完整版)排列组合的二十种解法(最全的排列组合方法总结)
排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题常用策略;能运用解题策略解决简单综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合的二十种解法(最全的排列组合方法总结)

教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合的二十种解法(最全的排列组合方法总结)

1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合的二十种解法(最全的排列组合方法总结)

教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合问题的20种解法

排列组合问题的20 种解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
复习巩固分类计数原理 ( 加法原理 )完成一件事,有类办法,在第 1 类办法中有种不同的方法,在第 2 类办法中有种不同的方法,,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第 1 步有种不同的方法,做第 2 步有种不同的方法,,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。
3.确定每一步或每一类是排列问题 ( 有序 ) 还是组合 ( 无序 ) 问题 , 元素总数是多少及取出多少个元素 .4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一. 特殊元素和特殊位置优先策略例 1. 由 0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由于末位和首位有特殊要求, 应该优先安排, 以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 , 若以元素分析为主 , 需先安排特殊元素 , 再处理其它元素 . 若以位置分析为主 , 需先满足特殊位置的要求 , 再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件练习题:7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二. 相邻元素捆绑策略例 2. 7人站成一排, 其中甲乙相邻且丙丁相邻,共有多少种不同的排法.再解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,与其它元素进行排列,同时对相邻元素内部进行自排。
[超全]排列组合二十种经典解法!
![[超全]排列组合二十种经典解法!](https://img.taocdn.com/s3/m/3cc0fc8a168884868662d6c8.png)
超全的排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1. 进一步理解和应用分步计数原理和分类计数原理。
2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3. 学会应用数学思想和方法解决排列组合问题^复习巩固1. 分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有:N m1 m2 L m n种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有:N m1 m2 L m n种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一. 特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数^解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.3先排末位共有C4然后排首位共有C最后排其它位置共有A34C3A3 288由分步计数原理得C练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二. 相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合常见21种解题方法

排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
排列组合的二十种解法(最全的排列组合方法总结)

1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类方法,在第1类方法中有1m 种不同的方法,在第2类方法中有2m 种不同的方法,…,在第n 类方法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步与多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少与取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整版)排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.分类计数原理和分步计数原理区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略:例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素。
若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。
练题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二、相邻元素捆绑策略:例2:7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法。
且同一元素可以重复出现在排列中。
解决这类问题的方法是求幂策略,即对于n个元素,每个元素都有m种选择,总共的排列数为m^n。
练题:有4个球,分别标有1、2、3、4,可以重复地从中取球,取3次,共有多少种不同的取法?答案为64.一般地,对于n个不同的元素作圆形排列,没有限制地安排在m个位置上的排列数为m的阶乘,即m。
练题:1.原本有5个节目的新年联欢会增加了两个节目。
将这两个节目插入原节目单中,不同插法的种数为42.2.8名乘客在一楼电梯上来,到各自的一层下电梯的方法有7种。
例6.8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排不同之处在于,围成圆形没有首尾之分。
因此,我们可以先固定一人A,并将圆形展开成直线,这样其余7人共有7!种排法。
一般地,从n个不同元素中取出m个元素作圆形排列共有Amn种排法。
练题:有6颗颜色不同的钻石,可以穿成多少种钻石圈?答案为120.例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?解:8人排前后两排相当于8人坐8把椅子,可以将椅子排成一排。
特殊元素甲、乙在前排的4个位置上有A4种排法,特殊元素丙在后排的4个位置上有A4种排法,其余的5人在5个位置上任意排列有A5种排法,因此总排法为A4×A4×A5=.一般地,元素分成多排的排列问题可以归结为一排考虑,再分段研究。
练题:有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是346.例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法?解:第一步从5个球中选出2个组成复合元素共有C5^2种方法。
再把4个元素(包含一个复合元素)装入4个不同的盒内有A4种方法。
根据分步计数原理,装球的方法共有C5^2×A4种。
解决排列组合混合问题,先选后排是最基本的指导思想。
与相邻元素捆绑策略相比,先选后排更加灵活。
练题:一个班有6名战士,其中正副班长各1人。
现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有192种。
例9.用1、2、3、4、5组成没有重复数字的五位数,其中恰有两个偶数夹1、5在两个奇数之间。
这样的五位数有多少个?首先,把6本书排成一排,共有6!种排法。
然后,在每两本书之间插入一个分组符号,共需要插入2个分组符号。
所以,共有C(8,2)种插法。
最后,由于每堆书是无序的,需要除以3.所以,总的分法数为:$$\frac{6!}{3!}\cdot\frac{8!}{2!6!}\cdot\frac{1}{3!}=\frac{8\tim es7\times6\times5\times4}{2\times1}=560$$平均分组问题可以用除法策略解决。
首先,把元素排成一排,然后在相邻的元素之间插入分组符号,得到$n-1$个空隙。
要把这些元素分成$m$组,就需要插入$m-1$个分组符号,共有$C_{n-1}^{m-1}$种插法。
最后,由于每组元素是无序的,需要除以$m!$。
不妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF,该分法记为(AB,CD,EF)。
则C(6,2)中还有C(4,2)种取法。
而这些分法仅有(AB,CD,EF)一种分法,故共有C(6,2) /C(4,2) /3种分法。
将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?答案为C(13,8) * C(5,5) * C(3,2) / 2 = 1287 * 1 * 3 / 2 = 1930.10名演员中有5人只会唱歌,2人只会跳舞,3人为全能演员。
选上唱歌人员为标准进行研究。
只会唱的5人中没有人选上唱歌人员,共有C(5,3)种;只会唱的5人中只有1人选上唱歌人员,共有C(5,2) * C(5,3)种;只会唱的5人中只有2人选上唱歌人员,共有C(5,2)种。
由分类计数原理共有C(5,3) + C(5,2) * C(5,3) + C(5,2)种。
从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有C(4,1) *C(3,3) * C(3,1) * C(2,2) + C(4,2) * C(3,2) * C(3,1) * C(2,1) +C(4,3) * C(3,1) * C(3,2) * C(2,1) + C(4,4) * C(3,1) * C(3,2) *C(2,1) = 12 + 36 + 27 + 6 = 81种选法。
3成人2小孩乘船游玩,1号船最多乘3人,2号船最多乘2人,3号船只能乘1人。
他们任选2只船或3只船,但小孩不能单独乘一只船,这3人共有多少乘船方法?分步策略如下:1.选2只船:1.1.选1号船和2号船,共有C(3,2) * C(2,1) * C(1,0) = 6种选法。
1.2.选1号船和3号船,共有C(3,2) * C(2,0) * C(1,1) = 6种选法。
1.3.选2号船和3号船,共有C(3,1) * C(2,2) * C(1,1) = 3种选法。
2.选3只船:2.1.选1号船、2号船和3号船,共有C(3,1) * C(2,1) *C(1,1) = 6种选法。
2.2.选1号船和2号船,再从成人中选1人和小孩一起乘3号船,共有C(3,2) * C(2,1) * C(1,2) * C(2,1) = 12种选法。
2.3.选1号船和3号船,再从成人中选1人和小孩一起乘2号船,共有C(3,2) * C(2,0) * C(1,1) * C(2,2) = 3种选法。
2.4.选2号船和3号船,再从成人中选1人和小孩一起乘1号船,共有C(3,1) * C(2,2) * C(1,1) * C(2,1) = 6种选法。
总共有6 + 6 + 3 + 6 + 12 + 3 + 6 = 42种选法。
再通过合成得到最终结果。
在实际操作中,分解与合成策略往往与其他策略相结合,可以更高效地解决问题。
练题:1.一个有10个元素的集合,取出其中的3个元素,使它们的和为偶数的选法有多少种?(252)2.一个有10个元素的集合,取出其中的3个元素,使它们的和为奇数的选法有多少种?(210)解法一:使用表格策略取出的五只球中,每个字母必须各有一种颜色,因此可以按照字母和颜色分别进行分类计数,然后用乘法原理将两个分类的结果相乘。
按字母分类:字母A:从红、黄、兰三种颜色中各选1只,剩下2只球任意选择,共有C3^1 * C2^2 = 3种取法。
字母B、C、D、E:同理,每个字母都有3种取法。
按颜色分类:红色球:从A、B、C、D、E五个字母中任选3个,每个字母选1只球,共有C5^3 = 10种取法。
黄色球、兰色球:同理,每种颜色都有10种取法。
因此,总的取法数量为3^4 * 10^3 = 270,000种。
解法二:使用递推法可以使用递推法计算出每个字母在五只球中出现的次数,然后将五个数字相乘即可。
具体步骤如下:1.定义递推序列a[i][j]表示前i个球中字母j出现的次数。
2.初始状态为a[1][1] = a[1][2] = a[1][3] = a[1][4] = a[1][5] = 1,表示第一只球中每个字母都出现了1次。
3.递推关系为a[i][j] = a[i-1][j-1] + a[i-1][j],表示第i只球中字母j出现的次数等于前i-1只球中字母j-1和字母j出现次数之和。
4.最终结果为a[5][1] * a[5][2] * a[5][3] * a[5][4] * a[5][5]。
经过计算,得到的结果与表格策略相同,为270,000种。