第三代碳纤维技术

合集下载

超高分子量聚乙烯纤维

超高分子量聚乙烯纤维

超高分子量聚乙烯纤维(UHMWPE)是继碳纤维、芳纶纤维之后出现的第三代高性能纤维,具有优良的力学性能。

其密度只有芳纶纤维的2/3和高模碳纤维的1/2,还具有优良的耐冲击性能、优良的耐化学腐蚀性、优越的耐磨性能和良好的电绝缘性等。

所以,UHMWPE纤维在航天航空、军事工业等重要部门得到了广泛的应用。

UHMWPE纤锥和其他几种纤维的强度对比见表1。

表1 几种高强纤维性能对比类别UHMWPE纤维(SK66)芳纶纤维(HM)碳纤维(HM)E玻纤尼龙66(HT)密度/(g?cm-3)0.971.441.852.551.14拉伸强度/GPa3.12.72.32.00.9韧性/(N?tex-1)3.21.91.20.80.8拉伸模量/GPa10058390736断裂伸长率,%3.53.71.52.020 但是,由于UHMWPE纤维轴向取向度高(大于95%)和结晶度高(大于99%),表面光滑,本身由简单的亚甲基组成,使得纤维表面无任何反应活性点,不能与树脂形成化学键合,使其表面能低且不易被树脂润湿,又无粗糙的表面以供形成机械啮合点,这样严重限制了其在树脂基复合材料中的应用。

为了提高UHMWPE纤维表面活性,增强纤维和树脂之间界面的强度,增加其在复合材料中的应用范围,需要对UHMWPE纤维进行表面改性。

1 复合材料界面的重要性在复合材料中,树脂只起连接的作用,纤维则是主要的受力体,而纤维与基体之间的界面上存在着一系列的效应,如传递应力的传递效应、阻断复合材料裂纹扩展发生的阻断效应等,若纤维与基体之间的界面粘结力不强,复合材料破坏时,裂纹容易从界面处产生,并沿着纤维的方向扩展,最终导致纤维与基体脱胶;反之,纤维和基体的粘结力较强,裂纹的扩散被限制于局部范围,使复合材料中纤维和基体产生协同效应,复合材料的性能得到大大增强。

所以,粘结力强的界面能很好地将应力从基体传递到纤维上;纤维和基体之间的界面示意见图1(略)。

同时,在复合材料中,界面占有很大的比例,如在复合材料中纤维(直径10μm;长9mm)体积分数为30%时,在100 cm3的复合材料中就有2X108cm2面积的界面。

主要高性能纤维的特性和应用

主要高性能纤维的特性和应用

主要高性能纤维的特性和应用裘愉发【摘要】简介了列入"十一五"科技攻关的PAN基碳纤维、芳砜纶、玄武岩纤维及其复合材料、聚苯硫醚纤维、高强高模聚乙烯纤维等高性能纤维及PBO纤维、聚酰哑胺纤维和聚四氟乙烯纤维的性能及其可开发的纺织产品,并指出了这些高性能纤维的开发前景.【期刊名称】《现代丝绸科学与技术》【年(卷),期】2010(025)001【总页数】4页(P17-19,24)【关键词】高性能纤维;产品开发;发展前景【作者】裘愉发【作者单位】上海市纺织工程学会,上海,200060【正文语种】中文上世纪初世界上就研究开发出再生纤维中的粘胶纤维,1930年代又开发出合成纤维中的尼龙,并在以后相继研发出聚酯、聚丙烯等纤维,但它们的强度和模量一直维持在一个低的水平。

直到1970年代初刚性链聚芳酯芳纶和1970年代末柔性链聚乙烯、高强高模聚乙烯纤维的出现,纤维的强度和模量才发生了根本性的突破,从而使高性能纤维如雨后春笋般地发展。

高性能纤维是指与传统的棉、毛、丝、麻等天然纤维及涤纶、锦纶、丙纶、腈纶等合成纤维相比,具有高弹性系数、高强度、耐热性、耐摩擦性、耐化学药品性、电绝缘性的新型化学纤维,并对外部的作用不易产生反应,它属于高科技纤维,可分有机纤维和无机纤维两大类。

1 主要的高性能纤维列入我国《“十一五”科技攻关和产业化项目指南》的高性能纤维是:碳纤维、芳纶、玄武岩纤维及其复合材料、聚苯硫醚纤维和高强高模聚乙烯纤维等。

1.1 PAN基碳纤维碳纤维(ACF)的生产原料有粘胶纤维(Rayon)、聚丙烯腈纤维(PAN)、酚醛纤维、沥青纤维等,各种碳纤维的性能如表1所示,而PAN基碳纤维因其具有的高强度、高刚度、重量轻、耐高温、耐腐蚀、优异的电性能等特点,在与其他纤维的竞争中具有较大发展优势。

表1 常用碳纤维品种的物理性能碳纤维品种碳含量/%拉伸强度/MPa杨氏模量/GPa体积质量/(g/cm3)电阻率/Ω.cm单丝直径/μm聚丙烯腈基碳纤维9539002301.8000157沥青基碳纤维≥90≥34541.6-0004⁃000710⁃15粘胶基碳纤维≥901800751.7-6.5聚丙烯腈(PAN)基碳纤维有两大类,即大丝束碳纤维(LT)和小丝束碳纤维(CT)。

已见繁花结硕果 更立壮志谱新篇——记中科院炭材料重点实验室刘

已见繁花结硕果 更立壮志谱新篇——记中科院炭材料重点实验室刘

创新人物Innovation Character他是将我国碳纤维制备技术推进到国际水平的践行者。

为攻克碳纤维技术壁垒摆脱海外掣肘,他潜心钻研,终于,功夫不负有心人。

他是推动国产高性能纤维在国防和工业领域全面应用的铺路人。

针对国家重大战略需求,他带领团队开展了国产新型碳纤维的关键技术研发攻关,突破了聚丙烯腈(PAN)基碳纤维工程制备技术瓶颈,为新型碳纤维从实验室走向工业化奠定了技术基础。

他以材料报国为己任,自主研发,解决了我国第三代高性能碳纤维及其复合材料在模量和压缩强度方面不足的实际问题,建立了具有自主产权的碳纤维新型制备技术,形成具有自主体系、自主规格的第三代高强高模高韧碳纤维样品,为中国从“纤维大国”走向“纤维强国”贡献了力量。

他,就是中科院炭材料重点实验室副主任刘耀东。

材料报国,志在超越少年时的刘耀东对材料科学就特别着迷,对于研究微观原子和分子世界的物理、化学学科尤为喜爱。

1995年,他考入清华大学化学工程系,相继完成了本科、硕士阶段的学习,他的材料探索之旅,也从那时候徐徐开启。

2002年及之后的4年时间里,他来到中科院上海应用物理研究所工作。

2006年8月,他以优异的成绩考取美国佐治亚理工学院的聚合物、纺织和纤维工程系,取得博士学位,并随之在美进行了4年的博士后和研究科学家工作。

8年多的海外经历,进一步丰富了刘耀东的研究视野,使他建立了关于先进材料与绿色化工方面完备的学科前沿知识,储备了实验室技术工程化放大的宝贵经验,为今后的研究之路打下了坚实的基础。

2015年,刘耀东入选中科院“百人计划”,成为中科院山西煤炭化学研究所的一名研究人员,他把自己所思所想所学融会贯通到这个新的团队中,致力于新材料的研发。

长期从事高分子材料、高性能纤维制备、纳米复合功能材料、碳材料等方面前沿研究的刘耀东,心中始终有一个“材料报国梦”,如今,他的愿望迎来了发展的良机。

一路耕耘,一路芬芳。

回国后的短短4年多时间里,刘耀东主持了中科院“百人计划”、山西省重大专项、山西省“百人计划”、山西省自然基金,参与国家自然科学基金、中科院STS重点部署、院所合作、企业合作等项目。

高性能化学纤维的特点及其应用

高性能化学纤维的特点及其应用

高性能化学纤维的特点及其应用摘要:介绍了碳纤维、芳纶纤维与高强PE纤维的性能特点及其国内发展现状,对高强PE纤维的主要性能及应用领域进行了详细的阐述,对选用高性能化学纤维具有指导意义。

关键词:化纤纤维;碳纤维;芳纶纤维;高强PE纤维0 引言化学纤维是用天然的或人工合成的高分子物质为原料,经过化学或物理方法加工而制得的纤维的统称。

随着技术的进步和市场的推动,化学纤维技术在近几十年内得到了迅猛的发展,化学纤维性能得到了极大的提高,早已不是传统意义上的低性能的制衣原料了,在多种指标上已远远超过常用的金属。

并且,由于化学纤维具备的一些独特的性能,它们在国防工业以及高科技领域得到了广泛的应用,这些具有优良性能的纤维统称为高性能化学纤维(或高性能纤维)。

1高性能化学纤维碳纤维、芳纶纤维与高强高模聚乙烯纤维并称为当今世界三大具有高科技含量的高性能化学纤维。

碳纤维是指由聚丙烯腈纤维、沥青纤维或粘胶维等经氧化、炭化等过程制得的含碳量为90%以上的纤维。

碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,通用型碳纤维强度为1000MPa、模量为100GPa左右。

碳纤维可加工成织物、毡、席、带、纸及其他材料。

碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人等。

具有刚性分子链的芳纶纤维,如美国的Kevlar(美国杜邦公司开发的平行链芳族聚酰胺纤维)、日本东洋纺公司的Zylon(一种新型PBO纤维的商品名),其最突出的特点是: ①高强度、高模量、密度低,比强度极高;②伸长率低,长期蠕变小,尺寸稳定性好;③耐高温和耐低温性都很好。

近年来,随着科学技术水平的提高,高性能化学纤维的科研成果不断被创新,高性能化纤的品种也不断增加。

这其中,碳纤维、芳纶纤维和高强高模聚乙烯纤维(又称高强PE)并称当今世界三大高科技纤维。

而高强PE是继碳纤维和芳纶纤维之后出现的第三代、也是目前世界上最新的超轻、高比强度、高比模量纤维。

超高聚乙烯纤维(1)

超高聚乙烯纤维(1)

影响纺丝成型的因素: 溶液的浓度:溶液太稀,虽然大分子间缠结 少,易保持原有形态,但拉伸速度很慢,不利 于伸展;浓度较大,缠结点太多,同样无法达 到高倍拉伸的目的 因此适宜的浓度:半稀状态,一般为0.2%--10% 左右。
超倍拉伸: 在拉伸初始阶段,高聚物的结晶层破坏成为小结晶块, 它们沿着拉伸方向与无定形区交替形成微纤维,在原结 构中连结着不同层晶的连结分子,变为晶块间的连结分 子,位于微纤维的边界层。进一步拉伸时,微纤维产生 剪切变形,同时完全伸直的连结分子数增加,在较高的 拉伸温度下,排列整齐的连结分子,可能结晶化为长的 伸直链结晶。它的分子结构是具有-c—c-主链化学键,主 键间具有很高的结合强度。分子的取向程度控制HMPE 纤维的模量。
高性能纤维,是芳纶的2/3,是碳纤维的1/2.
●还具有耐紫外线辐射、耐化学腐蚀、比能量吸 收高、介电常数低、电磁波透射率高、摩擦 系数低及突出的抗冲击、抗切割等优异性能。
2.发展及现状
1979 年荷兰DSM 公司采用凝胶纺丝与超倍拉伸方 法在实验室制得了高强高模UHMWPE 纤维,1990 年实现工业化生产。
无纺织物类:防弹背心
复合材料类:
环氧树脂是纤维增强高聚物复合材料的主要 基体材料,也是超高模聚乙烯纤维增强复合 材料的重要基体。
聚乙烯基UHMWPE纤维增强复合材料
(2)前景及研究方向 由于UHMWPE 纤维性能优异,应用潜力巨大, 受 到了国内外的普遍关注。
UHMWPE 纤维今后研究及应用的发展趋势 为:继续研究新的纺丝方法,提高生产效率,降低 成本;提高UHMWPE 纤维的结晶度和取向度,提 高力学性能;继续研究切实可行的表面处理方法, 降低蠕变性能,扩大UHMWPE 纤维在航空航天、 光缆增强纤维、复合材料、耐压容器等方面的 应用。总之,UHMWPE 纤维是很有发展及应用 潜力的高科技纤维,加强这方面的研究工作,开创 属于我们自己知识产权的新技术、新成果,必将 对我国的国防及经济建设等方面作出大的贡献。

碳纤维的发展及应用

碳纤维的发展及应用

碳纤维的发展及应用碳纤维是一种轻质,高强度,耐热,耐腐蚀的材料,具有广泛的应用前景。

它是由纯碳纤维束或纤维织物制成的。

碳纤维的发展与应用自20世纪70年代以来,取得了长足的进步。

本文将从碳纤维的发展历程、主要制备工艺、应用领域以及未来发展方向等方面进行探讨。

碳纤维的发展可以追溯到20世纪60年代末的两个独立研究团队,分别是美国的杜邦公司和日本的托勒贝克公司。

他们首先成功制备出了高强度的碳纤维,并在汽车、航空航天、体育用品等领域进行了应用。

之后,随着碳纤维制备技术的不断改进和突破,碳纤维的性能得到了显著提高。

目前,碳纤维已成为继钢铁、铝合金之后的第三代结构材料。

碳纤维的制备主要有湿法和干法两种工艺。

其中,湿法工艺利用聚丙烯腈(PAN)纤维作为原料,在高温氧化和热解的条件下,形成碳纤维。

干法工艺则是采用石墨纤维为原料,通过高温热解或化学气相沉积方法得到碳纤维。

两种工艺各有优劣,湿法工艺制备的碳纤维具有较高的强度和模量,而干法工艺制备的碳纤维则具有较高的热导率和耐高温性能。

碳纤维在航空航天领域有着广泛的应用,如制造飞机机身、舵面、梁等部件,能够减轻重量并提高飞机的燃油效率。

此外,碳纤维还常用于制造卫星的支撑结构和太阳能电池板等部件,以及航天器的防热层材料。

在汽车领域,碳纤维可以用于制造车身和内饰部件,可以有效减轻车辆重量,提高燃油经济性和动力性能。

碳纤维还广泛应用于体育用品制造,如高尔夫球杆、自行车框架、滑雪板等。

除了上述应用领域,碳纤维还具有广阔的发展前景。

随着全球环保意识的增强,碳纤维被认为是一种绿色材料,并且在可再生能源、新能源汽车等领域有着重要的应用潜力。

此外,碳纤维在建筑领域也有一定的应用空间,可以制造轻型建筑结构和防震设备,提高建筑物的抗震性能。

在医疗器械领域,碳纤维也常用于制造人工关节、各类手术器械等。

此外,碳纤维在船舶、铁路等交通运输领域,以及电子、电信、能源等行业也有着广泛的应用。

然而,碳纤维的制造成本较高,限制了其在一些领域的推广应用。

新型聚丙烯腈基活碳纤维非织造布的生产方法

新型聚丙烯腈基活碳纤维非织造布的生产方法

维普资讯
第2 期
敖 玉辉等 : 型聚丙烯腈基 活碳纤维非 织造布的生产 方法 新
5 5
纺性 能 , P N 混 纺可 大 大改 善 P N 与 AT A F的可 纺 性
四氯化碳蒸 气吸附率 按 G 70 . . B 72 1 8 质 3 7煤
颗粒 活性 炭 对 四氯 化碳 蒸 气 吸附 率 测定方 法 。
济, 且能满足 A F C 生产和产 品性能要求。
12 纤 维原 料 .
1 活性碳 纤维 聚丙烯腈基 非织造布生产
11 基布 选 型 .
制 备 P N — A F 的 特 种 聚 丙 烯 腈 纤 维 A C (A F 由于表 面 光 滑 , 天 然 卷 曲 , 性 大 、 PN ) 无 刚 回潮
新 型 聚 丙 烯 腈 基 活 碳 纤 维 非 织 造 布 的 生 产 方 法
敖 玉辉 , 李永贵 , 冼远 芳 , 任 秀艳
( 吉林工学 院 轻纺工程 系 , 吉林 长春 10 1 ) 302

要: 探讨 了采用特种聚丙 烯纤维 (A F 与 粘胶纤 维 ( F 混纺制 备针 刺非织 造 布 , 预 氧化 、 化 、 PN ) V) 经 炭 活化
织 布均 匀 , 维 间 的间 隙 可 能起 到 中孔 或 大 孔 的 纤
布窄 、 吸附容量大 、 吸脱速度快 、 再生容易。尤其 聚丙烯 腈基 A FP N—A F 中含有 氮 , 硫 系 和 C (A C) 对 氮系化合物具 有特殊的吸附能力 , 这是任何原料 基 A F无 法 与 其 比 拟 的_。A F能 加 工 成 不 同 C 】 C J 形态的纤维制品( 如布 、 、 带 毡等 )使各种 吸附和 ,
维普资讯
第2卷 3

碳素纤维简介

碳素纤维简介

碳素纤维又称碳纤维(Carbon Fiber,简称CF)。

在国际上被誉为“黑色黄金”,它继石器和钢铁等金属后,被国际上称之为“第三代材料”,因为用碳纤维制成的复合材料具有极高的强度,且超轻、耐高温高压。

碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。

碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。

碳纤维比重小,因此有很高的比强度。

1880年美国爱迪生首先将竹子纤维碳化丝,作为电灯泡内之发光灯丝,开启了碳纤维(Carbon Fiber,简称CF)之纪元。

碳纤维用在结构材料,首先问世者,则以美国Union Carbide公司(U.C.C.)为代表,并于1959年将嫘萦纤维为原料,经过数千百度之高温碳化后,得到弹性率约40GPa,强度约为0.7GPa之碳纤维;尔后,1965年该公司又用相同原料于3000℃高温下延伸,开发出丝状高弹性率石墨化纤维,弹性率约500GPa,强度约为2.8GPa。

另外,于日本大阪工业技术试验所之进藤博士,则以Polyacrylonitrile(简称PAN)聚丙烯腈为原料,经过氧化与数千度之碳化工程后,得到弹性率为160GPa,强度为0.7GPa之碳纤维。

1962年日本碳化公司(Nippon Carbon Co.)则用PAN为原料,制得低弹性系数(L.M.)之碳纤维。

东丽公司亦以PAN纤维为原料,开发了高强度之CF,弹性率约为230GPa,强度约为2.8GPa,并于1966年起有每月量产1吨之规模;同时亦开发了碳化温度2000℃以上之高弹性率CF,弹性率约400GPa,强度约为2.0GPa。

于1965年,群马大学大谷教授,利用加热氯乙烯(Vinyl Chloride)得到之沥青(Pitch),经过熔融纺丝、不融化与碳化工程处理后,得到普通级碳纤维;大谷教授亦可利用木质素(Lignin)为原料制作碳纤维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相比传统的金属材料和其他纤维制成的复合材料,碳纤维复合材料具备质量轻、强度高、弹性模量高的特点,可比传统铝合金结构减重30%,对武器装备性能提升贡献巨大,被广泛用于制造航空器机体及发动机、导弹外壳等。

美国F-22、F-35战斗机的碳纤维复合材料用量比例分别达到24%和36%,以A350、波音787为代表的新型大型民机的碳纤维复合材料用量比例更是达到了50%以上。

碳纤维复合材料的运用已成为衡量武器装备先进性的标志之一。

碳纤维是构成复合材料的关键原材料,承担着复合材料约90%的载荷,其拉伸强度和弹性模量是实现复合材料结构性能目标的关键。

碳纤维复合材料生产和应用技术已经是航空工业制造水平的重要标志之一。

市场发展
高端碳纤维市场一直为日美两国所垄断。

高端碳纤维绝大部分是小丝束的聚丙烯腈(PAN)基碳纤维。

目前全球最主要的6家小丝束碳纤维供应商的市场占比情况是:日本东丽公司占35%~40%、东邦公司占23%、三菱丽阳公司占14%;美国赫氏公司占12%、氰特工业公司占8%;台湾塑料工业和英国SGL公司占3%~5%。

日本3家企业的碳纤维约占全球70%~80%的市场份额,其中东丽公司产能最大,产品性能最好,是全球最大的碳纤维供应商,代表了日本最高的技术水平和研发实力。

美国的两家企业市场占有率约为20%,其中赫氏公司拥有40多年为美国军机开发应用碳纤维的经验,能够自主生产供应碳纤维,是美国厂家中高模量碳纤维技术的领导者;氰特工业公司以碳纤维的后续产品预浸料为主,碳纤维产品性能和研
发能力低于赫氏。

台湾塑料工业公司及SGL的产品性能略低于日本和美国的水平。

碳纤维以拉伸强度和弹性模量为主要指标,目前商业化产品已经发展到第二代,日美两国在广泛应用的第二代碳纤维产品上性能相当。

第一代以20世纪60年代东丽公司的T300和赫氏公司的AS4低强低模碳纤维为代表,T300主要用于波音737等型号的次承力构件,AS4应用在早期F-14战斗机的平尾等部位。

第二代高强度、中等模量碳纤维以20世纪80年代东丽公司的T800和赫氏公司IM7系列为代表,同代产品还有东丽的T700、T1000,赫氏的IM8、IM9等。

T800强度比T300强度提高了68%,模量提高了28%,大量用于A350、波音787等飞机机翼机身的主承力结构。

IM7比AS4强度提高了37%,模量提高了21%,大量用于美国的“三叉戟”Ⅱ潜射导弹及F-22、F-35战斗机等。

第二代碳纤维模量偏低
现阶段,航空航天等领域应用最广泛的是第二代高强度中等模量碳纤维。

由于模量偏低,且碳纤维材料脆性大,易导致复合材料结构部件的疲劳损伤,甚至发生灾难性破坏,限制了航空武器装备性能的提升,更难以满足新一代航空武器装备的性能要求。

随着美国启动第六代战斗机、新一代远程轰炸机、第一代无人舰载作战飞机的研制,航空武器装备对巡航速度、航程、机动性、隐身性能、防护能力和维修性等指标都提出了更高要求,这就需要拉伸强度、断裂韧性、冲击性能等综合性能更高的碳纤维。

要获得综合性能高的碳纤维,就必须在强度和模量这两个基本属性上取得突破,而第三代碳纤维的主要技术特征就是同时实现高拉伸强度和高弹性模量。

同时实现高的拉伸强度和弹性模量是碳纤维研制过程中的技术难点。

原丝制备和碳化是碳纤维制备的两个核心工艺:高质量的PAN原丝是实现碳纤维高性能和批量生产的关键;碳化过程的控制与碳纤维的拉伸强度和弹性模量直接相关。

多年的碳纤维研制经历表明:大幅度地提高碳纤维弹性模量时,拉伸强度会明显降低;而当保持碳纤维的高拉伸强度时,又很难大幅度提高纤维的弹性模量。

究其原因,碳纤维是由大量石墨微晶组成的各向异性材料。

高强度碳纤维通常要求微晶尺寸较小,而高模碳纤维通常要求微晶尺寸较大,如何解决这一矛盾是碳纤维研制中的最大难题。

日美各辟蹊径突破技术瓶颈
日本东丽公司通过突破碳化工艺,使碳纤维强度和模量同时提升10%以上,率先达到了第三代碳纤维的技术要求。

东丽公司认为,碳纤维同时获得高拉伸强度和高弹性模量的关键在于碳化过程中的热处理技术及高温设备。

在热处理技术方面,温度、牵伸、催化、磁场等许多因素都会影响纤维碳化后的性能。

2014年3月,东丽宣布研制成功T1100G碳纤维。

东丽利用传统的PAN溶液纺丝技术,精细控制碳化过程,在纳米尺度上改善碳纤维的微结构,对碳化后纤维中石墨微晶取向、微晶尺寸、缺陷等进行控制,从而使强度和弹性模量都得到大幅提升。

T1100G的拉伸强度6.6GPa,比T800提高12%;弹性模量324GPa,提高10%,正进入产业化阶段。

美国佐治亚理工学院研究小组通过突破原丝制备工艺,在保持碳纤维高强度同时,弹性模量提升28%以上。

赫氏公司的碳纤维产品30年来一直停留在中等弹性模量水平,性能难以突破。

美国国防预研局(DARPA)在2006年启动先进结构纤维项目,目的是召集全国优势科研力量,开发以碳纤维为主的下一代结构纤维。

佐治亚理工学院作为参研机构之一,从原丝制备工艺入手,提高碳纤维弹性模量。

2015年7月,该研究小组利用创新的PAN基碳纤维凝胶纺丝技术,将碳纤维拉伸强度提升至5.5~5.8GPa,拉伸弹性模量达354~375GPa。

虽然拉伸强度和IM7相当,但弹性模量实现了28%~36%的大幅提升。

这是目前报道的碳纤维高强度和最高模量组合。

其机理是凝胶把聚合物链联结在一起,产生强劲的链内力和微晶取向的定向性,保证在高弹性模量所需的较大微晶尺寸情况下,仍具备高强度。

这表明美国已经具备了第三代碳纤维产品的自主研发实力。

日美从两条不同的技术途径都获得了高强度、高模量碳纤维。

从目前的研究成果来看,东丽的第三代碳纤维产品强度更高,更适用于抗拉强度设计值高的结构件;美国的产品弹性模量更高,更适用抗弯、抗冲击、抗疲劳强度设计值高的部件。

日美相关企业和机构都明确表示第三代碳纤维的应用目标是航空航天高端市场,替代目前的T800和IM7第二代碳纤维产品,提高军机结构部件强度、刚度等综合性能。

东丽是传统PAN溶液纺丝技术的先驱,原丝技术高度成熟,产业化能力强,从第一、第二代产品来看,其第三代产品有望在未来5~10年实现工业化生产并全面投放市场。

美国放弃传统溶液原丝制备工艺,采用凝胶纺丝技术,有更大余地对工艺优化,碳纤维性能也有更大提升空间。

美国计划于2030年前后面世的第六代战斗机、新一代远程轰炸机、第一代无人舰载作战飞机极有可能通过应用第三代碳纤维技术而大幅提高作战性能。

相关文档
最新文档