923867-复变函数-5-习题课
复变函数课后习题答案(全)

精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+精心整理页脚内容3. 求下列各式的值: (1)5(3)i -(2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5)3i 3cossin22i ππ=+(6)1i +2(cossin )44i ππ=+ 4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)51,z i +=由此2551k i z i ei π=-=-,(0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:精心整理页脚内容(1), (1), (1), (1)2222a a a a i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。
复变函数课件5-习题课

1)三角函数有理式的积分
2π
I 0 R(cos ,sin )d
令 z ei,
sin 1 (ei ei ) z2 1, cos 1 (ei ei ) z2 1
2i
2iz
2
2z
当 历经变程 0,2时, z 沿单位圆周 z 1的
正方向绕行一周.
任意一条简单闭曲线 C 的积分 f (z)dz 的值除
C
以 2i 后所得的数称为 f (z)在z0的留数. 记作 Res[ f (z), z0 ]. (即 f (z)在z0为中心的圆环
域内的洛朗级数中负幂项 c1(z z0 )1 的系数.)
2019/5/19
留数定理
10
1)留数定理 设函数 f (z) 在区域 D内除有限个孤 立奇点 z1 , z2 ,, zn 外处处解析, C 是 D内包围诸奇 点的一条正向简单闭曲线, 那末
1 x2
dx
0,
sin x dx π ,
0x
2
eax 1 e
x
dx
π sin aπ
(0
a
1).
2019/5/19
留数定理
20
4.对数留数
定义 具有下列形式的积分:
1
2π
i
C
f (z)dz f (z)
称为f (z)关于曲线C的对数留数.
如果f (z)在简单闭曲线C上解析且不为零,
即 f (z) cm(z z0)m c2(z z0)2 c1(z z0)1 c0
c1(z z0 ) m 1, cm 0
《复变函数与积分变换复旦大学修订版》全部习题答案23页word文档

第 1 页复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+= ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢.∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1k n =-. 3.求下列复数的模和共轭复数①解:2i -+== ②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=④解:1i 1i 22++==4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++6、设z ,w ∈ ,证明下列不等式.并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.()222Re z z w w =-⋅+.从而得证.几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=. ③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭. 8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根.解:⑵-1的三次根 解:的平方根. 解:πi 4e ⎫⎪⎪⎝⎭9.设2πe,2inz n =≥. 证明:110n z z-+++=L证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图. 解:(1)、argz =π.表示负实轴. (2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若u(x,y)与v(x,y)都是调和函数,则f(z)?u(x,y)?iv(x,y)是解析函数。
2.因为|sinz|?1,所以在复平面上sinz有界。
3.若f(z)在z0解析,则f(n)(z)也在z0解析。
24.对任意的z,Lnz?2Lnz二填空1.2.ii?arg??2?2i , ?2?2i 。
ln(?3i)? , ii? 。
2f(z)?2z?4z下,曲线C3.在映照在z?i处的伸缩率是,旋转角是。
1??0是z1?e2zRes[4,0]?z的阶极点,。
三解答题设f(z)?x2?axy?by2?i(cx2?dxy?y2)。
问常数a,b,c,d13为何值时f(z)在复平面上处处解析?并求这时的导数。
求(?1)C的所有三次方根。
其中C是z?3.4.z2dz?0到z?3?4i的直线段。
|z|2ezcoszdz。
(积分曲线指正向)dz?|z|?2z(z?1)(z?3)5.。
(积分曲线指正向)f(z)?6 将1(z?1)(z?2)在1?|z|?2上展开成罗朗级数。
|z|?1保形映照到单位圆内|w|?1且满足11πf()?0argf?()?222的分式线性映,7.求将单位圆内照。
四解答题1.求0 t?0f(t)kt?e t?0 的傅氏变换。
设f(t)?t2?te?t?e2tsin6t??(t), 求f(t)的拉氏变换。
F(s)?1s2(s2?1),求F(s)的逆变换。
设4. 应用拉氏变换求解微分方程ty2y3ye, (0) 1y(0)0y复变函数与积分变换试题答案 1若u(x,y)与v(x,y)都是调和函数,则f(z)?u(x,y)?iv(x,y)是解析函数。
|sinz|?1,所以在复平面上sinz有界。
2.因为3.若f(z)在z0解析,则f(n)(z)也在z0解析。
24.对任意的z,Lnz?2Lnz1.i2i3πππ?arg??ln(?3i)?ln3?ii??2k π?2?2i4, ?2?2i4。
最新-西安交大复变函数课件5-习题课-PPT文档资料

c)
设
f (z) P(z), P(z) Q(z)
及
Q(z) 在
z 0 都解析,
如果 P ( z 0 ) 0 , Q ( z 0 ) 0 , Q ( z 0 ) 0 ,那末 z 0
为一级极点, 且有Refs(z[),z0]Q P((zz00)).
13
3)无穷远点的留数
1.定义 设函数 f (z)在圆环域 0z内解析
成洛朗级数求 c 1
(3) 如果 z 0 为 f (z)的极点, 则有如下计算规则 a) 如果 z 0 为 f (z)的一级极点, 那末
R f ( z e )z 0 ] , s l z z [ 0 i ( z m z 0 ) f ( z z 0 )
12
b) 如果 z 0 为 f (z)的 m级极点, 那末 Rfe (z)z s 0 ,] [(m 1 1 )l z !z i0d d m z m m 1 1 [z( z 0 )m f(z)]
17
2)无穷积分
I R(x)dx.其中 R(x)是x的有理,分 函母 数
的次数至少比 数分 高子 两 ,且R的 (次 z)在 次实轴 没有孤.立奇点
任意一条简单闭曲线 C 的积分 f (z)dz 的值除
C
以 2i 后所得的数称为 f(z)在z0的留.数 记作 Ref(sz)[z,0]. (即f(z)在z0为中心的圆环 域内的洛朗级数中负 幂c项 1(zz0)1的系 .) 数
10
1)留数定理 设函数 f (z) 在区域 D内除有限个孤 立奇点 z1,z2, ,zn外处处解析, C 是 D内包围诸奇 点的一条正向简单闭曲线, 那末
f (z) 的 m 级零点.
ii)零点与极点的关系
复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
复变函数课后习题讲解

e 2 k (cos ln 3 i sin ln 3), (1 i )i eiLn (1i ) e e
1 ( 2 k ) 4
k 0, 1, 2, e
i ln 2 ( 2 k ) 2 4
i[ln 1 i ] i (arg(1 i ) 2 k )
2
2
15.求Ln(i),Ln(3 4i)和它们的主值。
解 Ln(i ) Ln i i (arg(i ) 2k ) i (
2
2k )
1 i (2k ), k 0, 1, 2, 2 i ln(i ) ln i i arg(i ) 2 Ln(3 4i ) ln 3 4i i[arg(3 4i ) 2k ] 4 ln 5 i[( arctan ) 2k ] 3 4 ln 5 i[(arctan (2k 1) )], k 0, 1, 2, 3 4 ln(3 4i) ln 3 4i i arg(3 4i ) ln 5 i ( arctan ) 3
3 i
0
z 2 dz z 2 dz z 2 dz z 2 dz z 2 dz.
0 i c3 c4
i
3 i
C3 : z it 0 t 1 ; C4 : z 3t i 故
0 t 1 ,
26 i 3
3 i
0
z dz t idz 3t i 3dt 6
1 i t 1 i 2t dt= 1 i t 2 i 2t 3 dt
0 0
1 5 1 i = 1+i i. 6 6 3 3
复变函数与积分变换 复旦大学出版社 习题五答案

习题五1. 求下列函数的留数. (1)()5e 1zf z z-=在z =0处.解:5e 1zz-在0<|z |<+∞的罗朗展开式为23454321111111112!3!4!2!3!4!zzzz zz z z z+++++-=+⋅+⋅+⋅+ ∴5e 111R es ,014!24z z ⎡⎤-=⋅=⎢⎥⎣⎦(2)()11e z f z -=在z =1处.解:11ez -在0<1z -| <+∞的罗朗展开式为()()()11231111111e112!3!!111z nz n z z z -=++⋅+⋅++⋅+----∴11R es e ,11z -⎡⎤=⎣⎦.2. 利用各种方法计算f (z )在有限孤立奇点处的留数. (1)()()2322z f z z z +=+解:()()2322z f z z z +=+的有限孤立奇点处有z =0,z =-2.其中z =0为二级极点z =-2为一级极点.∴()[]()()120013232324Res ,0lim lim 11!242z z z z z f z z z →→++--⎛⎫=⋅=== ⎪⎝+⎭+ ()[]2232R es ,2lim 1z z f z z→-+-==- 3. 利用罗朗展开式求函数()211sinz z+⋅在∞处的留数.解:()()()22235111sin 21sin11111213!5!z z z zzz z z z z +⋅=++⋅⎛⎫=++⋅-⋅+⋅+ ⎪⎝⎭∴()[]1R es ,013!f z =-从而()[]1R es ,13!f z ∞=-+5. 计算下列积分.(1)ctan πd z z ⎰ ,n 为正整数,c 为|z |=n 取正向.解:ccsin πtan πd d cos πz z z zz=⎰⎰.为在c 内tan πz 有12k z k =+(k =0,±1,±2…±(n -1))一级极点由于()()2sin π1R es ,πcos πk z kzf z z z =⎡⎤==-⎣⎦'∴()c1tan πd 2πi R es ,2πi 24i πk kz z f z z n n ⎛⎫=⋅⎡⎤=⋅-⋅=- ⎪⎣⎦⎝⎭∑⎰(2) ()()()10cd i 13zz z z +--⎰c :|z |=2取正向.解:因为()()()101i 13z z z +--在c 内有z =1,z =-i 两个奇点.所以()()()()[]()[]()()[]()[]()()10c10d 2πi Res ,i Res ,1i 132πi Res ,3Res ,πi3i zf z f z z z z f z f z =⋅-++--=-⋅+∞=-+⎰6. 计算下列积分. (1)π0cos d 54cos m θθθ-⎰因被积函数为θ的偶函数,所以ππ1cos d 254cos m I θθθ-=-⎰令π1π1sin d 254cos m I θθθ-=-⎰则有i π1π1ei d 254cos m I I θθθ-+=-⎰设i e z θ= d 1d i zz θ=2os 12c z zθ+=则()121211d i 2i 15421d 2i521mz mz zzI I zz z zzz ==+=⎛⎫+- ⎪⎝⎭=-+⎰⎰被积函数()()2521mzf z z z =-+在|z |=1内只有一个简单极点12z =但()()[]12211R es ,lim232521mmz zf z z z →⎡⎤==⎢⎥⎣⎦⋅'-+所以111πi 2πi 2i 3232mmI I +=⋅⋅=⋅⋅又因为π1π1sin d 254s 0co m I θθθ-=-=⎰∴π0cos d 54cos π32mm θθθ=⋅-⎰(2) 202πcos 3d 12cos aa θθθ+-⎰,|a|>1.解:令2π102cos 3d 12cos I a aθθθ+=-⎰2π202sin 3d 12cos I a aθθθ+=-⎰32π120i2e i d 12cos I I a a θθθ-++=⎰令z =e i θ.31d d i os 2c zz z zθθ==,则 ()()()3122123221321i d 1i 1221d i1112π2πi R es ,i 1z z zI I zz za az zzaz a z af z a a a ==+=⋅+-⋅+=-++--⎡⎤=⋅⋅=⎢⎥⎣⎦-⎰⎰得()1322π1I a a =-(3)()()2222d xx a x b ∞+-∞++⎰,a >0,b >0.解:令()()()22221R z z a z b =++,被积函数R (z )在上半平面有一级极点z =i a 和i b .故()[]()[]()()()()()()()()()()22222222i i 22222πi Res ,i Res ,i 112πi lim i limi 112πi 2i 2i πz a z b I R z a R z b z a z b z a z b z a z b a b a b a b ab a b →→=+⎡⎤=-+-⎢⎥++++⎣⎦⎡⎤=+⎢⎥--⎣⎦=+(4). ()2222d xx x a ∞++⎰,a >0.解:()()222222221d d 2xxx x x a x a -∞++∞∞=++⎰⎰令()()2222zR z z a =+,则z =±a i 分别为R (z )的二级极点故()()[]()[]()()()22222222i 0i 1d 2πi R es ,i R es ,i 2πi lim lim i i π2z a z a xx R z a R z a x a z z z a z a a-→∞→-=⋅⋅+-+⎛⎫''⎡⎤⎡⎤ ⎪=+⎢⎥⎢⎥ ⎪+-⎣⎦⎣⎦⎝⎭=⎰(5) ()222sin d x x x b xβ∞+⋅+⎰,β>0,b>0.解:()()()i 222222222cos sin ed d i d xxx x x xxx xx b x b x b βββ+++--∞∞∞∞∞∞-⋅⋅⋅=++++⎰⎰⎰而考知()()222zR z z b =+,则R (z )在上半平面有z =b i 一个二级极点.()()[]()i i 222i i ed 2πi R ese ,i e π2πi lim e i i 2z xzzbb xx R z b x b z z b b βββββ+--→∞∞⋅=⋅⋅+'⎡⎤=⋅=⋅⋅⎢⎥+⎣⎦⎰()222sin πd e2bbb xx x x βββ+--∞∞⋅=⋅+⎰从而()222sin ππd e44ebbx x bb xx b βββββ+-∞⋅=⋅=+⎰(6) 22i ed xx x a+-∞∞+⎰,a >0 解:令()221R z z a=+,在上半平面有z =a i 一个一级极点()[]i i i 22ieeeπd 2πi Res e ,i 2πi lim2πi i2iexzazaz a x R z a x az a a a -+-→∞∞=⋅⋅=⋅=⋅=++⎰7. 计算下列积分(1)()2sin 2d 1xx x x ∞++⎰解:令()()211R z z z =+,则R (z )在实轴上有孤立奇点z =0,作以原点为圆心、r 为半径的上半圆周c r ,使C R ,[-R , -r ], C r ,[r , R ]构成封闭曲线,此时闭曲线内只有一个奇点i ,于是:()()[]{}()222i 201e1eIm d Im 2πi Res ,i lim d 2211rr xizc I x R z z z z x x +-∞∞→⎡⎤==⋅-⎢⎥++⎣⎦⎰⎰而()202ed lim πi1rizc r z zz →⋅=-+⎰.故:()()2221e 1e πIm 2πi lim πi Im 2πi πi 1e 2222zi i z I z z i --→⎡⎤⎡⎤⎛⎫=⋅+=⋅-+=- ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦.(2)21d 2πi z Taz z⎰,其中T 为直线Re z =c ,c >0, 0<a <1解:在直线z =c +i y (-∞< y <+∞)上,令()ln 22ez z aa f z zz==,()ln 22ei c af c y c y⋅+=+,()ln 22ei d d c af c y y yc y⋅++--∞∞∞∞+=+⎰⎰收敛,所以积分()i i d c c f z z ∞∞+-⎰是存在的,并且()()()i i i i d limd limd c c c c ABR RR R f z z f z z f z z ++--→+∞→+∞∞∞==⎰⎰⎰其中AB 为复平面从c -i R 到c +i R 的线段.考虑函数f(z)沿长方形-R ≤x ≤c ,-R ≤y ≤R 周界的积分.<如下图>因为f (z )在其内仅有一个二级极点z =0,而且()[]()()20Res ,0lim ln z f z z f z a →'=⋅=所以由留数定理.()()()()d d d d 2πi ln ABBEEFFAf z z f z z f z z f z z a +++=⋅⎰⎰⎰⎰而()()()()i ln ln ln ln 22222eeeed d d d 0i x R ax aaCC aRCC R BE CR Rf z z x x x C R x RRRx R →+⋅⋅-+--∞==⋅+−−−→++⎰⎰⎰⎰≤≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Res[
f
(z),0]
lim
z0
zf
(z)
lim
z0
sin( z (z
i) i )8
sin
i;
f
(
z)
sin( z (z
i i )8
)
(
z
1 i)
i
sin( z (z
i i )8
)
i
1
1 z
i
( z
1 i)7
1 3!(z
i )5
1 5!(z
i )3
1 7!(z
i)
i
i 1
1( i
1
15 z2
1
2 z4
1 , z
所以 Res[ f (z),] C1 1,
故
z
3 (z2
z13 5)3 ( z 4
1)2dz
2π
i[(1)]
2i.
16
例7
计算
z
5 (z
1 3)(z5
dz. 1)
2
解
z
5
(z
1 3)(z5
dz 1)
2π
i
5 k 1
Res[
f
(z), zk
]
2
5
z
i
)
1 i2
(z
i
)2
13
i
1 7!
1 5!
1 3!
1!1
z
1
i
所以
Res[
f
( z ), i ]
i 1
1 3!
1 5!
71!
由留数定理得
z 2
sin( z(z
z i) i)8 dz
2π
i{
Res[
f
( z ),0]
Res[
f
( z ), i ]}
2i sin
i
i
1
1 3!
z
5
(z
1 3)(z5
dz 1)
2π
5
i
k 1
Res[
f
(z),
zk
]
2
2i 1 i .
242 121
18
nπ
(1)n
1 nπ
,
Res
z
1 sin
z
,0
lim
z0
d dz
z
2
z
1 sin
z
sin z zcos z
lim z0
sin2 z
0.
12
3.用留数定理计算沿封闭曲线的积分 sin(z i)
例4 计算积分 z 2 z(z i)8 dz.
解 z 0 为一级极点,z i 为七级极点.
(
z
(z 1)2
5)sin z z2(z 1)3
的有限奇点,并
确定类型.
解 z 0, z 1, z 1是奇点.
因为
f
(z)
1 z (z
z5 1)2(z
1)3
sin z z
1 z
g(z),所以 z 0 是单极点; z 1 Nhomakorabea是二级极点;
z 1 是三级极点.
7
练习
1. 设 z 0为函数
z5 5!
z7 7!
z
1 z2 z4 z6 3! 5! 7! 9!
得z 0是f (z)的可去奇点, z 是f (z)的本性奇点.
4
tan1
(2) e z;
解 令 w tan1 , 则 f (z) ew . z
由cos 1 0, z
得
zk
1 k 1 π
2
为w tan1的一级极点,
第五章 留数
一、重点与难点 二、内容提要 三、典型例题
一、重点与难点
重点:留数的计算与留数定理 难点:留数定理在定积分计算上的应用
2
二、内容提要
可去奇点
孤立奇点
极点
本性奇点
函数的零点与 极点的关系
留数
计算方法 留数定理
对数留数
分留 上数 的在 应定 用积
计算 f (z)dz
辐路 角西
C
原原
2
1. 0 R(sin ,cos )d ;
m( )
1 ex2 的 z4 sin z
m级极点,那么
(A)5 (B)4
(C) 3
2. z 1是函数
(z 1)sin 1 z1
的(
(A)可去奇点
(B)一级极点
(C) 一级零点
(D)本性奇点
(D)2 )
3. z 是函数
(A)可去奇点 (C) 二级极点
3 2z z3 的( ) z2
(B)一级极点
理理
2.
f ( x)dx;
3. R( x)eaixdx
3
三、典型例题
1.判别奇点类型
例1 求下列函数f (z)在扩充复平面上的奇点,并
判别类型.
(1)
sin z z3
z
;
(2)
tan1
e z;
解 (1)由于f (z)在0 z 内的洛朗展式为 :
f
(z)
sin z z3
z
1 z3
z
z3 3!
Res[ f (z), zk ] Res[ f (z),3] Res[ f (z),]
k 1
Res[
f
( z ),3]
lim( z
z3
3)
(z
1 3)(z5
1)
1 242
,
17
(z
1 3)(z5
1)
z 1
3 z
1 z51
1 z5
1 z6
1
3 z
1
1 z5
,
所以 Res[ f (z),] 0,
(D)本性奇点
8
2. 求各奇点处留数
例3 求下列各函数在有限奇点处的留数.
(1)sin 1 , (2)z2 sin 1 , (3) 1 ,
z1
z
z sin z
解 (1)在 0 z 1 内,
sin
z
1
1
z
1
1
1 3!(z
1)3
,
所以
Ressin(
1 z
1)
,1
C1
1.
9
(2) z2 sin 1 z
解 因为 sin z z z3 z5 , 3! 5!
所以在0 z 内,
z2
sin
1 z
z 2
1 z
1 3! z 3
1 5! z 5
z
1 3! z
1 5! z 3
故
Res z 2
sin
1 z
,0
C1
1 6
.
10
(3) 1 z sin z
解 z nπ (n 0,1,2,)为奇点,
当 n 0 时 n 为一级极点,
因为 lim (z nπ ) 1
znπ
z sin z
lim (1)n z nπ (1)n 1 ,
znπ
z sin(z nπ )
nπ
由 lim z2 f (z) lim z 1, 知z 0是二级极点.
z0
z0 sin z
11
所以
Res
z
1 sin
z
,
z
(k 0,1,)
而ew仅有唯一的奇点z 且为本性奇点,又
1
limtan
zzk
z
5
所以
zk
k
1 1 π
(k 0,1,)
2
都是 f (z) 的本性奇点.
当z 时,因为
tan1
lim f (z) lime z 1 ,
z
z
故知 z 是 f (z) 的可去奇点.
6
例2
求函数
f
(z)
1 5!
71!.
14
例6
z13 z 3 (z2 5)3(z4 1)2dz.
解 在 3 z 内,
3
2
f (z)
z61
z13
5 z2
3
z
8
1
1
2
z
4
1 z
1
1
5 z2
1
1
1 z4
1 z
1
5 z2
25 z4
3
1
1 z4
1 z8
2
15
1 z