影响锂电池安全因素
锂电池火灾事故风险有哪些

锂电池火灾事故风险有哪些随着科技的发展和人们生活水平的提高,锂电池作为一种新型的电池技术,已经广泛应用于移动设备、电动车辆、储能设备等领域。
然而,与其带来的便利和高能量密度相比,锂电池也存在一定的安全隐患,其中最突出的问题就是火灾事故。
本文将从锂电池火灾事故的成因、风险评估和预防措施等方面进行探讨。
一、锂电池火灾事故的成因1. 过度充放电:如果锂电池在充电时过度充电,或者在使用时过度放电,都有可能导致电池内部产生过多的热量,从而引发火灾。
2. 短路:由于外部因素或者电池内部结构问题,锂电池可能发生短路现象,短路会导致电池内部的电解液热化,从而引发火灾。
3. 过热:在使用过程中,锂电池内部的温度如果过高,也会导致电解液热化,增加发生火灾的风险。
4. 物理损伤:锂电池遭受外部碰撞或者挤压等物理损伤,有可能导致电解液泄漏或者内部结构受损,从而增加火灾风险。
综上所述,锂电池火灾事故的成因主要包括过度充放电、短路、过热和物理损伤等方面。
二、锂电池火灾事故的风险评估针对锂电池火灾事故的成因,我们可以对其风险进行评估,以便及时采取预防措施。
一般来说,锂电池火灾的风险评估可以从以下几个方面进行分析:1. 电池类型:不同类型的锂电池具有不同的电化学特性和结构特点,其火灾风险也会不同。
例如,钴酸锂电池的安全性较差,火灾风险较高。
2. 使用环境:锂电池在不同的使用环境下,其火灾风险也会有所不同。
比如,在高温环境下使用锂电池,其过热的风险会增加。
3. 充放电过程:电池在充放电过程中的控制和管理,不同的充电方式和过程管理,都会对火灾风险产生影响。
4. 电池状态:电池的老化程度、使用寿命、损伤情况等因素,都会对其火灾风险产生影响。
5. 监控和管理:采取有效的监控和管理措施,可以及时发现电池的异常情况,从而减少火灾风险。
综上所述,我们可以通过分析电池类型、使用环境、充放电过程、电池状态和监控管理等因素,对锂电池火灾的风险进行评估,进而采取相应的预防措施和应对措施。
锂离子电池安全机理及火灾事故处置对策

锂离子电池安全机理及火灾事故处置对策摘要:锂离子电池作为一个能量聚合体,电池内部高温短路形成热失控引发火灾,在处置中,不能从外部有效阻隔助燃物和可燃物,不能切断电池内部链式反应,火灾机理与其他类型火灾有着较大区别,对灭火救援提出新要求。
因此,研究锂离子电池安全机理及火灾事故处置对策具有重要意义。
关键词:锂离子电池;事故处置;热失控;火灾1.锂离子电池概述锂离子电池是近年来兴起的高性能二次电池,即为蓄电池,当电池的电量用到一定程度时,可以用规定的充电器充电以恢复电量,可反复充电、放电,实现多次使用,设备重量和体积小,使用寿命长,成为很多电子设备的储能电池。
锂离子电池是负极材料为锂元素,可以反复充电、放电,多次使用的二次电池的总称,而锂电池是以金属锂为负极材料,只能进行一次放电、不可以充电再利用的总称。
充电是通过外电源让电池的电压和容量得到升高,促使电能转化成化学能的过程。
放电则是电流经电池导流至外部电路,促使化学能转化为电能的过程。
锂离子电池实质是由正、负极两种不同的锂离子嵌入化合物组合形成的一种锂离子浓差电池。
其正极使用能够接纳锂离子的位置和扩散路径的材料,目前使用较多的正极材料,如Lix Co02、LixNi02以及尖晶石结构的LixMn24。
负极材料主要使用锂碳层间化合物LixC,电解质主要是有机溶液,如锂盐。
当前使用较多的锂离子蓄电池主要由正极钴酸锂(Lix Co02)、焦炭及石墨组成的负极和有机电解液组成。
在充电状态下的锂离子电池,锂离子(Li+)从正极材料中脱嵌而出,正、负极两侧电解液出现浓度差,从高浓度侧(正极侧)通过隔膜达到低浓度侧(负极侧)并嵌入负极材料中。
负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给碳负极,保证负极的电荷平衡。
放电则是从负极脱嵌的锂离子(Li+)嵌入正极,电子的补偿电荷从外电路流动形成电流,从而使化学能转化为电能。
1.锂离子电池火灾发生机制随着锂离子电池的广泛运用,市场需求逐步加大,由于锂离子电池处于相对封闭的小型空间内,电池内部正负极小分子的链式反应,使用安全隐患也随着上升,除了正常的充放电反应外,还存在许多潜在的放热副反应,其中电池热失控是引发锂离子电池安全问题的主要原因,电池在热失控状态下,内部化学反应产生的热量速度远远高于散热速度,大量热能聚集在电池内,致使电池内部温度快速升高,最终引起电池燃烧或爆炸。
锂电池生产厂易忽视的安全问题及安全对策措施

锂电池生产厂易忽视的安全问题及安全对策措施公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]锂电池生产厂易忽视的安全问题主要危险因素及相应的安全对策措施近来,在工作中发现,我国锂电池生产企业对锂电池生产中的安全问题认识不足,主要表现在:①电池液的毒性认识不足,许多企业不知道电池液是有毒的;②对锂电池的火灾、爆炸危险性认识不足。
下面介绍并分析锂电池生产、储存过程中的毒性危险和火灾、爆炸危险性。
1、中毒危险电池液中一般含有六氟磷酸锂以及作为溶剂使用的碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯。
六氟磷酸锂是有毒物质,而上述碳酸酯类物质化学性质则比较稳定,没有被列入有毒物质类,但是可燃。
六氟磷酸锂是电池液中的重要成分,国内及一些国外出品的六氟磷酸锂没有说明其毒性,但据国际知名的sigma-aldrich(西格玛公司)制定的六氟磷酸锂《化学品安全技术说明书》(CSDS),说明了其毒性。
六氟磷酸锂的性质简述如下:分子式:LiPF6;燃烧性:不燃(0);毒性:中等(2);剌激性:中等(2);化学活性:低(1);慢性影响:中等(2);TLV-TWA:m3(ACGIH)。
括号内的数字表示分级,从0到4共分5级。
TLV-TWA是美国卫生医师协会推荐的时间加权平均浓度的最高允许值。
六氟磷酸锂:白色粉末,吸湿性强,遇水易分解;进入体内可损害健康,多次接触可产生累积的毒性效应,呼吸道、眼、皮肤可受到损伤。
一些国内企业出品的六氟磷酸锂,产品说明中注明含氟化氢(也称为氢氟酸)≤10-4。
氟化氢为高毒物质,具有强烈的腐蚀性,损伤呼吸道、眼、皮肤,可引起支气管炎和肺炎,吸收后可产生全身的毒作用。
六氟磷酸锂分解后的产物是高毒性的,应引起注意。
韩国三星公司电解液包装桶上标签注明其应在30℃以下保存,在夏季,运输途中六氟磷酸锂易分解,对安全是个潜在的危险因素。
因此,无论是六氟磷酸锂本身,或者其分解产物以及其所含的杂质氟化氢都有中等以上的毒性,如果密闭的作业场所提供的新风不足或通风系统出现故障,有可能发生多人中毒的事故。
锂电电池隐患分析报告

锂电电池隐患分析报告近年来,随着移动通信、电动汽车等应用的不断普及,锂电电池作为一种重要的储能设备得到了广泛应用。
然而,随之而来的是一些潜在的安全隐患,例如锂电池的燃烧、爆炸等问题。
本文将对锂电电池的隐患进行详细分析,并提出相应的解决方案。
首先,我们需要了解锂电电池的结构特点。
锂电池是一种以锂金属或者锂离子为活性物质的充放电储能设备,一般由正极材料、负极材料、隔膜和电解液组成。
其中,正极材料通常是由锂金属氧化物(如LiCoO2)制成,负极材料主要是石墨,而隔膜则用于隔离正负极,电解液则起到传导锂离子的作用。
由于锂电池的极高能量密度,一旦出现问题,其可能的危害也相当惊人。
首先,由于正负极材料中含有大量的锂金属氧化物,在不当的条件下会导致电池燃烧或爆炸。
这是因为锂金属氧化物的分解反应是一个放热反应,当反应蔓延至整个电池内部时,将迅速释放出大量的热量,导致电池过热、燃烧或爆炸。
其次,在电池组装过程中,如果未能控制好正负极材料的充放电过程,会导致正负极材料之间的短路,也可能引发燃烧或爆炸。
锂电电池的安全问题主要与以下几个因素有关:电池的设计及材料、电池的使用环境和外部因素的干扰。
在电池的设计及材料选择上,为了提高电池的能量密度和充放电效率,一些制造商可能会选择高能量密度的材料,但这也会增加电池的安全风险。
另外,电池的使用环境也会对其安全性产生重要影响,例如高温环境会加剧电池的老化速度,增加其发生故障的几率。
此外,外部因素的干扰也是一个重要的原因。
例如,电池在受到撞击、挤压等过程中可能会损坏,进而导致电池内部的短路情况发生。
针对锂电电池的隐患,我们可以从以下几个方面着手解决。
首先,在电池的设计与制造过程中,应充分考虑电池的安全性能,选择更加稳定可靠的材料,并进行必要的安全测试与规范,确保产品质量。
其次,在电池的使用与维护过程中,用户应严格按照说明书来正确使用电池,并定期进行检查与维护,确保电池的正常工作状态。
锂离子电池安全性研究及影响因素分析

锂离子电池安全性研究及影响因素分析一、本文概述随着科技的快速发展和全球能源结构的逐步转型,锂离子电池作为一种高效、环保的能源存储技术,已经广泛应用于便携式电子设备、电动汽车、航空航天、储能电站等多个领域。
然而,随着锂离子电池应用范围的扩大,其安全性问题也日益凸显。
电池热失控、燃烧甚至爆炸等安全事故不仅会造成巨大的财产损失,还可能威胁到人们的生命安全。
因此,对锂离子电池的安全性进行深入研究和影响因素分析,对于保障其安全应用具有重要意义。
本文旨在全面综述锂离子电池安全性的研究现状,分析影响电池安全性的主要因素,包括电池材料、制造工艺、使用条件等,并探讨提高锂离子电池安全性的有效方法和未来发展方向。
通过本文的阐述,希望能够为锂离子电池的安全应用提供理论支撑和实践指导,促进锂离子电池技术的健康、可持续发展。
二、锂离子电池的基本原理与结构锂离子电池,作为现代电化学储能技术的核心,其基本原理和结构是理解其安全性和性能的关键。
锂离子电池是一种通过锂离子在正负极之间移动实现能量存储和释放的二次电池。
其结构主要由正极、负极、隔膜和电解液四个部分组成。
正极是锂离子电池的重要组成部分,通常采用具有高嵌脱锂电位的材料,如钴酸锂、锰酸锂、磷酸铁锂等。
正极材料的性能直接影响电池的能量密度和安全性。
负极材料则通常采用具有低嵌脱锂电位的碳材料,如石墨、硅碳复合材料等。
负极的主要作用是储存和释放锂离子,其结构和性能对电池的循环寿命和安全性具有重要影响。
隔膜位于正负极之间,是防止电池内部短路的关键组件。
隔膜通常由聚烯烃等多孔材料制成,具有良好的离子通透性和机械强度。
电解液则是锂离子电池中的重要组成部分,通常由有机溶剂和锂盐组成,其主要作用是传导锂离子,实现正负极之间的电荷转移。
锂离子电池的工作原理是在充放电过程中,锂离子在正负极之间移动,实现化学能与电能之间的转换。
充电时,锂离子从正极脱嵌,穿过隔膜,嵌入负极;放电时,锂离子从负极脱嵌,穿过隔膜,嵌入正极。
探讨锂电池火灾爆炸原因分析与控制措施

探讨锂电池火灾爆炸原因分析与控制措施摘要:为进一步提升锂电池使用的安全性,最大程度减少安全事故的发生几率,文章以锂电池火灾爆炸作为研究对象,客观分析火灾爆炸诱发原因,并积极做好防控工作,稳步增强锂电池的安全性,逐步拓宽其使用领域,发挥锂电池在经济发展、社会生活等方面的积极作用。
关键词:锂电池;火灾爆炸;爆炸原因;控制措施引言根据FAA统计,历年锂电池火灾事故中,68%是由于内部或者外部短路造成,15%是由于充放电造成,7%由于设备意外启动造成,10%为其他原因造成。
1锂电池出现火灾爆炸事故的影响因素锂电池当中也分为正负极,并且正负极所含有的物质是不同的,其中锂化合物处在正极位置,是以锂离子的形态而存在的。
基于电解液能够嵌入炭层,在炭层中有很多微孔,在炭层中嵌入更多锂离子,电池充电量也就越高。
在电池放电过程中,潜在炭层当中的锂离子会透出,会变成电解液,而其又会重新回到正极位置。
当这个位置中的锂离子数量增加,那么其放电容量也就会升高,继而会对锂电池内外部安全产生不良影响,这里所讲的内部因素就是生产制作锂电池的材料、技术,还有锂电池本身的构造。
材料特性会影响电池过程以及人稳定性,制作工艺会出现微短路、电芯内短路以及技粉单来。
而外部因素包含充电、过温、外短路等在外界因素当中,温度会对锂电池的充电、放电性能产生影响,也就是电化学产生反应。
在温度逐渐降低的时候,反应情况也会不断降低,在电池电压保持不变的时候,放电随之降低,其功率也就会逐渐降低。
倘若锂电池的温度呈现上升状态,其功率也就会呈现上升态势。
温度会对电解液传送速度产生影响,温度的上升速度过快的话就会对其充电、放电性能产生不良影响。
在温度超高的时候,会对电池的化学平衡产生不良影响。
锂电池发生火灾爆炸事故的原因有很多,可是最为关键的原因就是电池出现高温与高压,与其会产热息息相关。
电池当中的产热因素非常多,其中锂电池热散失过速的话,反应速度也会随之增涨。
这时会导致两种情况产生,其一就是反应达到燃点温度爆发火灾,锂电池通常都被制作成封闭状态,如果封闭体系当中的温度过高,反应速度也会加快,反应物的气压快速上升,活性物分解,同电解液反应生成气体,如果再失去安全阀的保护,还会导致爆炸事故,会对使用者产生严重威胁。
锂电池生产厂易忽视的安全问题及安全对策措施

锂电池生产厂易忽视的安全问题及安全对策措施The manuscript was revised on the evening of 2021锂电池生产厂易忽视的安全问题主要危险因素及相应的安全对策措施近来,在工作中发现,我国锂电池生产企业对锂电池生产中的安全问题认识不足,主要表现在:①电池液的毒性认识不足,许多企业不知道电池液是有毒的;②对锂电池的火灾、爆炸危险性认识不足。
下而介绍并分析锂电池生产、储存过程中的毒性危险和火灾、爆炸危险性。
1、中毒危险电池液中一般含有六氟磷酸锂以及作为溶剂使用的碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯。
六氟磷酸锂是有毒物质,而上述碳酸酯类物质化学性质则比较稳定,没有被列入有毒物质类,但是可燃。
六氟磷酸锂是电池液中的重要成分,国内及一些国外岀品的六氟磷酸锂没有说明其毒性,但据国际知名的sigma- aldrich(西格玛公司)制定的六氟磷酸锂《化学品安全技术说明书》(CSDS),说明了其毒性。
六氟磷酸锂的性质简述如下:分子式:LiPF6;燃烧性:不燃(0);毒性:中等⑵;剌激性:中等⑵;化学活性:低(1);慢性影响:中等⑵;TLV-TWA:m3(ACGIH)o括号内的数字表示分级, 从0到4共分5级。
TLV-TWA是美国卫生医师协会推荐的时间加权平均浓度的最高允许值。
六氟磷酸锂:口色粉末,吸湿性强,遇水易分解;进入体内可损害健康,多次接触可产生累积的毒性效应,呼吸道、眼、皮肤可受到损伤。
一些国内企业出品的六氟磷酸锂,产品说明中注明含氟化氢(也称为氢氟酸)W10-4。
氟化氢为高毒物质,具有强烈的腐蚀性,损伤呼吸道、眼、皮肤,可引起支气管炎和肺炎,吸收后可产生全身的毒作用。
六氟磷酸锂分解后的产物是高毒性的,应引起注意。
韩国三星公司电解液包装桶上标签注明其应在30°C以下保存,在夏季,运输途中六氟磷酸锂易分解,对安全是个潜在的危险因素。
因此,无论是六氟磷酸锂木身,或者其分解产物以及其所含的杂质氟化氢都有中等以上的毒性,如果密闭的作业场所提供的新风不足或通风系统出现故障,有可能发生多人中毒的事故。
电池性能的影响因素

电池性能的影响因素锂电池内部复杂的电化学过程,理解起来有一定难度,这里先说结论。
锂电池容量的衰减来自于电极材料的损失和电解质的分解;而电池阻抗的增加来自于电荷传导过程中阻力的上升;电池结构的破坏则会导致容量损失。
锂电池寿命可以分为两种概念,一种是日历寿命,另一种是循环寿命。
锂电池还有一种情况,就是在操作不当,事故等情况下造成电池寿命在短时间内快速衰减。
先从电池内部开始,讨论一些影响电池寿命的因素,再结合温度,电压,充放电深度,电流说明。
目前的锂电池,不论是三元,锰酸锂还是磷酸铁锂等各种正极材料,配备的负极基本都是石墨材质。
石墨材质的负极不能与电解质稳定相融,在两者刚接触的时候会形成一层固体电解质界面即SEI膜(solid electrolyte interface)关于SEI的具体内容会在另一篇文章里呈现。
SEI膜上的空隙允许锂离子进出,又可以将电解液与石墨隔离开,同时,相对于电子导电,它又是绝缘体,不允许电子通过。
这种性质对于锂电池来说非常的好,SEI是维持锂电池稳定的重要结构之一。
在日历寿命以及循环寿命中,SEI并非静止,正常情况下SEI会慢慢增长厚度且有一定程度的破损,而破损的部分也会因为石墨与电解液的再次接触而形成新的SEI膜,在形成以及修复的过程中,需要消耗锂离子,但高质量的SEI膜也是锂电池长循环寿命的必备条件。
而电池由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,也就是应力作用,会使SEI的孔洞发生变形,使得离子通道不再通畅。
这些微观上的变化,使得电池对外表现出内阻增加,容量下降,充电能力变差等寿命衰退的现象。
析锂现象应该都听过,可以说是锂电池的第一大难题,目前对于这种现象的研究不是特别透彻,没有太好的解决办法,但是多数人认可的原因是,由于负极嵌锂空间不足,锂离子迁移阻力过大,锂离子过快从正极脱出但无法等量嵌入负极等异常引起的无法嵌入负极的锂离子只能在负极表面得到电子,从而形成银白色的锂单质的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:SM-ZD-22393 影响锂电池安全因素Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives编制:____________________审核:____________________时间:____________________本文档下载后可任意修改影响锂电池安全因素简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
锂离子电池作为可靠的能源已经广泛应用于小型电源驱动设备,但由于热稳定性引起的安全问题,其使用在大型电池特别是用于电动汽车(EV)和混合动力汽车(HEV)的动力锂离子电池方面受到限制。
本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。
关键词:锂离子电池;安全性能;热稳定性;影响因素安全性能是锂离子电池,特别是锂离子动力电池所关心的焦点问题。
锂离子电池与金属锂二次电池相比,在安全性能方面有了很大的提高,但在实际应用中仍然存在许多隐患。
特别是用于电动汽车(EV)和混合动力汽车(HEV)的动力锂离子电池,其充放电电流大,散热条件差,导致电池内部温度升高[1,2]。
根据P.H.Biensan 等[3]的研究证明:锂离子电池在滥用的条件下有可能达到使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火爆炸、乃至人员受伤等情况。
因此,锂离子电池安全性能方面的研究,对扩大锂离子电池的商品化程度,保证使用过程中人员的安全是非常重要的。
本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。
1 电池材料对锂离子电池安全性能的影响对锂离子电池的安全保护通常采用专门的充电电路来控制充电过程,防止电池过充放,并在电池上设置安全阀和热敏电阻[4]。
这些方法都是在使用过程中通过外部手段来达到对电池的安全保护,防止滥用造成的安全问题,然而要从根本上解决锂离子电池的安全问题,还要从电池材料本身的安全性能出发。
1.1 负极材料的安全性目前,商业化的锂离子电池多采用碳材料为负极,在充放电过程中,锂在碳颗粒中嵌入和脱出,从而减少锂枝晶形成的可能,提高电池的安全性,但这并不表示碳负极没有安全性问题。
其影响锂离子电池安全性能因素表现在下列几个方面:(1) 嵌锂负极与电解液反应随着温度的升高,嵌锂状态下的碳负极将首先与电解液发生放热反应,且生成易燃气体。
因此,有机溶剂与碳负极不匹配可能使锂离子动力电池发生燃烧。
电解液与嵌入负极中的锂会发生如下反应[5]:2Li+C3H4O3(EC)→Li2CO3+C3H6 (1)2Li+C4H6O3(PC)→Li2CO3+C3H6 (2)2Li+ C3H4O3 (DMC)→Li2CO3+C3H6 (3)(2) 负极中的粘结剂典型的负极包含质量分数为8%~12%的粘结剂,随着负极嵌锂程度的增加其与粘结剂反应的放热量也随之增加,通过XRD 分析发现其反应的主要产物为LiF[3]。
Maleki H 等[6]报道了LixC6 与PVDF 的反应热为1.32×103 J/g,反应开始时的温度200 ℃,在287℃时达到最大值。
(3) 负极颗粒尺寸负极活性物质颗粒尺寸过小会导致负极电阻过大,颗粒过大在充放电过程中膨胀收缩严重,导致负极失效。
目前,主要的解决方法是将大颗粒和小颗粒按一定比例混合,从而达到降低电极阻抗、增大容量的同时提高循环性能的目的。
Zhang Z[7]用DSC 方法研究表明,负极锂含量越大,与电解液反应放出的热量越多。
(4) 负极表面SEI 膜的质量良好的SEI 膜可以降低锂离子电池的不可逆容量,改善循环性能,增加嵌锂稳定性和热稳定性,在一定程度上有利于减少锂离子电池的安全隐患。
目前研究表明,经过表面氧化、还原或掺杂的碳材料以及使用球形或纤维状的碳材料都有助于SEI 膜质量的提高[8-11]。
1.2 正极材料目前,常见的锂离子电池正极活性材料有LiCoO2、LiNiO2、LiMn2O4、LiN1-xCoxO2、LiFePO4 和LiCo1/3Ni1/3Mn1/3O2[12-14]。
研究表明LiMn2O4 和LiFePO4的安全性能较好。
正极材料的安全性主要包括热稳定性和过充安全性。
在氧化状态,正极活性物质发生放热分解,并放出氧气,氧与电解液发生放热反应,或者正极活性物质直接与电解液发生反应。
表1 列出几种正极活性物质与电解质发生放热反应的温度和分解温度[15]。
从表中可以看出,LiMn2O4 的热稳定性最好,放热峰位置高于其它3 种活性物质。
很多研究人员针对安全性对不同的正极活性物质进行了研究。
其中J. R. Dahn[16]用TGA分析了LiCoO2、LiNiO2 和LiMn2O4 在受热过程中氧的释放量,研究结果表明LiMn2O4 氧释放量最小,被认为是最安全的正极活性物质。
H. J. Kweon 等[17]研究了表面包覆Al2O3、MgO 的LiCoO2 在充电时的热稳定性,该方法极大改进了电池的充放电速率,具有很好的安全特性。
LeisingR A 等[18]研究了电池在滥用条件下的反应行为,认为当电池以0.5 C 或以上倍率过充时电池会破裂,证明正极是热源。
钟盛文等[19]对用LiCo1/3Ni1/3Mn1/3O2、钴酸锂、锰酸锂的安全性能进行比较,对电池进行热稳定性、过充、短路、穿钉等安全性测试。
结果表明,LiCo1/3Ni1/3Mn1/3O2 的最高安全温度为165 ℃,最低爆炸温度175 ℃,其热稳定性高于钴酸锂低于锰酸锂;LiCo1/3Ni1/3Mn1/3O2 可以通过3 C、4.8 V 过充测试,钴酸锂能通过1 C、4.8 V 过充测试,锰酸锂能通过3 C、10 V 过充测试;3 种材料均通过短路测试,表面温度为120~123 ℃;3 种材料均通过穿钉测试,表面温度为104,109 ℃。
1.3 电解液电解液包括有机溶剂和无机导电剂,由于有机溶剂易燃,其本身就是影响电池安全性的主要原因。
锂离子电池所用正极材料一般都是高电势的嵌锂化合物,如LiCoO2 工作电压高达4.5 V,因此要求电解液具有足够的耐氧化稳定性。
在电解液中使用熔点低、沸点高、分解电压高的有机溶剂,是提高锂离子电池表1 正极活性物质与电解质反应放热峰和分解温度[15]Table 1 Exothermic and decomposed temperature ofcathode materials with electrolyteCathode materials Exothermictemperature/℃Decomposedtemperature/℃LiCoO2 250 230LiNiO2 200 220LiMn2O4 300 290LiNi(1-x)CoxO2 260~310 250~230安全性能的有效途径之一[20]。
不同组分电解液的分解电压不同,例如:EC/DEC(1:1):4.25 V,EC/DMC(1:1):5.1 V,PC/DEC(1:1):4.35 V。
此外,溶剂中的含水量必须进行严格的控制,溶剂的纯度直接影响其氧化电位,从而进一步影响电解液的稳定性。
水在电池的首次充放电过程中会与导电剂LiPF6 发生反应,生成HF;而水和HF 又会和SEI 膜的主要成分ROCO2Li 和Li2CO3 反应,从而破坏SEI 膜的稳定性,降低电池的安全性能[21]。
锂离子电池的安全性能和循环过程中负极材料石墨与电解液作用形成SEI 膜的性能有很大关系,良好的SEI 膜能降低锂离子电池的不可逆容量,改善循环性能,增加嵌锂稳定性和热稳定性,在一定程度上有利于降低锂离子电池的安全隐患。
而SEI 膜的组成中50%来自于导电剂中阴离子的分解,因此导电剂的选择对电池的安全性能至关重要。
目前常用的导电剂主要有LiPF6、LiClO4、LiBF4、LiAsF6 等。
表2 列出几种常用导电剂的优缺点[22,23]。
目前,商业化的锂离子电池多采用LiPF6 为导电剂,但是从表2 可以看出,LiPF6 也存在着安全隐患,所以目前急需寻找一种安全性能更好的导电剂代替LiPF6。
Li(C4F9SO2)和(CF3SO2)N 是目前认为比较好的有机阴离子导电剂[24],其具有较好的电化学稳定性和较高的电导率,且在较高的电位下不腐蚀铝集流体。
电解液添加剂是目前公认的提高锂离子电池安全性的有效手段,通过添加不同的添加剂,可以起到改善SEI 膜性能,保护正极活性物质,稳定LiPF6,提高过充安全性以及阻燃等作用[25]。
表3 列出几种常见添加剂。
1.4 隔膜隔膜在电池中主要有两个作用:其一是隔离正负极防止短路;其二是作为安全装置智能的切断电流。
作为动力锂离子电池的隔膜除了具备一般锂离子电池的特性外,还要求有高的孔隙率(>45%),高安全性表2 常见导电剂的优缺点[22,23]和高的热稳定性。
隔膜的安全性和热稳定性是由隔膜本身的性质决定的,主要取决于其遮断温度和破裂温度两个值。
隔膜的遮断温度是指在一定温度下多孔结构的隔膜发生熔化导致微孔结构关闭,内阻迅速增加而阻断电流通过时的温度。
遮断温度过低,即隔膜关闭的起点太低,会影响电池性能的正常发挥;遮断温度过高,则不能及时抑制电池迅速产热的危险。
隔膜的破裂温度高于遮断温度,此时膜发生破坏、熔化,导致正负极直接接触。
从电池安全性角度考虑,膜的遮断温度应该有一个较宽的范围,此时隔膜不会破坏。
因此选择合适的隔膜材料,确定合适的遮断温度和破裂温度是电池设计的一个重要课题。
用于动力锂离子电池的隔膜材料主要有单层的PE 和PP 膜及复合的PP-PE-PP 膜,它们的遮断温度和破裂温度列于表4。
PP-PE-PP 复合膜利用低熔点的PE在温度较低的条件下起到闭孔的作用,而PP 又能保持隔膜的形状和机械强度防止正负极接触,其安全性比只用单层膜要好。
复合多层隔膜已经成为目前研究开发的热点[26]。
2 制造工艺对锂离子电池安全性能的影响锂离子电池的制造工艺可分为圆柱式和叠片式,表4 隔膜材料遮断温度、膜破裂温度[27]Table 4 Shut down temperature and melting pointofpolyolefin membraneMembranes Shut down temperature/℃Melting point/℃PE 130~133 139PP 156~163 162PP-PE-PP 134~135 165无论是什么结构的锂离子电池,电极制造、电池装配等制造过程都会影响电池的安全性能。