2.12管道和空气加热器的蒸汽耗量计算

2.12管道和空气加热器的蒸汽耗量计算
2.12管道和空气加热器的蒸汽耗量计算

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

蒸汽消耗理论计算(终)

J线蒸汽耗量计算过程 一、温瓶机蒸汽用量 1吨330ml玻璃瓶装啤酒温瓶所需的 0."6Mpa下饱和蒸汽耗量计算过程,进温瓶机时酒温8℃,出温瓶机酒温49℃,330ml空玻璃瓶重 0.278kg,1吨330ml瓶装啤酒的净盖重约 7."58kg(25kg/万个)设: 温瓶1吨330ml玻璃瓶装啤酒所需总的热量为Q 温,酒液带走的热量为Q 温1,瓶子带走的热量为Q 温2,瓶盖带走的热量为Q 温3,机体散热为Q 温4,溢流水带走的热量为Q 温5, 酒液比热容 3."851KJ/(kg℃),玻璃比热容: 0."79 KJ/(kg℃),铁比热容: 0."46 KJ/(kg℃) 1.根据热量传递公式: Q=cm△t,(C: 比热,m:

质量,T 1、"T2:温度)有:Q温1= 3."851 KJ/(kg℃)*1000kg*(49℃-8℃) =157891KJQ温2= 0."79KJ/(kg℃)*( 0."278*(1000kg/ 0."33))*(49℃-8℃) ≈27286KJQ温3= 0."46KJ/(kg℃)*(((1000kg/ 0."33)/100)*25)*(49℃-8℃) ≈143KJ 2.参考啤酒科技杂志文献计算结果,巴氏杀菌机机体散热占整体蒸汽用量的 15."6%,J线温瓶机散热面积较小,机体散热按温瓶机使用总量的10%计,则: Q温4= ((Q 温1+Q 温2+Q 温3)/(1-15%))*15% =(157891+27286+143)/ 0."85* 0."15≈3

2 703."5KJ 3.生产过程无溢流水排放(忽略瓶身带走热水),则:Q温5≈0 4.设每吨 0."6Mpa的饱和蒸汽冷凝至60℃时释放的热量为Q 6,根据饱和蒸汽的压力-焓表查得: 0."6MPa压力下蒸汽温度 158."8°C,热焓: 27 5 6."4KJ/kg;60°C冷凝水热量焓: 251."67KJ/kg 则:Q6=( 2756."4- 251."67)*1000=KJ/t 5.设1吨330ml玻璃瓶装啤酒温瓶所需的 0."6Mpa下饱和蒸汽耗量为T 1,由以上 1、" 2、3得: Q温= Q

蒸汽管道计算实例

、尸■、亠 前言 本设计目的是为一区VOD-40t 钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道 终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达

不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该状态下的密度p为 4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240C查《管道设计》表1 —3得蒸汽在该状态下的密度p为2.98kg/m3。 (一)管道压力损失:

2、压力损失 式中△ p —介质沿管道内流动的总阻力之和,Pa; Wp —介质的平均计算流速,m/s ;查《管道设计》表5-2 取 Wp=40m/s ; g —重力加速度,一般取 9.8m/s "; u p —介质的平均比容,m 3/kg ; 入—摩擦系数,查《动力管道手册》(以下简称《管道》) 表4— 9得 管道的摩擦阻力系数 入=0.0196 ; d —管道直径,已知d=200mm ; L —管道直径段总长度,已知 L=505m ; 艺E —局部阻力系数的总和,由表(一)得 艺E =36 H 1、战一管道起点和终点的标高,m ; 1/Vp= p p —平均密度,kg/m 3 ; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/Vp 很小,可以忽略不计所以 2 103 d 厶+工? + (禺+駕)-1。5 2— 1

电加热器功率计算

一、一般按以下三步进行电加热器的设计计算: 1.计算维持介质温度不变的前提下,实际所需要的维持温度的功率 2.计算从初始温度在规定的时间内加热至设定温度的所需要的功率 3.根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑1.2系数。公式: 1.维持介质温度抽需要的功率 KW=C2M3△T/864+P 式中:M3每小时所增加的介质kg/h 2.初始加热所需要的功率 KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 二、电加热性能曲线下面是一些在电加热计算中经常要用到的性能曲线。 三、设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h 的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。

技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2 初始加热所需要的功率: 容器内水的加热:C1M1△T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal 容器自身的加热:C2M2△T = 0.12×150×(70-15) = 990 kcal 平均水表面热损失:0.6m2 × 4000W/m2 × 3h × 1/2 × 864/1000 = 3110.4 kcal 平均保温层热损失:2.52m2 × 32W/m2 × 3h × 1/2 × 864/1000 = 104.5 kcal (考虑20%的富裕量) 初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃工作时需要的功率: 加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg℃ = 1100kcal 水表面热损失:0.6m2 × 4000W/m2 × 1h × 864/1000 = 2073.6 kcal 保温层热损失:2.52m2 × 32W/m2 × 1h × 864/1000 = 69.67 kcal (考虑20%的富裕量) 工作加热的能量为:(1100 + 2073.6 + 69.6)×1.2 = 6486.54 kcal/kg℃

锅炉耗水量计算共8页

§2 锅炉基本特性的表示 为了区别各类锅炉构造、燃用燃料、燃烧方式、容量大小、参数高低以及运行经济性等特点,经常用到如下参数: 一、锅炉额定出力 锅炉额定出力是指锅炉在额定参数(压力、温度)和保证一定效率下的最大连续出力。对于蒸汽锅炉,叫额定蒸发量,单位为吨/小时;对于热水锅炉,叫额定产热量。单位为MW(老单位为万大卡/小时)。 产热量与蒸发量之间的关系: Q=D(iq-igs)×1000 千焦/小时 式中:D----锅炉蒸发量,吨/小时 iq----蒸汽焓,千焦/公斤 igs----锅炉给水焓,千焦/公斤 对于热水锅炉: Q=G(irs “-irs‘)×1000 千焦/小时 式中:G----热水锅炉循环水量,吨/小时 irs “---锅炉出水焓,千焦/公斤 irs ‘---锅炉进水焓,千焦/公斤 注:1千卡(kcal)=4.1868千焦(KJ) 二、蒸汽(或热水)参数 锅炉产生蒸汽的参数,是指锅炉出口处蒸汽的额定压力(表压)和温度。对生产饱和蒸汽的锅炉来说,一般只标明蒸汽压力;对生产过热蒸汽的锅炉,则需标明压力和过热蒸汽温度;对热水锅炉来说,则需标明出水压力和温度。 工业锅炉的容量、参数,既要满足生产工艺上对蒸汽的要求,又要便于锅炉房的设计,

锅炉配套设备的供应以及锅炉本身的标准化,因而要求有一定的锅炉参数系列。见 GB1921-88《工业蒸汽锅炉参数系列》及GB3166-88《热水锅炉参数系列》GB1921-88《工业蒸汽锅炉参数系列》 额定蒸发量 t/h 额定出口蒸汽压力MPa (表压) 0.4 0.7 1.0 1.25 1.6 2.5 额定出口蒸汽温度℃ 饱和饱和饱和饱和250 350 饱和350 饱和350 400 0.1 ★ 0.2 ★ 0.5 ★★ 1 ★★★ 2 ★★★★ 4 ★★★★★ 6 ★★★★★★★ 8 ★★★★★★★ 10 ★★★★★★★★★ 15 ★★★★★★★★ 20 ★★★★★★★ 35 ★★★★★★ 65 ★★ 本表中的额定蒸发量,对于<6t/h的饱和蒸汽锅炉是20℃给水温度下锅炉额定蒸发量,对

蒸汽管道设计计算

项目名称:XX 蒸汽管网设计输入数据: 1.管道输送介质:蒸汽 工作温度:240 C 工作压力: 0.6MPa 流量:1.5t/h 管线长度:1500 米设计计算: 设计温度260 C 设计压力:0.6MPa 比容:0.40m 3/kg ⑴管径: Dn=18.8 X(Q/w) 0-5 D n —管子外径,mm ; D0 —管子外径,mm ; Q —计算流量,m3/h w —介质流速,m/s ①过热蒸汽流速 DN》200 流速为40?60m/s DN v 100 流速为20 ?40m/s ②w=20 m/s Dn=102.97mm w=40 m/s Dn=72.81mm ⑵壁厚: DN100~DN200 流速为30 ?50m/s

ts = PD o/{2 (〔c〕Ej+PY)} tsd=ts+C C=C1+C2 ts —直管计算厚度,mm ; D0 —管子外径,mm ; P —设计压力,MPa ; 〔c〕t —在操作温度下材料的许用压力,MPa ; Ej—焊接接头系数; tsd —直管设计厚度,mm ; C—厚度附加量之和;:mm ; C1—厚度减薄附加量;mm ; C2—腐蚀或磨蚀附加量;mm ; 丫一系数。 本设计依据《工业金属管道设计规范》和《动力管道设计手册》在260 C 时20#钢无缝钢 管的许用应力〔c〕t为101Mpa , Ej取1.0 , Y取0.4 , C i 取0.8 , C2 取0. 故ts = 1.2 X133/【2 X101 x i+1.1 X0.4】=0.78 mm C= C 1+ C 2 =0.8+0=0.8 mm Tsd=0.78+0.8=1.58 mm 壁厚取4mm 所以管道为? 133 X4。

蒸汽管道计算实例

、八、、》 刖言 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、 滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该状态下的密度p为 4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240C查《管道设计》表1 —3得蒸汽在该状态下的密度p为2.98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一) 名称 阻力系数 (0数量 管子公称直径 (毫米) 总阻力 数 止回阀旋启式312003 煨弯R=3D0.3102003 方型伸缩煨弯5620030 器R=3D 2 、蒸汽管道的水力计算

初中物理电学计算题电加热器专题

1.(6分)有一种XX 一88型号电水壶的铭牌如下表,图l5是电水壶的电路图,R 为加热器,温控器S 是一个双金属片温控开关,当温度较低时,其处于闭合状态,加热器加热。当水沸腾后,会自动断开进入保 温状态,从而实现了自动温度开 关控制。 若加热器电阻阻值随温度改变 而发生的变化可忽略不计,则: (1)电水壶正常工作时,其加热 电阻的阻值是多大? (2)若电水壶产生的热量全部被水吸收,现将一满壶23℃的水在标准大气压下烧开需要多长时间?[水的比热容C=4.2×103J /(kg ·℃),lL =10-3m 3]。 (3)当电水壶处于保温状态时,通过加热器的电流是0.2A ,此时电阻Rc 的电功率是多少? 2.如图甲为现在家庭、宾馆常用的无线 电水壶(是一种在倒水时导线脱离,用电加热的方便水壶),图乙是该电水壶的铭牌 某同学用这种电水壶烧开水,他将水装至最大盛水量,测得水的温度是20℃,通电7min ,水刚好被烧开(在一个标准大气压下)。试通过计算,回答下面的问题: (1)该电水壶电热丝的电阻是多大? (2)水吸收的热量是多少? (3)若电水壶正常工作,算一算电水壶工作的效率。

3.前些日子,小亮的妈妈买了一个“天际”牌自动热水壶送给爷爷,其铭牌如表,小亮为了给爷爷说明电热水壶的使用方法,他接水800ml刻线,然后把水壶放在加热座上,拨动开关,5min后水烧开,水壶自动断电,已知水的初温为20℃。 (1)这壶水吸收的热量为多少?[c水=4.2×103J/kg·℃] (2)烧水时家中电压为220V,求电热水壶的热效率。 198W,这时电热水壶的实际功率为多大? (3)在用电高峰,电路中的实际电压将为 气压为标准大气压)。 求:(1)电热开水瓶在烧水过程中消耗的电能是多少焦? (2)如果在用电高峰时间使用,电源的实际电压只有 198V,则此时该电热开水瓶的实际功率是多少瓦?(设电热开 水瓶的电阻不变) 试卷第2页,总3页

汽耗与热耗计算(经典)

1、 汽轮发电机组热耗率 汽轮发电机组热耗率是指汽轮发电机组每发一千瓦时电量耗用的热量,单位为“千焦/千瓦时”。它反映汽轮发电机组热力循环的完善轮程度。汽轮发电机组的热耗率不仅受汽轮机的内效率、发电机效率、汽轮发电机组的机械效率的影响,而且受循环效率、蒸汽初、终参数的影响。 汽轮发电机组热耗率的计算公式如下: 1)无再热凝汽轮机组的热耗率 () ()()给水焓主汽焓汽耗率千瓦时千焦无再热热耗率 -?=/ 汽耗率(千克/千瓦时)=发电机的发电量汽轮机耗用的主蒸汽量 式中,主蒸汽焓指汽轮机入口主蒸汽焓。 给水焓指末级高压加热器出口联承阀后给水焓。 2)次中间再热汽轮机的热耗率 () ()?? ?? ??-?+???? ??-?+?-?=水焓减温蒸汽焓再热减温水耗率再热器中喷水用的排汽焓高压缸蒸汽焓再热 计算的汽耗率以高压缸排汽量 给水焓 给水率主蒸汽焓汽耗率千瓦时千焦再热热耗率 / 式中,减温水耗率单位为“千克/千瓦时”。 3)背压式汽轮机的热耗率 ()?? ?? ??-?=蒸汽焓背压汽焓主蒸汽耗率千瓦时千焦热耗率 / 4)单抽式汽轮发电机组热耗率 ()发电量 抽汽焓蒸汽焓汽机进口抽汽量给水焓蒸汽焓汽机进口抽汽量汽耗量热耗率? ? ? ? ?? -?+???? ??-?-= 5)双抽式汽轮机的热耗率 ()给水焓给水率主蒸汽焓汽耗率双抽热耗率 ?-?= — 发电量混合水用的汽量 高压抽汽加热返回 热系统的用汽量高压抽汽供回抽汽量高压?--10

???? ? ?-?水焓与补充水混合后的混合回水高压热用户用抽汽的返抽汽焓高压 — 发电量混合水用的抽汽量低压抽汽加热返回热系统的用汽量低压抽汽供回抽汽量低压 ?-- 10 ???? ??-?水焓与补充水混合后的混合回水低压热用户用抽汽的返抽汽焓低压 式中,汽量以“吨”,电量以“万千瓦时”,给水率以“千克/千瓦时”为单位。 2、 汽轮机的汽耗率 汽轮机汽耗率是指在发电机端每产生一千瓦时的电量,汽轮机所需要的蒸汽量。计算公式为: ()发电机发出的电量 汽轮机的总进汽量千瓦时千克汽耗率=/

蒸汽管道计算实例之欧阳歌谷创编

前言 欧阳歌谷(2021.02.01) 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定); VOD用户端温度180℃,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。

3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2.98kg/m3。(一)管道压力损失: 1、管道的局部阻力当量长度表(一)

煨弯R=3D0.3102003 煨弯 5620030方型伸缩器 R=3D 2、压力损失 2—1式中Δp—介质沿管道内流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2取Wp=40m/s ; g—重力加速度,一般取9.8m/s2; υp—介质的平均比容,m3/kg; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0.0196 ; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; Σξ—局部阻力系数的总和,由表(一)得Σξ=36; H1、H2—管道起点和终点的标高,m; 1/Vp=ρp—平均密度,kg/m3; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/Vp很小,可以忽略不计所以式2—1变为

蒸汽管道损失理论计算及分析

1.计算基本公式 温损计算公式为: 式中:—管道单位长度传热系数 —管内热媒的平均温度 —环境温度 —热媒质量流量 —热水质量比热容 ——管道长度由于计算结果为每米温降,所以L取1m .管道传热系数为 式中: ,—分别为管道内外表面的换了系数 ,—分别为管道(含保温层)内外径 —管道各层材料的导热系数(金属的导热系数很高,自身热阻很 i 小,可以忽略不计)。 —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算:

Pr为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: —管道埋设处的导热系数。 —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢() B. 查表得:碳钢在75和90摄氏度时的导热系数都趋近于 C.土壤的导热系数= D. 由于本文涉及到的最大管径为,所以取= E.保温材料为:聚氨酯,取= F. 保温层外包皮材料是:PVC,取= G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为:

管径为300mm时,保温层厚度为:50mm,保温外包皮厚度为:7mm; 管径为400mm时,保温层厚度为:51mm,保温外包皮厚度为:; 管径为500mm时,保温层厚度为:52mm,保温外包皮厚度为:9mm; 管径为600mm时,保温层厚度为:54mm,保温外包皮厚度为:12mm; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析

蒸汽管线热损失检验测试报告

蒸汽管道热损失测试报告 1 测试背景 郴州钻石钨制品有限责任公司蒸汽在输送过程中蒸汽热损失和压力损失明显,导致因为蒸汽末端蒸汽品质严重下降,通过与现场工作人员交流和了解,厂区蒸汽管道管线保温层破损处较多,由于长期使用而未曾更换保温材料,因此,导致岩棉材料下沉,上薄下厚;局部管线有裸露在外的现象,从而导致其热损失比较大,此外有个别阀门未采取保温,也不同程度加大了散热损失。保温材料和保温结构单一,缺少防水,防渗透措施,长期遭受雨雪侵蚀,保温效果变差。因此有必要对其进行热损失测试,找出具体的热损失原因,从而为做好能源利用工作提供方向和科学依据。 2测试方法 2.1 热流计法 2.1.1 测试原理 用热阻式热流传感器(热流测头)和测量指示仪表直接测量保温结构的散热热流密度。热流传感器的输出电势(E)与通过传感器的热流密度(q)成正比,q=cE值为测头系数。 热流传感器的标定按GB/T10295中的方法进行,必要时绘制q/E系数c 与被测表面温度(视作热流传感器的温度)的标定曲线,该曲线还应表示出工作温度和热流密度的范围。 2.1.2 现场测定应满足下列条件 应满足一维稳态传热条件减少外部环境因素的影响读取测定数据应在

达到准稳态条件时进行。 (1)现场风速不应超过0.5m/s,不能满足时应设挡风装置。 (2)应避免传感器受阳光直接辐射的影响宜选择阴天或夜间进行测定或加装遮阳装置。 (3)应避免在雨雪天气时进行测定。 (4)环境温度湿度的测点应在距热流密度测定位置1m远处,避免有其他热源的影响;地温的测点应在距热流密度测定位置10m远处相同埋深的自然土壤中。 2.2 表面温度法 测试原理 对于地上地沟敷设的热力管道测定保温结构外表面温度环境温度风向和风速表面热发射率及保温结构外形尺寸按下面公式计算其散热热流密度 q=α(t W-t F) 式中: q:散热热流密度,W/m2; α:总放热系数,W/(m2·k); t W:保温结构外表面温度,K; t F:环境温度,K。 2.3 温差法 测试原理 通过测定保温结构各层厚度、各层分界面上的温度以及各层材料在使用温度下的导热系数,计算保温结构的散热热流密度。

蒸汽管道计算实例

前言 本设计目的就是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数就是由动力一车间与西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250℃,压力1、0MP;蒸汽管道终端温度240℃,压力0、7MP(设定); VOD用户端温度180℃,压力0、5MP; 耗量主泵11、5t/h 辅泵9、0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1、0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4、21kg/m3。 假设:蒸汽管道的终端压力为0、7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2、98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一)

2、压力损失 2—1 式中Δp—介质沿管道内流动的总阻力之与,Pa; Wp—介质的平均计算流速,m/s; 查《管道设计》表5-2取Wp=40m/s ; g—重力加速度,一般取9、8m/s2; υp—介质的平均比容,m3/kg; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0、0196 ; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; Σξ—局部阻力系数的总与,由表(一)得Σξ=36; H1、H2—管道起点与终点的标高,m;

蒸汽管道温度损失计算及分析

热水供热管道的温降 1 ?计算基本公式 式中:管道单位长度传热系数w∕'m ?°C tp —管内热媒的平均温度°C tk —环境温度。C G —躺质量流量1? / S O C —热水质量比热容J / Kg. O 1 ——管道长度ni 由于计算统果为每米温降,所以L 取Im 1?2?管道传热系数为 k = ____________________ 1 __________________ g 1 壬 1 ] d i4,1 1 ------------ F > ----------- In E H -------------------- H n ^Zd n ι=ι 1 "w w 式中: J , %—分别为管道内外表面的换了系数w∕m 2?o C dn , 分别为管道(含保温层)内外径m &—管道各层材料的导热系数 w∕m ?°C (仝属的导热系数很高,自 身热阻很小,可以忽略不计)。 1 —管道各层材料到管道中心的距离m 1?1温损计算公式为: At=kg(tp-tQ 1 G ?C

J 2.1内表面换热系数的计算 根据H.Hansen的硏究结果”管内受迫流动的努谢尔特数可由下式计算: Pr为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=1.95;S 75摄氏度时Pr=2.38; 2?2外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: 人一管道埋设处的导热系数。 Ilt—管道中心到地面的距离。 3 ?假设条件: A. 管道材料为碳钢(w"5% ) B. 查表得:碳钢在75和90摄氏度时的昙热系数A都趋近于 36.7 w∕m?°C

估计蒸汽耗量的方法

式中: Q = 热量 (kJ);m = 物质的质量 (kg); c p = 物质的比热 (kJ /(kg·℃));?T = 物质的上升温度 (℃)。 估计蒸汽耗量的方法 蒸汽系统的优化设计很大程度上取决于是否能精确估计蒸汽的用量。这样才可以计算蒸汽的管道口径和各种附件的口径如控制阀、疏水阀等,以达到最佳的效果。确定工厂的蒸汽负荷可以有不同的方法: 计算 - 使用传热公式可以分析设备的热输出,可以估计蒸汽的耗量。虽然传热的计算不是非常精确(同时可能有很多未知的变量),但可以使用从相类似应用得出的经验数据。使用这种方法得到的数据对大多数应用来说的精度已经足够。 计量 - 蒸汽的耗量可以使用流量测试设备直接测量。这对于现有的设备可以得到足够精确的数据。但对于尚处于设计阶段或没投入使用的的设备来说,这种方法意义不大。 额定热功率 - 额定热功率(或设计额定值)通常标志在工厂各个设备的铭牌上,该数据由设备制造商提供。这些额定值通常以kW表示的热量输出,以kg/h表示的蒸汽耗量取决于使用的蒸汽压力。 任何参数的变化都会改变预期的热量输出,这意味着额定热功率或设计额定值和连接设备的负荷(蒸汽耗量)将不会相同。制造商标出的额定值是一种理想能力的表示,没必要和连接设备的负荷相等同。 计算 在大多数情况,蒸汽中的热量用来做两件事:使产品温度改变,也就是说提供“加热”部分。 来维持产品的温度(由于自然的热量损失或设计的热量损失),也就是说提供“热量损失”部分。 在任何加热制程中,由于产品温度的上升,“加热”部分将减少,并且加热盘管和产品之间的温差减小。但是,因为产品温度的上升热量损失部分将会增加,更多的热量将从容器或管道损失到环境中。任何时候需要的总热量是两部分之和。 计算加热物质所需热量的公式(公式2.1.4)可以适用于绝大多数的传热制程。 此公式的原始形式可以用来计算整个制程需要的总热量。但是,这种形式没有考虑传热率。为了确定传热量,将各种形式的换热应用分成两大类: 没有流动的应用 - 被加热的产品质量恒定、在一定的容器内单批加热。 流动形式的应用 - 被加热的流体连续地通过换热表面 。 没用流动的应用 在没有流动的应用中,被加热流体在一定的容器内单批加热。容器内的蒸汽盘管或环绕容器的蒸汽夹 套构成加热面。这种典型的应用实例如图2.6.1所示的热水储存式换热器或大型的储油罐 - 黏性的油在泵 送前必须加热降低黏度。有些制程是用来加热固体,典型的实例如轮胎压机、洗衣房烫机、硫化机和高压灭菌器。在有些非流动的应用中加热时间不重要且可以忽略,但对有些应用例如水箱和硫化机,加热时间 不仅很重要而且对制程非常关键。 w w w .b z .c o m

暖通设计电加热器的设计和计算

暖通设计电加热器的设计和计算 一、电加热器的设计计算,一般按以下三步进行: 1、计算从初始温度在规定的时间内加热至设定温度的所需要的功率 2、计算维持介质温度不变的前提下,实际所需要的维持温度的功率 3、根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑1.2系数。 公式: 1、初始加热所需要的功率 △△ KW = ( C1M1T + C2M2T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 2、维持介质温度抽需要的功率 △ KW=C2M3T/864+P 式中:M3每小时所增加的介质kg/h 二、性能曲线 下面是一些在电加热计算中经常要用到的性能曲线,对我们的设计是很有帮助的。

三、电加热器设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2 初始加热所需要的功率: C1M1T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal 容器内水的加热:△ C2M2T = 0.12×150×(70-15) = 990 kcal 容器自身的加热:△ 平均水表面热损失:0.6m2 × 4000W/m2 × 3h × 1/2 × 864/1000 = 3110.4 kcal 平均保温层热损失:2.52m2 × 32W/m2 × 3h × 1/2 × 864/1000 = 104.5 kcal (考虑20%的富裕量) 初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃ 工作时需要的功率: ℃ 加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg = 1100kcal 水表面热损失:0.6m2 × 4000W/m2 × 1h × 864/1000 = 2073.6 kcal 保温层热损失:2.52m2 × 32W/m2 × 1h × 864/1000 = 69.67 kcal (考虑20%的富裕量) 工作加热的能量为:(1100 + 2073.6 + 69.6)×1.2 = 6486.54 kcal/kg℃ 工作加热的功率为:6486.54 ÷864÷1 = 7.5 kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要27.1kw。 最终选取的加热器功率为35kw。

混凝土蒸汽加热法计算修订稿

混凝土蒸汽加热法计算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

混凝土蒸汽加热法计算 15.5.1蒸汽养护参数计算 蒸汽养护一般分预养、升温、恒温及降温四个阶段。预养是为使构件具有一定的初始强度,以防升温时产生裂缝。升温的速度与预养时间、混凝土的干硬度及模板情况有关,见表15-1。此外还与构件的表面系数有关,表面系数≥6m-1时,升温速度不得超过15℃/h;表面系数﹤6m-1时,升温速度不得超过10℃/h。蒸养时升温速度也可随混凝土初始强度的提高而增加,因此也可以采用变速(渐快)升温和分段(递增)升温。 表15-1升温速度极限值参考表(℃/h) 恒温温度及恒温时间的确定,主要取决于水泥品种、水灰比及对脱模的强度要求,参见表15-2。 1.升温时间计算 升温时间可由下式计算:

11 0 1V t t T - =(15-15) 式中 T1——升温时间(h); t0——恒温温度(℃); t1——车间温度(℃); V1——升温速度(℃/h)。 表15-2 恒温时间参考表 注:1.当采用普通硅酸盐水泥时,养护温度不宜超过80℃。 2.当采用矿渣硅酸盐水泥时,养护温度可提高到85℃~95℃。2.降温时间计算 降温时间可由下式计算: 22 0 2V t t T - =(15-16) 式中 T2——升温时间(h);

t0——恒温温度(℃); t2——出坑允许最高温度(℃); V2——坑内降温速度(℃/h),表面系数≥6m-1,取V2≤10℃/h;表面系数≤6m-1,取V2≥5℃/h。 3.出坑允许最高温度计算 出坑允许最高温度t1(℃),一般可按下式计算: (15- = + t t? t 1 2 17) 式中 t2——车间内温度(℃); t?——构件与车间的允许最大温度(℃)。对采用密封养护的构件,取t?=40℃;对一般带模养护构件,取 t?=30℃;对脱模养护构件,取t?=20℃;对厚大 构件或薄壁构件,t?取值壁以上值再低5~10℃。 4.养护制度的确定 蒸汽养护制度一般用简式表达,成为蒸汽养护制度表达式。如预养3h,恒温5h(恒温温度95℃),降温2h,则蒸汽养护制度表达式为: 3+3+5(95℃)+2 【例15-9】混凝土构件采用硅酸盐水泥配置,水灰比为,干硬度40S,经预养h后带模进行蒸养,出坑强度要求达到设计强度的70%,已知坑内的降温速度为15℃/h,车间温度20℃,试拟定蒸汽制度的试验方案。

蒸汽管道计算实例

前言 本设计目的是为一区VOD-40t钢包精练炉提供蒸汽动力。设计参数是由动力一车间和向阳喷射技术提供的。 主要参数:蒸汽管道始端温度250℃,压力1.0MP;蒸汽管道终端温度240℃,压力0.7MP(设定); VOD用户端温度180℃,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。

5、蒸汽管道通过厂房部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250℃查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1—3得蒸汽在该状态下的密度ρ1为4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240℃查《管道设计》表1—3得蒸汽在该状态下的密度ρ2为2.98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一)

2、压力损失 2—1 式中Δp—介质沿管道流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2取Wp=40m/s ; g—重力加速度,一般取9.8m/s2; υp—介质的平均比容,m3/kg; λ—摩擦系数,查《动力管道手册》(以下简称《管道》)表4—9得管道的摩擦阻力系数λ=0.0196 ; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; Σξ—局部阻力系数的总和,由表(一)得Σξ=36; H1、H2—管道起点和终点的标高,m;

蒸汽管道损失理论计算及分析

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο ?/ p t —管内热媒的平均温度C ? k t —环境温度 C ? G —热媒质量流量 s Kg / C —热水质量比热容 C Kg J ? ?/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 ∑=++ += n i w w i i i n n g d a d d d a k 111 ln 2111 ππ λπ 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο ?2/ n d , w d —分别为管道(含保温层)内外径 m i λ—管道各层材料的导热系数C m w ο ?/(金属的导热系数很高,自身 热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m

内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: 42 .075 .0Pr )180(Re 037.0-≈= λ n n n d a N Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: ]1)2(2ln[22-+ = w t w t w t w d h d h d a λ 式中: t λ—管道埋设处的导热系数。 t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取 t h = E.保温材料为:聚氨酯,取λ= C m w ο?/

相关文档
最新文档