2007年高考试题——数学文(辽宁卷)
2007年(辽宁卷)普通高等学校招生全国统一考试(文科)数学(含解析)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)(2007•辽宁)若集合A={1,3},B={2,3,4},则A∩B=()2、(5分)(2007•辽宁)若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点()3、(5分)(2007•辽宁)双曲线的焦点坐标为(),,4、(5分)(2007•辽宁)若向量与不共线,≠0,且,则向量与的夹角为()表现形式有点繁琐,我们可以试着先求一下要求夹5、(5分)(2007•辽宁)设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()6、(5分)(2007•辽宁)若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是()7、(5分)(2007•辽宁)若函数y=f(x)的图象按向量平移后,得到函数y=f(x+1)﹣2的图象,则向量=()解:设=8、(5分)(2007•辽宁)已知变量x,y满足约束条件,则的取值范围是()根据已知的约束条件表示的几何意义,结合图象即可给出对应的平面区域如下图示:9、(5分)(2007•辽宁)函数的单调增区间为()根据复合函数的单调性知10、(5分)(2007•辽宁)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是()B11、(5分)(2007•辽宁)设p,q是两个命题:,则p是q的(),结合数轴知12、(5分)(2007•辽宁)将数字1,2,3,4,5,6拼成一列,记第i个数为a i(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法种数为()第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13、(4分)(2007•辽宁)已知函数y=f(x)为奇函数,若f(3)﹣f(2)=1,则f(﹣2)﹣f(﹣3)= 1、14、(4分)(2007•辽宁)展开式中含x的整数次幂的项的系数之和为72(用数字作答)、,15、(4分)(2007•辽宁)若一个底面边长为,棱长为的正六棱柱的所有顶点都在一个平面上,则此球的体积为4π、得R=,球体积为16、(4分)(2007•辽宁)设椭圆上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足=(+),则=2、﹣的坐标,由=+)得到的坐标,利用两点间的距离公式求出解:由椭圆得,则左准线为,列出x=(舍去)x=,满足=(+(﹣,±=三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17、(12分)(2007•辽宁)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率、,可得出各组的频率;18、(12分)(2007•辽宁)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=a,D,E分别为棱AB,BC的中点,M为棱AA1上的点,二面角M﹣DE﹣A为30°、(I)证明:A1B1⊥C1D;(II)求MA的长,并求点C到平面MDE的距离、,∴,,∴,即的距离为∵的距离相等,为19、(12分)(2007•辽宁)已知函数(其中ω>0)(I)求函数f(x)的值域;(II)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间、的两个相邻交点间的距离为)解:20、(12分)(2007•辽宁)已知数列{a n},{b n}满足a1=2,b1=1,且(n≥2)(I)令c n=a n+b n,求数列{c n}的通项公式;(II)求数列{a n}的通项公式及前n项和公式S n、公比为)解:由题设得,公比为的等比数列,通项公式为解得求和得21、(14分)(2007•辽宁)已知正三角形OAB的三个顶点都在抛物线y2=2x上,其中O为坐标原点,设圆C是OAB的内接圆(点C为圆心)(Ⅰ)求圆C的方程;(Ⅱ)设圆M的方程为(x﹣4﹣7cosθ)2+(y﹣7cosθ)2=1,过圆M上任意一点P分别作圆C的两条切线PE,PF,切点为E,F,求的最大值和最小值、两点坐标分别为,由题设知,点坐标为,于是有、中,,由此可得、的最大值为22、(12分)(2007•辽宁)已知函数f(x)=x3﹣9x2cosα+48xcosβ+18sin2α,g(x)=f'(x),且对任意的实数t均有g(1+cost)≥0,g(3+sint)≤0、(I)求函数f(x)的解析式;(II)若对任意的m∈[﹣26,6],恒有f(x)≥x2﹣mx﹣11,求x的取值范围、即,解得由题意只要即。
2007年普通高等学校招生全国统一考试理科数学-辽宁卷

2007年普通高等学校招生全国统一考试(辽宁卷)数 学(理工科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p n n -=-=,,,,一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{12345}U =,,,,,{13}A =,,{234}B =,,,则()()U UA B =痧( )A .{1}B .{2}C .{24},D .{1234},,, 2.若函数()y f x =的反函数图象过点(15),,则函数()y f x =的图象必过点( )A .(11),B .(15),C .(51),D .(55),3.若向量a 与b 不共线,0≠a b ,且⎛⎫⎪⎝⎭a a c =a -b a b ,则向量a 与c 的夹角为( ) A .0B .π6C .π3D .π24.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63B .45C .36D .275.若35ππ44θ⎛⎫∈⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( ) A .(12)--,B .(12)-,C .(12)-,D .(12),7.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥8.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦,,C .(][)36-∞+∞,,D .[36],9.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( ) A .122B .111C .322D .21110.设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p 是q 的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A.B .12C.D .2412.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是( ) A .0是()f x 的极大值,也是()g x 的极大值B .0是()f x 的极小值,也是()g x 的极小值C .0是()f x 的极大值,但不是()g x 的极值D .0是()f x 的极小值,但不是()g x 的极值第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数2cos (0)()1(0)a x x f x x x ⎧=⎨-<⎩≥,在点0x =处连续,则a = .14.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP DF =+,则||OM = . 15.若一个底面边长为2的正六棱柱的所有顶点都在一个平面上,则此球的体积为 .16.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种(用数字作答).三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间. 18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=,AC BC a ==,D E ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30.(I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离.19.(本小题满分12分)某企业准备投产一批特殊型号的产品,已知该种产品的成本C 与产量q 的函数关系式为3232010(0)3q C q q q =-++>该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p 与产量q 的函数关系式如下表所示:市场情形 概率价格p 与产量q 的函数关系式 好 0.4 1643p q =- 中 0.4 1013p q =- 差0.2704p q =-设123L L L ,,分别表示市场情形好、中差时的利润,随机变量k ξ,表示当产量为q ,而市场前景无法确定的利润.(I )分别求利润123L L L ,,与产量q 的函数关系式; (II )当产量q 确定时,求期望k E ξ;(III )试问产量q 取何值时,k E ξ取得最大值.1A 1C1BCBAMDE20.(本小题满分14分)已知正三角形OAB 的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB 的内接圆(点C 为圆心) (I )求圆C 的方程;(II )设圆M 的方程为22(47cos )(7cos )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE PF ,,切点为E F ,,求CE CF ,的最大值和最小值.21.(本小题满分12分)已知数列{}n a ,{}n b 与函数()f x ,()g x ,x ∈R 满足条件:n n a b =,1()()()n n f b g b n +=∈N*.(I )若()102f x tx t t +≠≠≥,,,()2g x x =,()()f b g b ≠,lim n n a →∞存在,求x 的取值范围;(II )若函数()y f x =为R 上的增函数,1()()g x f x -=,1b =,(1)1f <,证明对任意n ∈N*,lim n n a →∞(用t 表示).22.(本小题满分12分)已知函数2222()2()21tf x x t x x x t =-++++,1()()2g x f x =.(I )证明:当t <时,()g x 在R 上是增函数;(II )对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b ,上是减函数;(III )证明:3()2f x ≥.。
2007年全国统一高考数学试卷(文科)(全国卷一)及答案

2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。
2007年辽宁省高考数学试卷(文科)【附答案、word版本,可再编辑;B4纸型两栏】

1 / 62007年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分) 1. 若集合A ={1, 3},B ={2, 3, 4},则A ∩B =( ) A.{1}B.{2}C.{3}D.{1, 2, 3, 4}2. 若函数y =f(x)的反函数图象过点(1, 5),则函数y =f(x)的图象必过点( ) A.(1, 1) B.(1, 5) C.(5, 1) D.(5, 5)3. 双曲线x 216−y 29=1的焦点坐标为( )A.(−√7,0),(√7,0)B.(0,−√7),(0,√7)C.(−5, 0),(5, 0)D.(0, −5),(0, 5)4. 若向量a →与b →不共线,a →⋅b →≠0,且c →=a →−(a →⋅b →˙)b →,则向量a →与c →的夹角为( ) A.0B.π6C.π3D.π25. 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( ) A.63B.45C.36D.276. 若m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是( )A.若m ⊂β,α⊥β,则m ⊥αB.若α∩γ=m ,β∩γ=n ,m // n ,则α // βC.若α⊥γ,α⊥β,则β // γD.若m ⊥β,m // α,则α⊥β7. 若函数y =f(x)的图象按向量a →平移后,得到函数y =f(x +1)−2的图象,则向量a →=( ) A.(−1, −2)B.(1, −2)C.(−1, 2)D.(1, 2)8. 已知变量x ,y 满足约束条件{x −y +2≤0x ≥1x +y −7≤0,则yx 的取值范围是( ) A.[95,6]B.(−∞,95]∪[6,+∞)C.(−∞, 3]∪[6, +∞)D.[3, 6]9. 函数y =log 12(x 2−5x +6)的单调增区间为( ) A.(52,+∞)B.(3, +∞)C.(−∞,52)D.(−∞, 2)10. 一个坛子里有编号为1,2,⋯,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( ) A.122B.111C.322D.21111. 设p ,q 是两个命题:p :log 12(|x|−3)>0,q :x 2−56x +16>0,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件12. 将数字1,2,3,4,5,6拼成一列,记第i 个数为a i (i =1, 2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( ) A.18B.30C.36D.48二、填空题(共4小题,每小题4分,满分16分)13. 已知函数y =f(x)为奇函数,若f(3)−f(2)=1,则f(−2)−f(−3)=________. 14. (√x +√x 4)8展开式中含x 的整数次幂的项的系数之和为________(用数字作答).15. 若一个底面边长为√62,棱长为√6的正六棱柱的所有顶点都在一个球面上,则此球的体积为________.16. 设椭圆x 225+y 216=1上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足OM →=12(OP →+OF →),则|OM →|=________. 三、解答题(共6小题,满分74分)17. 某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:。
2007年高考文科数学试题及参考答案(辽宁卷)

2012年大学生暑期社会实践活动指导手册二O一二年五月目录一、2012年武汉软件工程职业学院暑期社会实践活动程序图 (4)二、武汉软件工程职业学院2012年学生暑期社会实践活动流程 (5)三、武汉软件工程职业学院2012年大学生暑期社会实践相关制度与方案1. 武汉软件工程职业学院2012年学生暑期社会实践资助办法 (8)2. 武汉软件工程职业学院2012年学生暑期社会实践资助报销制度 (9)3. 武汉软件工程职业学院2012年学生暑期社会实践评奖办法 (10)四、武汉软件工程职业学院2012年学生暑期社会实践案例指导 (14)五、附录1. 武汉软件工程职业学院2012年暑期社会实践活动联系专用证明(样式) (16)2. 武汉软件工程职业学院2012年暑期社会实践地活动接收证明(样式) (17)3. 武汉软件工程职业学院2012年暑期社会实践项目申报书 (18)4. 武汉软件工程职业学院2012年暑期社会实践活动立项申报表(样式) (20)5. 武汉软件工程职业学院2012年暑期社会实践团队守则 (26)6. 武汉软件工程职业学院2012年暑期社会实践个人安全责任承诺书 (27)7. 武汉软件工程职业学院2012年暑期社会实践最终信息确认表 (28)8. 武汉软件工程职业学院2012年暑期社会实践学生团队登记表 (29)9. 武汉软件工程职业学院2012年暑期社会实践学生个人登记表 (30)10.武汉软件工程职业学院2012年暑期社会实践总结报告 (31)11.武汉软件工程职业学院2012年暑期社会实践活动反馈表 (31)12 武汉软件工程职业学院2012年暑期社会实践成果统计表 (32)13.武汉软件工程职业学院2012年暑期社会实践优秀项目申报表 (33)一、2012年武汉软件工程职业学院暑期社会实践活动程序图奔赴各地开展社会实践 总结工作:上交实践总结、成果册、推优名单、四项评比材料等 报帐 结算 成绩录入 评奖表彰院团委将初步审核通过的团队,并予以公布。
2007年高考试题——数学文(全国卷2)

2007年普通高等学校招生全国统一考试试题卷文科数学(必修 + 选修Ⅱ)注意事项:1.本试题卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3.选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4.非选择题必须使用0.5 毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效.6.考试结束、将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径k n kk n n P P C k P --=)1()( ),,2,1,0(n k =一、选择题(1)=330cos(A )21 (B )21-(C )23 (D )23-(2)设集合},4,2{},2,1{},4,3,2,1{===B A U U =(A B )=(A ){2}(B ){3}(C ){1,2,4}(D ){1,4}(3)函数|sin |x y =的一个单调增区间是(A ))4,4(ππ- (B ))43,4(ππ(C ))23,(ππ(D ))2,23(ππ(4)下列四个数中最大的是(A )2)2(ln(B ))2ln(ln (C )2ln (D )2ln(5)不等式032>+-x x 的解集是(A )(-3,2)(B )(2,+∞)(C )),2()3,(+∞--∞(D )),3()2,(+∞--∞(6)在△ABC 中,已知D 是AB 边上一点,若=+==λλ则,31,2CB CA CD DB AD(A )32(B )31 (C )31-(D )32-(7)已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于(A )63 (B )43 (C )22 (D )23 (8)已知双曲线42x y =的一条切线的斜率为21,则切点的横坐标为(A )1 (B )2 (C )3 (D )4(9)把函数x e y =的图像按向量a =(2,3)平移,得到)(x f y =的图像,则=)(x f(A )2+x e(B )2-x e(C )2-x e(D )2+x e(10)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有 (A )10种(B )20种(C )25种(D )32种(11)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于(A )31(B )33 (C )21 (D )23(12)设F 1、F 2分别为双曲线122=-y x 的左、右焦点,若点P 在双曲线上,且 =+=⋅||||,02121PF PF PF PF 则 (A )10(B )210(C )5(D )25第Ⅱ卷(非选择题)本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.(13)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 ① .(14)已知数列的通项25+-=n a n ,其前n 项和为S n = ② .(15)一个正四棱柱的各个顶点在一个直径为2cm 的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 ③ cm 2.(16)82)1)(21(xx x -+的展开式中常数项为 ④ .(用数字作答)三、解答题:本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)设等比数列}{n a 的公比1<q ,前n 项和为S n .已知,5,2243S S a ==求}{n a 的通项 公式.(18)(本小题满分12分)在△ABC 中,已知内角,32,3==BC A 边π设内角B =x ,周长为y .(Ⅰ)求函数y=f (x )的解析式和定义域;(Ⅱ)求y 的最大值. 19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件.假设事件A :“取出的2件产品中至多有1件是二等品”的概率P (A )=0.96.(Ⅰ)求从该批产品中任取1件是二等品的概率p ;(Ⅱ)若该批产品共100件,从中任意抽取2件, 求事件B :“取出的2件产品中至少有一件二等品”的概率P (B ).(20)(本小题满分12分)如图,在四棱锥S —ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD , E 、F 分别为AB 、SC 的中点.(Ⅰ)证明EF//平面SAD .(Ⅱ)设SD =2DC . 求二面角A —EF —D 的大小.(21)(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线43=-y x 相切.(Ⅰ)求圆O 的方程;(Ⅱ)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA |、|PO |、|PB | 成等比数列,求·的取值范围.(22)(本小题满分12分) 已知函数 1)2(31)(23+-+-=x b bx ax x f 在1x x =处取得极大值,在2x x =处取得极小值,且 21021<<<<x x (Ⅰ)证明a>0;(Ⅱ)求z =a +3b 的取值范围.①②2007年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅱ)参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同.可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分的正确解答应得分数的一半,如果后继部分的解答有较严重的错误,就不再给分.3.解答后段所注分数,表示考生正确做到这一步应得到累加分数. 4.只给整数分数.选择题和填空题不给中间分. 一、选择题(1)C (2)B (3)C (4)D (5)C (6)A (7)A (8)A (9)C (10)D (11)D (12)B 二、填空题(13)201 (14)252nn -- (15)2+42 (16)57三、解答题(17)解:由题设知,1)1(,011qq a S a n n --==则⎪⎩⎪⎨⎧--⨯=--=q q a qq a q a 1)1(51)1(,2214121由②得)1(5124q q -=-. .0)1)(4(22=--q q.0)1)(1)(2)(2(=+-+-q q q q因为1<q ,解得1-=q 或2-=q当1-=q 时,代入①得21=a ,通项公式;)1(21--⨯=n n a 当2-=q 时,代入①得211=a ,通项公式.)2(211--⨯=n n a(18)解:(Ⅰ)△ABC 的内角和A+B+C =π,由.3200,0,3ππ<<>>=B C B A 得 应用正弦定理,知,sin 4sin 3sin 32sin sin x x B ABC AC ===).32sin(4sin sin x C A BC AB -==π因为 ,AC BC AB y ++= 所以 ).320(32)32sin(4sin 4ππ<<+-+=x x x y (Ⅱ)因为 32)s i n 21c o s 23(s i n 4+++=x x x y =),6566(32)6sin(34ππππ<+<++x x 所以,当26ππ=+x ,即y x ,3时π=取得最大值36.(19)解(Ⅰ)记A 0表示事件“取出2件产品中无二等品”,A 1表示事件“取出的2件产品中恰有1件二等品” 则A 0,A 1互斥,A =A 0+A 1,故P (A )=P (A 0+A 1)=P (A 0)+P (A 1)=)1()1(122p p C p -+-21p -=于是 0.96=21p -=解得 2.02.021-==p P (舍去)(Ⅱ)记B 0表示事件“取出的2件产品中无二等品” 则B=0B若该批产品共100件,由(Ⅰ)知其二等品有100×0.2=20件,故.495316)(21002800==C C B P.4951794953161)(1)()(00=-=-==B P B P B P (20)解法一(Ⅰ)作FG//DC 交SD 于点G ,则G 为SD 的中点.连结AG FG ////,21CD CD 又AB , 故FG //AE,AEFG 为平行四边形.EF//AG ,又AG ⊂平面SAD,EF ⊄平面SAD . 所以EF //平面SAD .(Ⅱ)不妨设DC =2,则SD =4,DG =2,△ADG 为等腰直角三角形. 取AG 中点H ,连结DH ,则DH ⊥AG .又AB ⊥平面SAD ,所以AB ⊥DH ,而AB AG =A . 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM ⊥EF . 连结DM ,则DM ⊥EF .故∠DMH 为二面角A —EF —D 的平面角.212tan ===∠HM DH DMH 所以二面角A —EF —D 的大小为arctan 2 解法二:(Ⅰ)如图,建立空间直角坐标系D —xyz设A (a ,0,0),S(0,0,b ),则)2,2,0(),0,2,(),0,,0(),0,,(ba F a a E a C a a B ,)2,0,(b a EF -=,取SD 的中点)2,0,0(bG ,则)2,0,(ba -=,,,,//,SAD EF SAD AG AG EF AG EF 平面平面⊄⊂=所以EF //平面SAD .(Ⅱ)不妨设A (1,0,0),则 B (1,1,0),C (0,1,0),S (0,0,2),E(1,21,0),F (0, 21,1). EF 中点M (21,21,21),.,0,),1,0,1(),21,21,21(EF MD EF ⊥=-=---= 又EF EA ⊥=⋅-=,0),0,21,0(,所以向量EA MD 和的夹角等于二面角A —EF —D 的平面角,33||||,cos =⋅>=<EA MD ,所以二面角A —EF —D 的大小为arccos 33.(21)解:(Ⅰ)依题设,圆O 的半径r 等于原点O 到直线43=-y x 的距离,即 2314=+=r得圆O 的方程为422=+y x .(Ⅱ)不妨设4.),0,(),0,(22121=<x x x x B x A 由即得A (-2,0),B (2,0)设),(y x P ,由|PA |、|PO |、|PB |成等比数列,得222222)2()2(y x y x y x +=+-⋅++即 .222=-y x).1(24),2(),2(222-=+-=--⋅---=⋅y y x y x y x内于点P 在圆O 内做⎪⎩⎪⎨⎧=-<+24222y x y x由此得:y 2<1所以 ⋅的取值范围为).0,2[-(22)解:求函数)(x f 的导数b bx ax x f -+-='22)(2(Ⅰ)由函数)(x f 在1x x =处取得极大值,在2x x =处取得极小值,知21,x x 是0)(='x f 的两个根所以b bx ax x f -+-='22)(2当1x x <时为增函数0,0,0)(21<-<->'x x x x x f 由得0>a(Ⅱ)在题设下,21021<<<<x x 等价于⎪⎩⎪⎨⎧>'<'>'.0)2(,0)1(,0)0(f f f 即⎪⎩⎪⎨⎧>-+-<-+->-.0244.022.02b b a b b a b 化简得⎪⎩⎪⎨⎧>+-<+->-.0254.023.02b a b a b此不等式组表示的区域为平面aOb 上三条直线;0254,023,02=+==+-=-b a b a b所围成的△ABC 的内部,其三个顶点分别为:)2,4(),2,2(),76,74(C B A .z 在这三点的值依次为.8,6,716所以z 的取值范围为)8,716(。
2007年高考理科数学试题(辽宁卷)

Unit 11 Managing Personal DevelopmentPart I Warming upAA1. The three things children need:--First: To feel that one has options, that one maintains some control over his or her life.--Second: To feel significant in the life of at least one other person.--Third: To feel accepted because of his or her individuality.A2.First (This certainty gives people strength):more highly motivated to work harder / overcome daunting difficulties and painSecond (Children behave differently when treated differently):--Ignored: devastating / cruelest / angry / depressed / frustrated / negative behavior--Respected: thrivesThird (Society's problem: encourage tolerance vs. welcome differences):deserves / acknowledged / cherished / unique / embrace othersTapescript:In my more than 40 years of working with families and conducting research in family dynamics and the roots of human behavior, I have observed again and again a few truths. I have learned that all children -- indeed, all people -- need three certainties to feel healthy and positive about life.First, a child needs to feel that she has options, that she maintains some control over her life. She needs to feel that she can do something to the world and the world will respond. In fact, stress, I believe, might be defined as a lack of options.Numerous studies have shown that people who have choices are more highly motivated to work harder and even overcome daunting difficulties and pain. Burn victims in hospitals who are allowed to participate in their own care, such as by dressing their wounds, require less pain medication than those who are rendered helpless by having everything done for them. People want to help themselves. They become empowered in direct relation to the choices and options they perceive to be available.The second thing that a child needs is to feel significant in the life of at least one other person. Being ignored is devastating, one of the cruelest punishments possible. It leaves the child angry, depressed, and frustrated. When people react negatively to the child, that arouses negative behavior. When the parent respects the child's efforts to express herself, encourages her explorations, applauds her small victories, from the first tentative baby steps on, the child thrives.Third, a child needs to feel accepted because of his or her individuality.Each child deserves to be acknowledged and cherished for the qualities that make her unique, which can be hard to remember in a society that tends to encourage tolerance rather than welcome differences. Ideally, we should embrace others, and especially children, because of, rather than in spite of, their differences.B.Man 1 Woman Man 2How to professional help self-help book club / communicate overcome shyness? with different peopleYour choiceHow to stop why nervous? / Nail polish transfer your habitbiting your / solve the problem into something different fingernails?How to get in first walk/ an personal cycle to work or school shape for summer? hour a day trainerTapescript:1. How to overcome shynessMan 1: Well, I think if you're really shy it might be a good idea to see a therapist or someone like that -- you know, to get some professional help. You can't always change by yourself.Woman: Or how about getting one of those self-help books from the library? I'm sure there are books around with lots of good suggestions that you can try.Man 2: I think the best thing is to join a club and do activities where you have to meet and talk to different people. Like, if you join a theater group and work on putting on a play, you'll probably be able to overcome your shyness.2. How to stop biting your fingernailsMan 1: I think biting your fingernails is just a sign of nervousness, so the first thing to do is to find out what's making you nervous. Once you've identified that problem and then solved it, the nail biting will disappear.Woman: My sister used to bite her nails all the time, so she started wearing bright red nail polish. She bought the really expensive kinds, so she felt that she had made an investment in quitting her bad habit. I think the polish made her think about what she was doing, too. Anyway, after a few months, it worked, and she has really nice nails now. I guess if you're a guy, it's a little more difficult, though.Man 2: Maybe you could find something else to do when you're stressed out, like tapping your fingers or counting to 100. You have to try to transfer your habit into a different activity -- one that doesn't cause such a problem.3. Flow to get in shape for summerMan 1: Getting in shape for summer can be easy. Just take a fairly fast walk for at least an hour a day. You'll be surprised at how much fat you can burn off just by walking every day.Woman: I recommend getting a personal trainer at a gym. It's expensive, but a personal trainer can help you focus on what you really need to do and show you the best kinds of exercises to do to tighten up your tummy or whatever it is you want to tighten up.Man 2: I think the best way to get in shape is by riding a bicycle to work or school. And on the weekends, go out for longer rides. It sounds easy, but actually, a good long bike ride can be even better for you than a workout at the gym.Part II Lateral or verticalATapescript:A man worked in a tall office building. Each morning he got into the lift on the ground floor, pressed the lift button to the 11th floor. Got out of the lift and walked up to the 16th floor. At night he would get into the lift on the 16th floor, and get out on the ground floor. What was the reason for this?Now here is the solution. Did you guess right?Tapescript:The man was a dwarf and couldn't reach higher than the 11th floor button.B.VT. select the best way of looking at a problemLT: create many alternative approachesVT: move in sequential stepsLT. jump ahead and fill in the gaps laterVT. each step must be correct before the next can be approachedLT. generate a range of solutions without providing stepsVT. use fixed categoriesLT: labels may change according to experience and point of viewVT: examine obvious approach, exclude irrelevant ones, in search of one final answer LT: may be no answerTapescript:Since most of us have been trained to think vertically and believe this way of thinking to be the only effective form, it is my initial task to address the contrasts between vertical and lateral thinking,First, vertical thinking selects what appears to be the best way of looking at a problem. Lateral thinking creates many alternative approaches. There's an old riddle which could illustrate these different approaches to problem solving. When you've heard it, try to find the solution.A man worked in a tall office building. Each morning he got into the lift on the ground floor, pressed the lift button to the 11th floor. Got out of the lift and walked up to the 16th floor. At night he would get into the lift on the 16th floor, and get out on the ground floor. What was the reason for this?The man was a dwarf and couldn't reach higher than the 11th floor button. The natural assumption is that the man is normal and the behavior is abnormal. In fact, it is just the opposite.Let us continue with other contrasts. When we think vertically, we move in sequential steps, rather like an old man climbing a ladder. In lateral thinking, it is possible to jump ahead and then fill in the gaps later. The solution may make sense, even though the pathway is not vertical. It is certainly true that scientific research is often based on vertical thinking, However, the discovery of penicillin and itslife-saving developments were the result of lateral thinkingAnother difference is that vertical thinking implies that each problem-solving step must be correct before the next can be approached. Think back to the way you learned mathematics: addition, subtraction, multiplication, division. Were you asked to show the process even when the result was correct? Indeed mathematics could not function without this discipline. Lateral thinking differs in that it is possible to generate a range of hypothetical solutions without providing steps of the process.There're many different ways of reaching the same destination. However, we must now conclude with further aspects of lateral and vertical thinking. Let me pose a question. Is the tomato a fruit or a vegetable? In vertical thinking, we use fixed categories, whereas in lateral thinking, labels may change according to our experience and point of view. Botanically the tomato is a fruit. Do you expect to find tomatoes in a fruit salad? Most probably not. But the ubiquitous tomato will appear in every vegetable salad.Vertical thinking is to examine the obvious approach and exclude what seems to be irrelevant. Vertical thinking by its nature is in search of one final answer. Lateral thinkers are aware that there may be no answer at all.Finally, and you must be wondering whether you'll be able to think tomorrow, the differences are fundamental, and the thought processes are distinct. But never forget that neither process can be discarded. Both are useful. Both are necessary. They're complementary.Part III Mediation skillsStep 1Setting up a positive environmentM: State rules↓C: speakM: facilitate↓M: list, clarify problemStep 2Identifying the bottom lineemotional issue behavioral issueStep 3BrainstormC: share solutionsM: write down↓C: prioritize solutions↓C & M: write down steps the y’d takeTapescript:Today we are going to discuss the steps involved in mediation counseling. The skills that make up mediation counseling will be useful to you in a variety of situations -- for instance, helping a couple that is having problems in their relationship or parents who are having trouble with a teenager. Through mediation counseling, people can learn to take a series of steps that will lead them to identify problems and create solutions.Step One: Setting Up a Positive EnvironmentIn step one the mediator wants to set up an environment that will help the clientsto speak frankly about what has upset them without attacking the other person. This is first done by clearly stating specific rules about how the clients will be allowed to behave during mediation sessions. For example, clients must treat each other with respect. They may not shout at the other person or interrupt them when they are speaking. After the rules have been established, each client will take a turn speaking directly to the mediator. They will state their point of view concerning the problem. If they are having difficulty, the mediator will facilitate the process by asking questions like "What's been going on between the two of you?" or "How has this problem affected you?" Another thing the mediator will do is to rephrase statements that sound very aggressive and accusatory. For example, if Robert is mad at Vicky, he might say something like this: "The Problem is Vicky's always late. She has no respect for my time. She always keeps me waiting." To avoid having Vicky get angry when she hears this, the mediator would rephrase it, focusing on the real issue instead of on how bad Vicky is. The mediator might say something like this: "So you feel really frustrated and impatient when you arrive promptly and then have to wait a long time for ~he other person." When both clients have finished sharing their side of the story with the mediator, the mediator will list and clarify the problems. In the case of Robert and Vicky the mediator could say. "There seems to be a problem finding a way to organize time that is comfortable for both of you."Step Two: Identifying the Bottom LineIn step two the mediator helps the clients to identify the bottom line. This is done by breaking their conflict down into specific issues which are emotional and behavioral. People might say they are mad about a specific behavior, lint what they are really mad about is how it makes them feel. To look again at the case of Robert and Vicky, the mediator might help them to see that while time seems to be the issue, the real issue is that Robert feels Vicky does not respect him. At this point .the clients begin speaking to each other. But they do this by. participating in activities that are designed to help them better understand each other. Maybe they could do a role reversal, and Vicky could talk about how she would feel if she and Robert were supposed to have dinner with friends and he came an hour late. Robert could share reasons why he might be late for something, Hopefully, this will help Robert and Vicky be more sympathetic with one another.Step Three: BrainstormNow it's time to talk about solutions. In step three the mediator encourages the clients to share every possible solution to their problem, no matter how ridiculous or extreme. The clients must accept all the solutions either one of them suggests. They may not criticize each other during this step in the process. As they are making suggestions, the mediator writes down all their different ideas. When everyonehas .run out of suggestions, they look at their list. They try to identify which solution is best, which one is most reasonable or practical, which ones are unworkable, etc. , etc. They prioritize the solutions and discuss which ones would work for them, which ones they would be willing to try. Using the solutions they have chosen, the clients, with the help of the mediator, write down some very specific steps they would take to solve their problem.Part IV Language study and language appreciation ……。
2007年普通高等学校招生全国统一考试(辽宁卷)

2007年普通高等学校招生全国统一考试(辽宁卷)2007年普通高等学校招生全国统一考试(辽宁卷)第卷(选择题共36分)一、(15分,每小题3分)1.下列词语中加点的字注音全都正确的一组是A.摄制(sh) 执拗(ni) 染色体(rn) 长歌当哭(dng)B.疾病(j) 吮吸(yn) 露马脚(1u) 遂心如意(su)C.辑录(j) 恪守(k) 干细胞(gn) 数见不鲜(xin)D.血液(xu) 脑髓(su) 文绉绉(zhu) 睚眦必报(z)C(A项,“当”应读“dng”,B项,“吮”应读“shn”,D项,“髓”应读“su”)2.下列词语中没有错别字的一组是A.精粹矍铄再所不惜人情世故B.部署好像金碧辉煌细水常流C.梳妆赋与人才辈出破涕为笑D.坐落针砭山清水秀各行其是D(A项,再——在;B项,常——长;C项,与——予)3.依次填人下面横线处的词语,最恰当的一组是方永刚既是“知者”,是一个“行者”。
他通过脚踏实地地党的创新理论,使得党的创新理论的威力通过传播者知行统一的人格魅力更好地出来。
A.也躬身体现B.更躬行发挥C.更躬身体现D.也躬行发挥B(“也”表示并列,“更”表示递进;本句中要突出方永刚是“行者”,所以用“更”。
“躬身”,自身,亲自;“躬行”,亲自实行。
本句中显然要用动词,所以用“躬行”。
“体现”,某种性质或现象在某一事物上具体表现出来;“发挥”,把内在的性质或能力表现出来,把意思或道理充分表达出来。
本句中“党的创新理论的威力”,属于“能力表现出来”,所以选“发挥”)4.下列语句中加点的熟语使用恰当的一项是A.儒学是儒家的学说,由孔子所创立。
薪尽火传,经过漫长的岁月,儒学得以延续和发展。
B.今天看来,亚里士多德的这个论断是错误的,然而在古代,亚里士多德有很高的声望,他所说的话不应无可置疑。
C.这真是大人不见小人怪,我犯了这点儿小错误,经理没有批评我,你倒挑起我的毛病来了。
D.王懿荣与“龙骨”第一次相遇,就刮目相看,从中发现了甲骨文,并成为把甲骨文考订为商代文字的第一人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(辽宁卷)数 学(文科)全解全析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k k n kn n P k C p p -=- 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{13}A =,,{234}B =,,,则A B = ( ) A .{1}B .{2}C .{3}D .{1234},,, 解析:A B = {1,3}∩{2,3,4}={3},选C2.若函数()y f x =的反函数...图象过点(15),,则函数()y f x =的图象必过点( ) A .(51),B .(15),C .(11),D .(55),解析:根据反函数定义知反函数图像过(1,5),则原函数图像过点(5,1),选A3.双曲线221169x y -=的焦点坐标为( )A .(,B .(0,(0C .(50)-,,(50),D .(05)-,,(05), 解析:因为a=4,b=3,所以c=5,所以焦点坐标为(50)-,,(50),,选C 4.若向量a 与b 不共线,0≠a b ,且⎛⎫- ⎪⎝⎭a a c =ab a b ,则向量a 与c 的夹角为( )A .0B .π6C .π3D .π2解析:因为0)(22=⋅⋅-=⋅→→→→→→→→b a ba aa c a ,所以向量a 与c 垂直,选D5.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27解析:由等差数列性质知S 3、S 6-S 3、S 9-S 6成等差数列,即9,27,S 成等差,所以S=45,选B6.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题...是( )A .若m βαβ⊂⊥,,则m α⊥B .若m β⊥,m α∥,则αβ⊥C .若αγ⊥,αβ⊥,则βγ⊥D .若m αγ= ,n βγ= ,m n ∥,则αβ∥解析:由有关性质排除A 、C 、D ,选B7.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =( )A .(12)-,B .(12),C .(12)-,D .(12)-, 解析:函数(1)2y f x =--为)1(2-=+x f y ,令2,1''+=-=y y x x 得平移公式,所以向量a =(12)-,,选C 8.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎡⎤⎢⎥⎣⎦,B .[)965⎛⎤-∞+∞ ⎥⎝⎦,,C .(][)36-∞+∞ ,,D .[36],解析:画出可行域为一三角形,三顶点为(1,3)、(1,6)和(29,25),yx表示可行域内的点(x ,y )与原点(0,0)连线的斜率,当(x ,y )=(1,6)时取最大值6,当(x ,y )=(29,25)时取最小值59,选A9.函数212log (56)y x x =-+的单调增区间为( )A .52⎛⎫+∞ ⎪⎝⎭,B .(3)+∞,C .52⎛⎫-∞ ⎪⎝⎭,D .(2)-∞,解析:定义域为(2)-∞,∪(3)+∞,,排除A 、C ,根据复合函数的单调性知212log (56)y x x =-+的单调增区间为(2)-∞,,选D 10.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为( ) A .122B .111C .322D .211解析:从中任取两个球共有66212=C 种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有122326=-C C 种取法,概率为1126612=,选D 11.设p q ,是两个命题:251:||30:066p x q x x ->-+>,,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:p :),3()3,(+∞--∞ ,q :),21()31,(+∞-∞ ,结合数轴知p 是q 的充分而不必要条件,选A12.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a = ,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法种数为( )A .18B .30C .36D .48解析:分两步:(1)先排531,,a a a ,1a =2,有2种;1a =3有2种;1a =4有1种,共有5种;(2)再排642,,a a a ,共有633=A 种,故不同的排列方法种数为5×6=30,选B第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---= . 解析:由函数()y f x =为奇函数得(2)(3)f f ---=(3)(2)1f f -=,填114.x展开式中含x 的整数次幂的项的系数之和为 (用数字作答).解析:2488481)1()(--+==r r rrr r xC xx C T ,当r=0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为72884808=++C C C ,填7215.若一个底面边长为2的体积为 .解析:根据条件正六棱柱的最长的对角线为球的直径,由12)6()6()2(222=+=R 得R=3,球体积为ππ34343=R16.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP OF =+ ,则||OM =.解析:椭圆2212516x y +=左准线为325-=x ,左焦点为(-3,0),P ()328,35±,由已知M 为PF 中点,M ()324,32±-,所以||OM = 2)324()32(22=±+-三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(I )将各组的频率填入表中;(II )根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(III )该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率.本小题主要考查频率、概率、总体分布的估计、独立重复试验等基础知识,考查使用统计的有关知识解决实际问题的能力.····································································································································· 4分(II )解:由(I )可得0.0480.1210.2080.2230.6+++=,所以灯管使用寿命不足1500小时的频率为0.6. ················································································································· 8分 (III )解:由(II )知,1支灯管使用寿命不足1500小时的概率0.6P =,根据在n 次独立重复试验中事件恰好发生k 次的概率公式可得223333(2)(3)C 0.60.40.60.648P P +=+=. 所以至少有2支灯管的使用寿命不足1500小时的概率是0.648. ···································· 12分 18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=,AC BC a ==,D E ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30 .(I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离.本小题主要考查空间中的线面关系,解三角形等基础知识,考查空间想象能力与思维能力.(I )证明:连结CD , 三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∴CD 为1C D 在平面ABC 内的射影. ABC △中,AC BC =,D 为AB 中点, ∴AB CD ⊥, ∴1AB C D ⊥. 11A B AB ∥, ∴111A B C D ⊥.1A 1C1BCBAMDE 1A 1C1BCBAMDE F G(II )解法一:过点A 作CE 的平行线, 交ED 的延长线于F ,连结MF . D E ,分别为AB BC ,的中点, DE AC ∴⊥.又 AF CE ∥,CE AC ⊥. ∴AF DE ⊥.MA ⊥平面ABC ,∴AF 为MF 在平面ABC 内的射影. ∴MF DE ⊥.MFA ∴∠为二面角M DE A --的平面角,30MFA ∠= .在Rt MAF △中,122aAF BC ==,30MFA ∠= ,6AM a ∴=. 作AG MF ⊥,垂足为G , MF DE ⊥,AF DE ⊥, ∴DE ⊥平面DMF ,平面MDE ⊥平面AMF , ∴AG ⊥平面MDE .在Rt GAF △中,30GFA ∠=,2a AF =, ∴4a AG =,即A 到平面MDE 的距离为4a.CA DE ∥,∴CA ∥平面MDE ,∴C 到平面MDE 的距离与A 到平面MDE 的距离相等,为4a.解法二:过点A 作CE 的平行线,交ED 的延长线于F ,连接MF . D E ,分别为AB BC ,的中点, ∴DE AC ∥.又 AF CE ∥,CE DE ⊥ ∴AF DE ⊥.MA ⊥平面ABC ,∴AF 是MF 在平面ABC 内的射影, ∴MF DE ⊥.∴MFA ∠为二面角M DE A --的平面角,30MFA ∠= .在Rt MAF △中,122aAF BC ==,30MFA ∠= ,∴AM =. ··················································································································· 8分设C 到平面MDE 的距离为h ,∴M CDE C MDE V V --=.∴1133CDE MDE S MA S h = △2128CDEa S CE DE == △,6MA =,21122cos3012MDE AF S DE MF DE === △,∴2211383a h ⨯=⨯, ∴4a h =,即C 到平面MDE 的距离为4a. ······································································ 12分19.(本小题满分12分) 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.本小题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.满分12分.(I )解:11()cos cos (cos 1)22f x x x x x x ωωωωω=++--+12cos 12x x ωω⎫=--⎪⎪⎝⎭π2sin 16x ω⎛⎫=-- ⎪⎝⎭. ·········································································································· 5分 由π1sin 16x ω⎛⎫--⎪⎝⎭≤≤,得π32sin 116x ω⎛⎫--- ⎪⎝⎭≤≤,可知函数()f x 的值域为[31]-,. ·························································································· 7分(II )解:由题设条件及三角函数图象和性质可知,()y f x =的周期为π,又由0ω>,得2ππω=,即得2ω=. ········································································································· 9分于是有π()2sin 216f x x ⎛⎫=-- ⎪⎝⎭,再由πππ2π22π()262k x k k --+∈Z ≤≤,解得 ππππ()63k x k k -+∈Z ≤≤. 所以()y f x =的单调增区间为ππππ63k k ⎡⎤-+⎢⎥⎣⎦,()k ∈Z ·············································· 12分 20.(本小题满分12分)已知数列{}n a ,{}n b 满足12a =,11b =,且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥)(I )令n n n c a b =+,求数列{}n c 的通项公式; (II )求数列{}n a 的通项公式及前n 项和公式n S .本小题主要考查等差数列,等比数列等基础知识,考查基本运算能力. (I)解:由题设得11()2(2)n n n n a b a b n --+=++≥,即12n n c c -=+(2n ≥)易知{}n c 是首项为113a b +=,公差为2的等差数列,通项公式为21n c n =+. ·························································································································· 4分 (II )解:由题设得111()(2)2n n n n a b a b n ---=-≥,令n n n d a b =-,则 11(2)2n n d d n -=≥. 易知{}n d 是首项为111a b -=,公比为12的等比数列,通项公式为 112n n d -=. ···························································································································· 8分 由12112n n n n n a b n a b -+=+⎧⎪⎨-=⎪⎩,解得 1122n n a n =++, ················································································································ 10分求和得21122n n n S n =-+++. ·························································································· 12分21.(本小题满分14分)已知正三角形OAB 的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB △的内接圆(点C 为圆心) (I )求圆C 的方程;(II )设圆M 的方程为22(47cos )(7sin )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两条切线PE PF ,,切点为E F ,,求CE CF,的最大值和最小值.本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力.满分14分.(I )解法一:设A B ,两点坐标分别为2112y y ⎛⎫ ⎪⎝⎭,,2222y y ⎛⎫⎪⎝⎭,,由题设知= 解得221212y y ==,所以(6A ,(6B -,或(6A -,,(6B .设圆心C 的坐标为(0)r ,,则2643r =⨯=,所以圆C 的方程为 22(4)16x y -+=. ·············································································································· 4分 解法二:设A B ,两点坐标分别为11()x y ,,22()x y ,,由题设知22221122x y x y +=+. 又因为2112y x =,2222y x =,可得22112222x x x x +=+.即 1212()(2)0x x x x -++=.由10x >,20x >,可知12x x =,故A B ,两点关于x 轴对称,所以圆心C 在x 轴上.设C 点的坐标为(0)r ,,则A 点坐标为322r r ⎛⎫ ⎪ ⎪⎝⎭,,于是有23222r r ⎛⎫=⨯ ⎪ ⎪⎝⎭,解得4r =,所以圆C 的方程为22(4)16x y -+=. ··············································································· 4分(II )解:设2ECF a ∠=,则2||||cos216cos232cos 16CE CF CE CF ααα===-. ············································ 8分 在Rt PCE △中,4cos ||||x PC PC α==,由圆的几何性质得 ||||17PC MC +=≤18+=,||||1716PC MC -=-=≥, 所以12cos 23α≤≤,由此可得 1689CE CF -- ≤≤.则CE CF 的最大值为169-,最小值为8-.22.(本小题满分12分)已知函数322()9cos 48cos 18sin f x x x x αβα=-++,()()g x f x '=,且对任意的实数t 均有(1cos )0g t +≥,(3sin )0g t +≤. (I )求函数()f x 的解析式;(II )若对任意的[266]m ∈-,,恒有2()11f x x mx --≥,求x 的取值范围.。