路由选择算法
计算机网络中的路由选择算法

计算机网络中的路由选择算法计算机网络是由许多相互连接的计算机组成的系统,这些计算机之间需要进行通信才能完成相应的任务。
路由选择算法是计算机网络中的核心算法之一,它是决定将数据从一个网络节点传送到另一个网络节点的基础。
路由选择算法的作用就是找到从源节点到目的节点的最佳路径。
1. 路由选择算法的作用路由选择算法是计算机网络中最重要的算法,它的作用是将数据从源节点传输到目的节点。
在计算机网络中,不同的节点之间可能有多个路径可供选择,每个路径的传输速度也不同,路由选择算法的作用就是找到最佳的路径。
2. 常用的路由选择算法2.1 静态路由选择算法静态路由选择算法是一种固定的路由选择算法,它的路径是固定的,不会根据网络条件变化而改变。
这种算法比较简单,可以用于小型的网络,但是在大型的网络中使用会产生问题。
2.2 动态路由选择算法动态路由选择算法是一种根据网络条件实时调整的算法,它可以根据网络拓扑、网络流量等情况进行动态调整,从而找到最佳路径。
动态路由选择算法比静态路由选择算法更加灵活,适合用于大型的计算机网络。
2.3 链路状态路由选择算法链路状态路由选择算法是一种基于每个节点了解整个网络的拓扑和延迟信息,通过 Dijkstra 算法计算得到最短路径。
链路状态路由选择算法的算法复杂度较高,但是可以得到最优解。
链路状态路由选择算法适用于小型的网络,由于算法复杂度较高,无法用于大型的复杂网络中。
2.4 距离向量路由选择算法距离向量路由选择算法是一种基于每个节点了解相邻节点的距离信息,通过 Bellman-Ford 算法计算得到最短路径。
距离向量路由选择算法的算法复杂度较低,但是容易出现局部最优解。
距离向量路由选择算法适用于复杂的大型网络中。
3. 路由选择算法的应用路由选择算法在计算机网络中有着广泛的应用,它可以保证数据从源节点到目的节点的快速传输。
在实际应用中,如果路由选择算法不合理,将会导致网络拥堵、数据丢失等问题。
路由选择的原理

路由选择的原理路由选择是指在计算机网络中,根据特定的算法和策略来确定数据包从源主机到目的主机的路径选择。
路由选择的原理可以通过下面的内容来解释。
1. 距离矢量路由选择(Distance Vector Routing):- 每个路由器根据自己所知道的到达目的地的最短路径距离发送更新信息。
- 路由器之间以周期性、递增的方式交换距离矢量信息,直到达到稳定状态。
- 路由器通过比较邻居的距离矢量信息以及加入整个网络的信息,选择最佳路径。
2. 链路状态路由选择(Link State Routing):- 每个路由器将自己相连的链路状态信息广播给整个网络。
- 路由器通过收集来自邻居的链路状态信息以及自身的链路状态信息,在路由计算中构建网络的拓扑图。
- 根据拓扑图,每个路由器使用最短路径优先算法(如Dijkstra算法)来确定最佳路径。
3. 路由选择算法(Routing Algorithms):- 数据包根据特定的路由选择算法在网络中传输。
- 常见的路由选择算法包括最短路径优先算法、距离矢量算法、链路状态算法等。
- 这些算法根据网络的特性、需求和性能考虑,选择最佳的路径来传输数据。
4. 路由选择策略(Routing Policies):- 路由管理员通过制定特定的路由选择策略来影响路由选择过程。
- 路由选择策略可以基于多种因素,如路由器的负载、链路的带宽、成本等来选择路径。
- 通过调整路由策略,可以优化网络的性能、提高安全性等。
总的来说,路由选择是根据路由选择算法和策略来确定数据包的最佳路径。
这是一个根据网络状况、拓扑结构、需求等因素进行决策的过程,以确保数据能够快速、安全地传输到目的地。
路由控制机制

路由控制机制路由控制机制是一种用于网络通信的技术,它可以帮助用户控制网络流量,管理数据包的传输路径,从而提高网络的效率和安全性。
本文将介绍路由控制机制的基本概念、原理和应用。
一、路由控制机制的基本概念路由控制机制是指通过对网络中数据包传输路径的控制,实现网络中不同节点之间的数据交换。
在实际应用中,路由控制机制通常由路由器、交换机等网络设备来实现。
这些设备通过一系列的算法和协议,来确定最佳的数据传输路径,并将数据包传输到目标节点。
路由控制机制的原理主要包括路由选择算法和路由协议两个方面。
1.路由选择算法路由选择算法是指在网络中选择一条最佳路径的过程。
最常用的路由选择算法包括距离矢量算法和链路状态算法。
距离矢量算法是指通过计算到目标节点的距离来选择最佳路径,而链路状态算法则是通过计算网络中各节点之间的拓扑关系来选择最佳路径。
2.路由协议路由协议是指在网络中实现路由选择算法的一种协议。
常见的路由协议有RIP、OSPF、BGP等。
RIP协议是一种距离矢量协议,它通过计算到目标节点的距离来选择最佳路径。
OSPF协议是一种链路状态协议,它通过计算网络中各节点之间的拓扑关系来选择最佳路径。
BGP协议则是一种自治系统之间的路由协议,它可以实现自治系统之间的数据交换。
三、路由控制机制的应用路由控制机制广泛应用于互联网、局域网等各种网络中。
在互联网中,路由控制机制可以帮助网络管理员对互联网流量进行控制,保证网络的安全性和稳定性。
在局域网中,路由控制机制可以帮助用户快速地访问网络资源,提高网络的效率和使用体验。
路由控制机制是一种非常重要的网络通信技术,它可以帮助用户控制网络流量,管理数据包的传输路径,从而提高网络的效率和安全性。
随着互联网的不断发展,路由控制机制也将不断得到完善和优化,为用户提供更加高效、稳定和安全的网络通信服务。
计算机网络中的路由算法

计算机网络中的路由算法随着计算机网络技术的不断发展,网络规模不断扩大,对于数据交换的效率和可靠性的要求也越来越高。
在这种背景下,路由算法的设计和优化变得尤为重要。
本文将介绍计算机网络中常用的几种路由算法,并分析它们的优缺点。
1. 静态路由算法静态路由算法是最简单的一种路由算法。
它通过手动配置路由表,将每个目的网络对应的下一跳节点、距离等信息预先存储在路由表中,从而使路由选择过程变得简单、快速,并且不需要消耗网络带宽。
静态路由算法的优点是路由选择快速、可靠,而且不需要复杂的计算。
但是,它的缺点也非常明显,例如当网络的拓扑结构发生变化时,需要手动重新配置路由表,而且在网络规模较大时,手动配置路由表变得非常繁琐和耗时。
2. RIP路由算法RIP(Routing Information Protocol)是一种基于距离向量的路由算法。
它使用“距离”作为衡量网络拓扑的指标,计算到目的网络的距离。
具体而言,每个路由器都维护一个距离矩阵,其中存储着到其他网络的距离。
当一个路由器发现其他路由器发送的路由信息中包含更短的距离时,会更新自己的路由表,把更少的跳数作为最短路径。
RIP算法的优点是实现简单,算法运行效率高,并且可以自适应网络拓扑的变化。
但是,由于其基于距离向量的设计,每个节点只能获得本节点到距离最短的路径,无法感知全局网络拓扑,因此容易产生路由环路和路由震荡的问题。
3. OSPF路由算法OSPF(Open Shortest Path First)是一种基于链路状态的路由算法。
它使用“带宽”作为衡量网络拓扑的指标,通过广播链路上的信息,构建全网的拓扑图,并计算源节点到目的节点的最短路径。
与RIP算法不同,OSPF算法能够发现全局最短路径,并且可以通过配置不同的权重值来优化网络性能。
OSPF算法的优点是能够实现快速收敛,能够感知全局网络拓扑,并且能够根据网络环境的变化自动调整路由。
但是,由于其基于链路状态的设计,节点需要大量的内存和处理器资源来保存和处理链路状态,这就需要更高的硬件成本。
路由选择算法分类

路由选择算法分类路由选择算法是指在计算机网络中,根据一定的策略选择最佳的路由路径,以实现数据包的传输。
根据不同的策略和算法,路由选择算法可分为静态路由选择算法和动态路由选择算法。
静态路由选择算法是指在网络中,路由器的路由表是静态配置的,不会根据网络拓扑的变化而自动更新。
常见的静态路由选择算法有默认路由、静态路由和策略路由等。
默认路由是指当路由表中找不到与目标地址匹配的路由条目时,将数据包发送到默认网关进行转发。
默认路由的配置简单,适用于规模较小的网络环境。
但是,由于所有数据包都经过默认网关,容易造成网络拥堵和单点故障。
静态路由是指管理员手动配置路由器的路由表。
管理员需要根据网络拓扑和流量情况,手动配置每个路由器的路由表,以确保数据包能够按照预期的路径进行转发。
静态路由的配置灵活,适用于稳定的网络环境。
但是,随着网络规模的增大,静态路由的配置工作量将会变得非常繁重,且不易应对网络拓扑的变化。
策略路由是指根据不同的策略选择最佳的路由路径。
策略路由可以基于源地址、目标地址、服务类型等多个因素进行路由选择。
管理员可以根据网络需求和优先级,通过配置策略路由来实现更灵活的路由选择。
策略路由的配置复杂,但可以根据实际需求灵活调整路由路径,提高网络性能和可靠性。
动态路由选择算法是指路由器根据网络拓扑和链路状态信息,自动计算最佳的路由路径。
常见的动态路由选择算法有距离向量路由选择算法和链路状态路由选择算法。
距离向量路由选择算法是一种分布式的路由选择算法,每个路由器根据相邻路由器发送的路由信息,计算到达目标地址的最短路径。
距离向量路由选择算法使用了距离向量(即距离和下一跳路由器)来描述路由信息。
常见的距离向量路由选择算法有RIP(Routing Information Protocol)和IGRP(Interior Gateway Routing Protocol)。
链路状态路由选择算法是一种集中式的路由选择算法,每个路由器需要向网络中的其他路由器发送链路状态信息,并计算最短路径树。
计算机网络网络拓扑结构与路由选择算法

计算机网络网络拓扑结构与路由选择算法在计算机网络中,网络拓扑结构和路由选择算法是两个至关重要的概念。
网络拓扑结构定义了计算机网络中各个节点之间的连接方式,而路由选择算法则是确定数据包在网络中传输的最佳路径的方法。
本文将介绍不同类型的网络拓扑结构以及常用的路由选择算法。
一、网络拓扑结构网络拓扑结构描述了计算机网络中各个节点的连接方式,它可以影响网络的性能、可靠性和可扩展性。
常见的网络拓扑结构有星型、总线型、环型、树型和网状型。
1. 星型拓扑星型拓扑是一种常见的网络连接方式,其中所有的节点都与一个中心节点相连。
中心节点起到集线器或交换机的作用,可以实现节点之间的数据交换。
星型拓扑结构具有简单、易于扩展的优点,但如果中心节点故障,整个网络将无法正常工作。
2. 总线型拓扑总线型拓扑中,所有的节点都通过一个共享的传输介质连接在一起。
节点之间的通信通过在总线上发送数据包实现,其他节点监听总线上的数据传输并选择性地接收数据。
总线型拓扑结构具有低成本、简单易用的特点,但当总线故障时,整个网络将受到影响。
3. 环型拓扑环型拓扑中,所有的节点通过一条环形的传输介质相互连接。
每个节点都与前后两个节点相连,数据包在环上传递直到达到目的节点。
环型拓扑结构具有均衡负载和高可靠性的特点,但在一些情况下可能会出现数据包无法正常传输的问题。
4. 树型拓扑树型拓扑是一种层次结构的网络连接方式,其中一个节点可以连接多个子节点,每个子节点又可以连接其他子节点。
树型拓扑结构具有良好的可扩展性和容错性,但需要更多的物理连接和较长的传输延迟。
5. 网状拓扑网状拓扑中,每个节点都与其他节点直接相连,形成了一个高度互联的网络。
网状拓扑结构具有高可靠性和灵活性,但需要更多的物理连接和管理成本。
二、路由选择算法路由选择算法决定了数据包在网络中传输的最佳路径。
常用的路由选择算法包括静态路由和动态路由。
1. 静态路由静态路由是在网络中手动配置的路由路径,管理员根据经验和需求手动指定数据包的传输路径。
路由算法分类

路由算法及分类路由算法及分类:1、非自适应算法,静态路由算法不能根据网络流量和拓扑结构的变化更新路由表,使用静态路由表,也称为固定式路由选择算法。
特点:简单,开销少;灵活性差。
2、自适应算法,动态路由算法可根据网络流量和拓扑结构的变化更新路由表。
特点:开销大;健壮性和灵活性好。
3、最优化原则(optimality principle)如果路由器 J 在路由器 I 到 K 的最优路由上,那么从 J 到 K 的最优路由会落在同一路由上。
4、汇集树(sink tree)从所有的源结点到一个给定的目的结点的最优路由的集合形成了一个以目的结点为根的树,称为汇集树;路由算法的目的是找出并使用汇集树。
几种典型的路由选择算法:1、最短路径路由算法(Shortest Path Routing)1)基本思想构建子网的拓扑图,图中的每个结点代表一个路由器,每条弧代表一条通信线路.为了选择两个路由器间的路由,算法在图中找出最短路径。
2)测量路径长度的方法结点数量地理距离传输延迟距离、信道带宽等参数的加权函数3)Dijkstra算法每个结点用从源结点沿已知最佳路径到本结点的距离来标注,标注分为临时性标注和永久性标注;初始时,所有结点都为临时性标注,标注为无穷大;将源结点标注为0,且为永久性标注,并令其为工作结点;检查与工作结点相邻的临时性结点,若该结点到工作结点的距离与工作结点的标注之和小于该结点的标注,则用新计算得到的和重新标注该结点;在整个图中查找具有最小值的临时性标注结点,将其变为永久性结点,并成为下一轮检查的工作结点;重复第四、五步,直到目的结点成为工作结点;2、洪泛及选择洪泛算法1)洪泛算法(Flooding)属于静态路由算法a)基本思想把收到的每一个包,向除了该包到来的线路外的所有输出线路发送。
b)主要问题洪泛要产生大量重复包.c)解决措施每个包头包含站点计数器,每经过一站计数器减1,为0时则丢弃该包;记录包经过的路径2)选择性洪泛算法(selective flooding)洪泛法的一种改进。
计算机网络的路由算法

计算机网络的路由算法在计算机网络中,路由算法是用来确定数据包从源节点到目标节点的路径的一种算法。
它是实现网络通信的重要组成部分,承担着决定数据传输路线的关键任务。
本文将介绍几种常见的路由算法。
一、最短路径算法最短路径算法是一种常见且重要的路由算法。
它的目标是找到节点之间的最短路径,以最快速度将数据包从源节点发送到目标节点。
其中,迪杰斯特拉算法和贝尔曼-福特算法是两种常见的最短路径算法。
迪杰斯特拉算法(Dijkstra Algorithm)是一种广泛应用于计算机网络中的最短路径算法。
它通过计算从源节点到其他节点的最短路径,并记录路径上的节点和距离,最终找到从源节点到目标节点的最短路径。
该算法具有高效性和准确性,很好地满足了网络数据传输的需求。
贝尔曼-福特算法(Bellman-Ford Algorithm)是另一种常用的最短路径算法。
与迪杰斯特拉算法不同的是,贝尔曼-福特算法可以处理包含负权边的图。
它通过迭代地更新节点之间的距离,直到收敛为止,找到最短路径。
虽然贝尔曼-福特算法的效率较低,但其对于具有复杂网络结构的情况仍然具有重要的应用价值。
二、最优路径算法除了最短路径算法,最优路径算法也是计算机网络中常用的路由算法之一。
最优路径算法旨在找到包括最少跳数、最小延迟或最大带宽等特定需求的路径,以满足网络通信的性能要求。
例如,最小跳数算法(Minimum Hop Routing)是一种常见的最优路径算法,它通过选择路径上的最少跳数来实现数据传输。
这在实时性要求较高的应用场景中非常有用,如语音通话和视频会议等。
另外,最小延迟算法(Minimum Delay Routing)和最大带宽算法(Maximum Bandwidth Routing)也是常用的最优路径算法。
前者通过选择具有最小传输延迟的路径来实现数据传输,适用于对实时性要求较高的应用。
而后者则通过选择具有最大传输带宽的路径来实现数据传输,适用于对吞吐量要求较高的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如下图1所示网络,图2是更新前结点1的路由 表
1、路由表中给出了结点1的两个向量Di 和 Si 。 2、经128ms后,结点1收到3个相邻节点(2、 3、4)的时延向量 D2 、 3、 4 ,进行更新运算, D D 得到更新后的路由表。 d 21 2 d 31 3 d 41 1 d 22 0 d 32 3 d 42 2 d 3 d 0 d 2 23 D3 33 D4 43 D2 d 24 2 d 34 2 d 44 0 d 35 1 d 25 3 d 45 1 d 5 d 3 d 3 26 36 46
距离向量路由选择算法
距离向量路由选择算法是一种最基本的动 态路由选择算法。 原理:让每个路由器维护一张路由表,表 中给出了到每个目的地已知的最佳距离和路径 。通过与相邻路由器之间周期性地相互交换信 息,来更新表中的信息。当网络拓扑结构发生 变化时,路由器之间也将及时地相互通知有关 变更信息。
基本思想:每个结点保持两个向量 Di和 Si ; 每隔一段时间(如128ms)相邻节点交换时延 向量;根据收到的全部时延向量修改本结点时 延向量和后继结点时延向量。
终计算出从该路由器到其他目标网络的最短路径
,这些路径就构成了路由表。该算法要求每个路 由器具有唯一的名字或标识。 算法思想:链路状态算法的思想十分简单, 其具体工作过程如下。 每个路由器必须: (1)发现与它相邻的路由器,并知道其网络地址;
(2)测量它到达各相邻路由器的传输代价; (3)组装链路数据包(LSP),以便把它所知信息发送给
若结点v与结点1直接相连 若结点v与结点1不直接相连 在用计算机进行求解时,可以用一个比任何路 径长度大得多的数值代替 。对于上述例子, 可以使用 D(v) 99 。 (2)寻找一个不在N中的结点w ,其中D(w) 的值 为最小。把 w 加入到N中。然后对所有不在N 中的结点v,用[ D(v), D(w) l (w, v)] 中较小的值去
3、计算新路由(采用Dijstra算法) 当一个结点获得了一整套的链路状态分 组后,便可以用Dijstra算法找出它到所有可能 目的结点的最短路径,并更法中都要用到求最短路径算 法。其中最出名的求最短路径的算法有两个, 即Bellman-Ford算法和Dijkstra算法。这两种算 法的思路不同,但得出的结果是相同的。我们 下面只介绍Dijkstra算法。它的已知条件是整 个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改造为 链路时延或费用,这就相当于求任意两节点之 间具有最小时延或最小费用的路径。因此,求 最短路径的算法具有普遍的应用价值。
典型的路由选择算法
1、多路发送
特点:可靠性高、盲目性大(重复分路多)、 通信量大
几路发送
特点:通信量减小、可靠性降低
2、固定式(网中每一个结点存放一张事先确 定好的路由表(存放最佳路由)) 表中给出本结点到各目的结点的最短路径 例 一旦C和E之间的 网络断开,则A、 B无法通信。 特点:简单、可靠性差(不能适应网络状态变 化),适用于小型网络,(人工维护路由表)
路由选择算法分类
1、根据能否适应通信量和拓扑结构变化 非自适应(静态路由):可靠性差、简单 自适应(动态路由):实现复杂、可靠性高—— 实用 2、根据源节点向外发送数据方式 全路发送(扩散式) 统称多路发送 几路发送(选择扩散式) 单路发送
固定式(静态路由) 单路发送 适应式(动态路由) 最短路法 分布式 局部延迟法
具体步骤: (1)构造链路状态信息——每个结点收集与其相 邻的结点及其延迟信息。 通过:①HELLO分组—确认相邻节点。 ②ECHO分组—收集该结点到相邻结点的 延迟(要求对方立即响应)。 通过上述信息来构造链路状态分组(反映与 某结点相邻的所有结点的状态)。
例:
2、发送链路状态分组(采用扩散式)
例:计算 d13
1 2 3 1 3 1 4 4
Min d13 3
d13 d12 d 23 2 3 5 d13 d13 d33 5 0 5 d13 d14 d 43 1 2 3
计算 d15 最小值
1 2 3 5 1 2 4 5 1 3 5 1 4 5
下面就以图1的网络为例来讨论这种算法, 即寻找从源结点到网络中其他各结点的最短路 径。为方便起见,设源结点为结点1.然后一步 一步寻找,每次找一个结点到源结点的最短路 径直到把所有的点都找到为止。
令D(v)为源结点(记为结点1)到某个结点v的 距离,它就是从结点1沿某一路径到结点v的所 有链路的长度之和。再令 l (i, j ) 为结点 i 至结 点 j 之间的距离。整个算法只有以下两个部分: (1)初始化: 令N表示网络结点的集合。先令 N {1}.对所有 不在N中的结点v,写出
路由选择及其算法
通信子网为网络源节点和目的节点提供了 多条传输路径的可能性。网络节点在收到一个 分组后,要确定向一下节点传送的路径,这就 是路由选择。在数据报方式中,网络节点要为 每个分组路由做出选择;而在虚电路方式中, 只需在连接建立时确定路由。确定路由选择的 策略称路由算法。
路由(径)选择——根据一定的原则和算 法在所有传输通路中选择一条通往目的结点的 最佳路径。 路由选择算法——路由选择过程中采用的 策略。
才能此消息传送到所有的路由器。也就是说“ 好消息传播的快,而坏消息传播的慢”,从而 导致路由环路。
路由选择算法在路由选择协议中起着至关 重要的作用,采用何种算法往往决定了最终的 寻径结果。一个实际的路由选择算法,应尽可 能的接近于理想的路由选择算法,即要具有以 下特点:最优、简单、健壮稳定、快速收敛、 灵活、公平性。
网络上所有其他的路由器; (4)发送LSP给网络上所有其他的路由器,以便创建 网络拓扑结构数据库(即:SPF树); (5)计算到每个其他路由器的最短路径; (6)路由器将计算出的最短路径以及所有的该路由 器的网络端口信息添加到路由表中。
由于链路状态算法要求各路由器的网络拓 扑结构数据库相互一致;因此,当链路状态发 生变化时,最先检测到这一变化的路由器需要 将变化的情况发送给其他的路由器。每当路由 器收到新的LSP,它都会重新计算最短路径并 更新路由表,保证各路由器在网络拓扑结构方 面重新达成一致;当网络拓扑结构数据库创建 后变化时,每个路由器使用最短路径算法来找 出到其他路由器的最短路径。
d15 d12 d 23 d 35 6 d15 d12 d 24 d 45 5 d15 d13 d 35 6 d15 d14 d 45 2
Min d15 2
得到了结点1的新的部分路由表
链路状态路由选择算法
链路状态算法,又称最短路径优先算法。 与距离向量算法不同 的是,由于这种算法需 要每一个路由器都保存一份最新的关于整个网 络的网络拓扑结构数据库,因此路由器不仅清 楚地知道从本路由器出发能否到达某一指定网 络,而且能够到达的情况下,还可以选择出最 短的路径以及采用该路径将经过的路由器。链 路状态算法使用LSP(链路状态数据包)、网络 拓扑数据库、SPF路径选择算法、SPF树,最
l (1, v) D (v )
更新原有的D(v) 值,即: D(v) min[D(v), D(w) l (w, v)] (1) (3)重复步骤(2),直到所有的网络结点都在N 中为止。 下表1是对图1的网络进行求解的详细步骤。
现在我们对以上的最短路径树的找出过程进行 一些解释。
距离向量算法与最短路径算法的比较
距离向量算法和链路状态算法各有千秋, 两种算法的差别基本上可以归纳为表2中的几 点,我们可以以此作为集体应用中选择路由选 择协议的技术依据。
需要注意的一个问题
收敛是路由算法选择时所遇到的一个重要问 题。一个理想的路由选择算法其收敛时间应越短 越好,收敛时间是指从网络的拓扑结构发生变化 到网络上所有的相关路由器都得知这一变化,并 且相应地做出改变所需要的时间。这一时间越短 ,网络变化对全网的扰动就越小。收敛时间过长 会导致路由环路的出现。 距离向量路由选择算法的收敛时间就相对较 长。特别当网络出现故障时,要经过很长的时间
延迟向量 Di
d i1 di 2 Di d 1N
其中:d 0 ii
d kj d ki d ij Min[d ki d ij ]
iA
A为结点 k 的所有相邻节点
dii 指结点到结点自身的延迟
后继结点向量 Si s i1 si 2 Si s iN Skj i 使每个结点[dki dij ] 最小
3、适应式(动态路由选择)适用于中型网络 路由表动态设臵(不需要人工干预) 实现方式:相邻结点(交换机或路由器)周期 性交换路由信息。
例:
一旦结点C与结点E之间断开,则结点C向结 点A反馈信息,通过其他路径进行通信。
分布式路由算法
1、基本思想:每个结点周期性地从相邻的结 点获得网络状态信息,同时将本结点做出的决 定周期性地通知周围的结点,以使这些结点不 断地根据网络新的状态更新其路由选择决定。 2、基本算法:距离向量法和链路状态法