是_____.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. 三、解答题21.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方”(初步探究)(1)直接写出计算结果:2③,(﹣12)③.(深入思考)2④2 111111 2222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧23.观察下列各式:111122-⨯=-+;11112323-⨯=-+;11113434-⨯=-+;…(1)你发现的规律是_________________.(用含n的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯⎪ ⎪⎝⎭⎝⎭24.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.25.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ …. 按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.点睛本题考查了估算无理数的大小.2.D解析:D【分析】【详解】=4,4的平方根是±2,的平方根为±2,2,﹣2+(﹣2)=﹣4,2+(﹣2)=0.0或﹣4.故选:D.【点睛】本题考查的是实数的运算,熟知平方根的定义及立方根的定义是解答此题的关键.3.D解析:D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.4.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A.【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.5.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C.【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.6.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=, 故选:A .【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键.7.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 8.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 9.A解析:A【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案.【详解】∵一个正数的两个平方根互为相反数,∴3a+1+a+11=0,a=-3,∴3a+1=-8,a+11=8∴这个数为64,所以,这个数的立方根为:4.故答案为:4.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.10.B解析:B【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B、﹣||,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.故选:B.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题11.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a、b、c的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 12.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.13.-5【解析】∵32<10<42,∴的整数部分a=3,∵b 的立方根为-2,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.14.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.解析:π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.17.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.18.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±77-2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.19.-2 【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定. 【详解】 解:= ……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2- 故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.-3 【分析】先确定的范围,再确定的范围,然后根据题意解答即可. 【详解】 解:∵3<<4 ∴-3<<-2 ∴-3故答案为-3. 【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3 【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34 ∴-3<1--2∴1⎡=⎣-3故答案为-3. 【点睛】三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783 【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。

七年级初一数学 第六章 实数(讲义及答案)含答案

七年级初一数学 第六章 实数(讲义及答案)含答案
根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.
【详解】
A.有理数是整数和分数的统称,正确;
B.立方等于本身的数是-1,0,1,错误;
C. 不一定是负数,错误;
D.若 ,则 或 ,错误;
故答案为:A.
【点睛】
本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.
5,7,11,19,35,67…②
根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).
12.若实数a、b满足 ,则 =_____.
13.若|x|=3,y2=4,且x>y,则x﹣y=_____.
14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.
七年级初一数学 第六章 实数(讲义及答案)含答案
一、选择题
1.对一组数 的一次操作变换记为 ,定义其变换法则如下:
,且规定 ( 为大于 的整数),
如, , , ,
则 ( ).
A. B. C. D.
2.下列说法正确的是( )
A.有理数是整数和分数的统称B.立方等于本身的数是0,1
C. 一定是负数D.若 ,则
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________; ⑩=________.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;
(3)算一算: .

七年级数学北师大版下册初一数学--第六单元 6.2《频率的稳定性》第一课时-课件

七年级数学北师大版下册初一数学--第六单元 6.2《频率的稳定性》第一课时-课件
(1)由这张次数和频率表可知,机器人抛掷完5次时, 得到1次正面,正面出现的频率是20%,那么,也 就是说机器人抛掷完5次时,得到___4___次反面, 反面出现的频率是___8_0_%___.
知1-讲
(2)由这张次数和频率表可知,机器人抛掷完9 999次时, 得到__5_0_0_6___次正面,正面出现的频率约是__5_0_.1_%__. 那么,也就是说机器人抛掷完9 999次时,得到_4__9_9_3 次反面,反面出现的频率约是__4_9_.9_%___.
试验总次数 钉尖朝上的次数 钉尖朝下的次数
钉尖朝上的频率
钉尖朝上的次数 试验总次数
钉尖朝下的频率
钉尖朝下的次数 试验总次数
(来自《教材》)
知1-讲
定义:在n次重复试验中,不确定事件A发生了m次,
则比值
m n
称为事件 A发生的频率.
知1-讲
例1 〈长沙〉在一个不透明的盒子中装有n个小球,它们 只有颜色上的区别,其中有2个红球,每次摸球前先 将盒子中的球摇匀,随机摸出一个球记下颜色后再 放回盒中,通过大量重复摸球试验后发现,摸到红 球 的 频 率 稳 定 于 0.2 , 那 么 可 以 推 算 出 n 大 约 是 ___1_0____.
知2-练
3 某人在做掷硬币试验时,投掷m次,正面朝上有n次
(即正面朝上的频率是P=
n m
).
则下列说法中正确的
是( D )
1
A.P一定等于 2 B.P一定不等于
1 2
C.多投一次,P更接近
1 2
D.随投掷次数逐渐增加,P在
1
附近摆动
2
知2-练
4 在一个不透明的盒子里装着若干个白球,小明想估计其中

人教版初一数学第六章实数重点题型及知识点

人教版初一数学第六章实数重点题型及知识点

人教版初一数学第六章实数重点题型及知识点单选题1、已知a,b分别是6﹣√5的整数部分和小数部分,则( )A.a=2,b=3−√5B.a=3,b=3−√5C.a=4,b=2−√5D.a=6,b=3−√5答案:B解析:先求出√5范围,再两边都乘以﹣1,再两边都加上6,即可求出a、b.∵2<√5<3,∴﹣3<﹣√5<﹣2,∴3<6﹣√5<4,∴a=3,b=6﹣√5﹣3=3﹣√5;故选B.小提示:本题考查了估算无理数的大小和有理数的混合运算的应用,关键是根据学生的计算能力进行解答.2、下列四个数中,最小的数是()A.1B.﹣√3C.2D.−23答案:B解析:正数大于0,负数小于0,正数大于负数,两个负数比较大小,绝对值大的反而小.|,解:∵|-√3|>|−23∴﹣√3<−2<1<2,3∴最小的数是﹣√3.故选:B.小提示:本题考查了实数的大小比较,熟练掌握实数的大小比较方法是解答本题的关键.3、下列命题是真命题的是()A.如果一个数的平方等于这个数本身,那么这个数一定是0B.如果一个数的平方根等于这个数本身,那么这个数一定是0C.如果一个数的算术平方根等于这个数本身,那么这个数定是0D.如果一个数的立方根等于这个数本身,那么这个数定是0答案:B解析:根据平方、平方根、算术平方根、立方根的定义,思考特殊值,即可求出答案.解:A、如果一个数的平方等于这个数本身,那么这个数一定是0或1,故A是假命题;B、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;C、如果一个数的算术平方根等于这个数本身,那么这个数一定是0或1,故C是假命题;D、如果一个数的立方根等于这个数本身,那么这个数是0、1、-1,故D是假命题.故选:B.小提示:此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.4、已知a,b分别是6﹣√5的整数部分和小数部分,则( )A.a=2,b=3−√5B.a=3,b=3−√5C.a=4,b=2−√5D.a=6,b=3−√5答案:B解析:先求出√5范围,再两边都乘以﹣1,再两边都加上6,即可求出a、b.∵2<√5<3,∴﹣3<﹣√5<﹣2,∴3<6﹣√5<4,∴a=3,b=6﹣√5﹣3=3﹣√5;故选B.小提示:本题考查了估算无理数的大小和有理数的混合运算的应用,关键是根据学生的计算能力进行解答.5、下列等式正确的是()A.√49144=±712B.−√−2783=−32C.√−9=−3D.√(−8)23=4答案:D解析:原式各项利用立方根及算术平方根定义计算即可得到结果.A、原式=712,错误;B 、原式=-(-32)=32,错误;C 、原式没有意义,错误;D 、原式=√643=4,正确,故选D .小提示:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.6、在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是( )A .②③B .②③④C .①②④D .②④答案:C解析:根据相反数、非负数、实数的大小比较、无限小数等方面逐一进行分析即可得.①因为实数包括有理数和无理数,无理数的相反数不可能是有理数,故①正确;②一个数的绝对值一定≥0,故②正确;③数的大小,和它是有理数还是无理数无关,故③错误;④无限循环小数是有理数,故④正确,故选C .小提示:本题考查了实数的概念,从无理数的概念出发,区分无理数和有理数容易混淆的地方,熟练掌握是解题的关键.7、在下列各数中是无理数的有( )−0.111⋯,√4,√5,3π,3.1415926,2.010101⋯(相邻两个0之间有1个1),76.01020304050607⋯,√23.A.3个B.4个C.5个D.6个答案:B解析:根据无理数是无限不循小数,可得答案.3是无理数,解:√5,3π,76.01020304050607⋯,√2故选:B.小提示:本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.8、下列说法:①数轴上的任意一点都表示一个有理数;②若a、b互为相反数,则a+b=0;③多项式xy2−xy+24是四次三项式;④几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有()A.0个B.1个C.2个D.3个答案:C解析:数轴上的点可以表示无理数,所以①错误;若a,b互为相反数则a+b=0,则②正确;24是常数项,所以③错误;根据有理数的乘法法则可判断④正确.数轴上的点既可以表示有理数,也可以表示无理数,所以①错误;若a,b互为相反数则a+b=0,则②正确;24是常数项,xy2−xy+24是三次三项式,故③错误;根据有理数的乘法法则可判断④正确.故正确的有②④,共2个故选C小提示:本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键.填空题3=4,那么(a-67)3的值是______9、如果√a+4答案:-343解析:利用立方根的定义及已知等式求出a的值,代入所求式子计算即可求出值.3=4,∵√a+4∴a+4=43,即a+4=64,∴a=60,则(a-67)3=(60-67)3=(-7)3=-343,故答案为-343.小提示:本题考查了立方根,熟练掌握立方根的定义是解本题的关键.3.10、计算:|1−√3|+√9−√8答案:√3解析:分别绝对值运算、算术平方根运算、立方根运算、合并同类项进行求解即可.解:原式=√3−1+3−2=√3.小提示:本题考查实数的混合运算,熟练掌握运算法则是解答的关键.11、比较大小:10_______√120(填“>”、“<”或“=”).答案:<解析:先把10化成√100,再比较被开方数的大小,即可得出答案.10=√100,∵100<120,∴√100<√120,∴10<√120.所以答案是:<.小提示:本题主要考查了实数的大小的比较,用到了把有理数利用平方的性质变为用根号表示的数的方法,熟练掌握此方法是解题的关键.12、请写一个比−√6小的无理数....答:____.答案:−√7(答案不唯一)解析:根据无理数的定义填空即可.解:比−√6小的无理数如:−√7(答案不唯一),故答案为−√7(答案不唯一).小提示:本题考查了无理数的定义及比较无理数大小,比较基础.13、将下列各数填入相应的括号里:−|−0.7|,−(−9),−512,0,8,−2,π2,23,−1.121121112…,−0.1·5·.整数集合{ …};负分数集合{ …};无理数集合{ …}.答案:见解析.解析:先化简,后根据整数包括正整数,0,负整数;负分数,无理数的定义去判断解答即可.∵-|-0.7|=-0.7,是负分数,-(-9)=9,是整数,−512是负分数,0是整数,8是整数,-2是整数,π2是无理数,23是正分数,−1.121121112…是无限不循环小数,是无理数,−0.1·5·是无限循环小数,是有理数,是负分数,∴整数集合{ -(-9),0,8, -2 …};负分数集合{ -|-0.7|, −512, −0.1·5· …}; 无理数集合{ π2 , −1.121121112……}.所以答案是:-(-9),0,8, -2 ;-|-0.7|, −512 , −0.1·5·;π2 , −1.121121112…….小提示:本题考查了有理数,无理数,熟练掌握各数的定义,特征,并合理化简判断是解题的关键.解答题14、当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某种型号的汽车的撞击影响可以用公式I =2v 2来表示,其中v(千米/分)表示汽车的速度.假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一下该车撞击时的车速是多少.(精确到0.1千米/分)答案:5.0解析:由I=2v 2,这种型号的汽车在一次撞车实验中测得撞击影响为51,即可得v 2=512,继而求得答案. 由题意知2v 2=51,v 2=512,所以v =√512≈5.0(千米/分)∴该车撞击时的车速是5.0千米/分小提示:此题考查了算术平方根的应用.注意理解题意是解此题的关键.15、计算:(1)7−|−2|+√−273(2)5×(34−12)÷(−12)2答案:(1)2;(2)5解析:(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.解:(1)7−|−2|+√−273=7-2-3=2;(2)5×(34−12)÷(−12)2=5×14÷14=5.小提示:此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.。

七上数学第六章知识点和笔记

七上数学第六章知识点和笔记

七上数学第六章知识点和笔记1. 有序数对。

- 定义:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

- 作用:可以准确地表示出一个位置。

例如在电影院中确定座位的位置,教室里确定学生座位的位置等。

2. 平面直角坐标系。

- 概念。

- 在平面内,两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

- 点的坐标。

- 对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y 轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

- 坐标的表示:例如点A(3, - 2),其中3是横坐标,-2是纵坐标。

- 象限。

- 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成四个部分,每个部分称为象限,右上部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

坐标轴上的点不属于任何象限。

- 第一象限内的点的坐标特征是(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)。

3. 坐标方法的简单应用。

- 用坐标表示地理位置。

- 建立平面直角坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向。

- 根据具体问题确定单位长度。

- 在坐标平面内描出这些点,写出各点的坐标和各个地点的名称。

- 用坐标表示平移。

- 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x + a,y)(或(x - a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y + b)(或(x,y - b))。

- 图形的平移:图形平移时,图形上各点的坐标变化规律相同,所以可以通过某一个点的坐标变化来确定整个图形的平移情况。

二、笔记示例。

第六章平面直角坐标系。

一、有序数对。

1. 定义。

- 有序数对(a,b),a与b顺序不能颠倒。

人教版七年级数学第六章实数6.1平方根

人教版七年级数学第六章实数6.1平方根

a
-a
表示的 a 的算术平方 a 的算术平方
意义

根的相反数
±a a 的平方根
感悟新知
特别解读 平方与开平方是互逆运算,平方的结果叫做幂,
而开平方的结果叫做平方根.
感悟新知
例6 求下列各数的平方根和算术平方根:
(1)121;(2)2 7 ;(3)-(-4)3;(4)
9
49 .
解题秘方:先根据平方运算找出平方等于这个数的
数,然后根据平方根和算术平方根的定义确定.
感悟新知
解:(1)因为(±11)2=121,
所以121 的平方根是±11,算术平方根是11.
(2)
27 9
25 9
,因为
5 3
2
25 , 9
所以2
7
的平方根是±
5
,算术平方根是
5
.
9
3
3
感悟新知
(3) -( -4)3=64,因为( ±8)2=64, 所以- (-4)3 的平方根是±8,算术平方根是8.
感悟新知
解:(1)因为1< 3<2,所以0< 3-1<1.
所以 3-1< 1 . 22
(2)因为 401> 400=20,
所以 401-5> 400-5 20-5 3.75.
4
4
4
感悟新知
4-1. 比较下列各组数的大小.
(1)- 10与-3.2;
(2) 6-1 与 2+1;
2
2
(3) 99-7 与 8 . 25
1. 定义:一般地,如果一个数的平方等于 a,那么这个数 叫做a 的平方根或二次方根 . 这就是说,如果x2=a,那 么x 叫做a的平方根. 表示方法:非负数a 的平方根记为± a ,读作“正、 负根号a”.

2024年北师大七年级数学上册第六章 小结与复习(课件)

2024年北师大七年级数学上册第六章 小结与复习(课件)

要点梳理
一、数据的收集
1. 收集数据的方法
收集数据的常用方法有:调查、试验、查阅资料 等,调查又分为实地调查、问卷调查和访问调查等.
2. 统计活动的过程 (1)明确调查目的和问题; (2)确定调查对象; (3)选择调查方法; (4)展开调查; (5)收集并整理数据; (6)分析数据,得出结论.
二、普查和抽样调查 1. 普查有关概念
A. 随机抽取该校一个班级的学生 B. 随机抽取该校一个年级的学生 C. 随机抽取该校一部分男生 D. 分别从该校初一、初二、初三年级中各随机抽
取10%的学生
考点三 根据统计图获取调查信息
例3 某校课外小组为了解同学们对学校“阳光跑操” 活动的喜欢程度,抽取部分学生进行调查.被调查的 每个学生按 A (非常喜欢)、B (比较喜欢)、C (一般)、 D (不喜欢) 四个等级对活动评价.图①②是该小组采 集数据后绘制的两幅统计图.经确认扇形统计图是正 确的,而条形统计图尚有一处错误且并不完整.请你 根据统计图提供的信息,解答下列问题:
解析:在条形图和扇形图中,关于 A,B 的统计量是 已知的,且是成比例的,说明两个组数据若错则都错, 若正确则都正确,而题目告诉我们只有一个是错的, 所以错的只有条形图中的 C 了。由此入手,先算出样 本容量,再由样本容量进一步算出等级 D 的人数,再 用样本容量减去 A,B,D 等级的人数即得 C 等级的 人数,然后更正.(4) 用样本中的“非常喜欢”和 “比较喜欢”的学生占样本的比例乘总人数600,即 得全校对此活动“非常喜欢”和“比较喜欢”的学生 共有多少人.
(1) 此次调查的人数为__2_0_0____人; (2) 条形统计图中存在的错误是___C_____(填A,B, C中的一个),并在图中加以改正;

七年级数学第六章 变量之间的关系北师大版知识精讲

七年级数学第六章 变量之间的关系北师大版知识精讲

初一数学第六章变量之间的关系北师大版【本讲教育信息】一. 教学内容:第六章变量之间的关系[教学要求]1、能分清实际问题中的常量与变量、自变量与因变量,并能举出反映变量之间关系的例子。

2、通过对某种图形中变量之间关系的探索,进一步体验一个变量的变化对另一个变量的影响,发展符号感。

能根据具体问题,用关系式表示某些变量之间的关系。

3、经历从图像中分析变量之间关系的过程进一步感受变量之间的关系。

4、进一步经历从图中分析变量之间关系的过程,从而加深对图像表示自变量与因变量关系的理解,逐步培养从图像中获取信息的能力。

[重点及难点]1、重点是对常量、自变量及因变量等概念的理解。

难点是根据表格中的数据尝试对变化趋势进行初步的预测。

2、重点是根据具体问题求自变量与因变量之间的关系式,并能用关系式求因变量的值。

难点是建立实际问题中自变量与因变量之间的关系式。

3、从熟悉的情景出发用图像直观的表示两个变量之间的关系,并获得对图像反映变量之间关系的体验。

4、重点是从图像中获取信息,难点是用语言描述图像所表示的变化过程。

[知识要点]一、小车下滑的时间1、如果用h 表示支撑物的高度,t 表示小车下滑时间,随着h 逐渐变大,t 的变化趋势是什么?在表中,支撑物高度h 和小车下滑时间t 都在变化,它们都是变量,其中t 随h 的变化而变化,h 是自变量,t 是因变量。

二、变化中的三角形(1)关系式:表示自变量与因变量之间关系的数学式子叫做关系式。

△ABC 底边BC 上的高是6厘米,当三角形的顶点C 沿所在直线向点B 运动时,三角形的面积发生了什么变化?如果三角形的底边长为x 厘米,那么三角形的面积y 可以表示为(y =3x )圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之发生了变化。

如果圆锥底面半径为r (厘米),那么圆锥的体积V 与r 的关系式为(V =43πr 2)圆锥的底面半径是2厘米,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化,如果圆锥的高为h (厘米),那么圆锥的体积V 与h 的关系式为(V =43πh )(2)因变量的值:对于每一个确定的自变量值,例如x=a时,因变量有一个唯一确定的对应值,这个对应值,叫做当自变量x=a时的因变量的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章概率初步
必然事件:在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件。

不可能事件:概率论中把在一定条件下不可能发生的事件叫不可能事件。

人们通常用0来表示不可能事件发生的可能性。

即:不可能事件的概率为0。

但概率为0的事件不一定为不可能事件。

随机事件:是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)
必然事件的概率是1
不可能事件的概率是0
随机事件的概率0~1
概率的求取,就是n次实验过程中,出现了m次某个事件,这个事件的概率就为m/n。

相关文档
最新文档