图像处理傅里叶变换
图像傅里叶变换

图像傅里叶变换
傅里叶变换(Fourier Transformation)是一种重要的数学工具,用于分析正弦波、矩形波和其他不同类型的函数。
最初,傅里叶变换
是用来解决热力学方程的,但是后来发展成多种多样的应用,其中之
一就是图像处理。
图像傅里叶变换是把图像中的所有信息转换为一组与波频成正比
的数字。
它通过傅里叶公式,把一副图像分割成它的频率和振幅组成
的多个部分,每一部分都表示图像中的一个特征。
图像傅里叶变换的
最重要的应用之一就是进行图像压缩,在这种压缩技术中,可以利用
傅里叶变换将某些低频成分合并,而抛弃某些高频成分,进而减小图
像的数据量,而且没有太多损失。
另外,图像傅里叶变换还可以用来
识别图像中的不同特征,可以用于图像检索、图像处理、图像分类等。
图像傅里叶变换是解决图像处理问题的一种重要手段,它能够使
我们提取图像像素、压缩图像数据和检测图像特征的能力大大提高,
已成为当今图像处理的重要工具。
图像处理之傅里叶变换

图像处理之傅⾥叶变换图像处理之傅⾥叶变换⼀、傅⾥叶变换傅⾥叶变换的作⽤:⾼频:变化剧烈的灰度分量,例如边界低频:变化缓慢的灰度分量,例如⼀⽚⼤海滤波:低通滤波器:只保留低频,会使得图像模糊⾼通滤波器:只保留⾼频,会使得图像细节增强OpenCV:opencv中主要就是cv2.dft()和cv2.idft(),输⼊图像需要先转换成np.float32 格式。
得到的结果中频率为0的部分会在左上⾓,通常要转换到中⼼位置,可以通过shift变换来实现。
cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展⽰(0,255)。
import numpy as npimport cv2from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)dft_shift = np.fft.fftshift(dft)# 得到灰度图能表⽰的形式magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])plt.show()import numpy as npimport cv2from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT) #时域转换到频域dft_shift = np.fft.fftshift(dft) #将低频部分拉到中⼼处rows, cols = img.shapecrow, ccol = int(rows/2) , int(cols/2) #确定掩膜的中⼼位置坐标# 低通滤波mask = np.zeros((rows, cols, 2), np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 1# IDFTfshift = dft_shift*mask #去掉⾼频部分,只显⽰低频部分f_ishift = np.fft.ifftshift(fshift) #将低频部分从中⼼点处还原img_back = cv2.idft(f_ishift) #从频域逆变换到时域img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) #该函数通过实部和虚部⽤来计算⼆维⽮量的幅值plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(img_back, cmap = 'gray')plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()img = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft)rows, cols = img.shapecrow, ccol = int(rows/2) , int(cols/2) # 中⼼位置# ⾼通滤波mask = np.ones((rows, cols, 2), np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 0# IDFTfshift = dft_shift*maskf_ishift = np.fft.ifftshift(fshift)img_back = cv2.idft(f_ishift)img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(img_back, cmap = 'gray')plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()。
【数字图像处理】傅里叶变换在图像处理中的应用

【数字图像处理】傅⾥叶变换在图像处理中的应⽤1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换1.2⼆维离散傅⾥叶变换1.3⽤FFT计算⼆维离散傅⾥叶变换1.3图像傅⾥叶变换的物理意义2.⼆维傅⾥叶变换有哪些性质?2.1⼆维离散傅⾥叶变换的性质2.2⼆维离散傅⾥叶变换图像性质3.任给⼀幅图像,对其进⾏⼆维傅⾥叶变换和逆变换4.附录 94.1matlab代码4.2参考⽂献⽬录1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换⼆维Fourier变换:逆变换:1.2⼆维离散傅⾥叶变换⼀个图像尺⼨为M×N的函数的离散傅⾥叶变换由以下等式给出:其中和。
其中变量u和v⽤于确定它们的频率,频域系统是由所张成的坐标系,其中和⽤做(频率)变量。
空间域是由f(x,y)所张成的坐标系。
可以得到频谱系统在频谱图四⾓处沿和⽅向的频谱分量均为0。
离散傅⾥叶逆变换由下式给出:令R和I分别表⽰F的实部和需部,则傅⾥叶频谱,相位⾓,功率谱(幅度)定义如下:1.3⽤FFT计算⼆维离散傅⾥叶变换⼆维离散傅⾥叶变换的定义为:⼆维离散傅⾥叶变换可通过两次⼀维离散傅⾥叶变换来实现:1)作⼀维N点DFT(对每个m做⼀次,共M次)2)作M点的DFT(对每个k做⼀次,共N次)这两次离散傅⾥叶变换都可以⽤快速算法求得,若M和N都是2的幂,则可使⽤基⼆FFT算法,所需要乘法次数为⽽直接计算⼆维离散傅⾥叶变换所需的乘法次数为(M+N)MN,当M和N⽐较⼤时⽤⽤FFT运算,可节约很多运算量。
1.3图像傅⾥叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平⾯空间上的梯度。
如:⼤⾯积的沙漠在图像中是⼀⽚灰度变化缓慢的区域,对应的频率值很低;⽽对于地表属性变换剧烈的边缘区域在图像中是⼀⽚灰度变化剧烈的区域,对应的频率值较⾼。
傅⾥叶变换在实际中有⾮常明显的物理意义,设f是⼀个能量有限的模拟信号,则其傅⾥叶变换就表⽰f的频谱。
从纯粹的数学意义上看,傅⾥叶变换是将⼀个函数转换为⼀系列周期函数来处理的。
傅里叶变换在数字图像处理中的应用课件

• 由欧拉公 式
f (t)
F (n1 )e jn1t
• 其中 n
F (0) a0
F (n1 )
1 2
(an
jbn )
引入了负频率
F (n1 )
1 2
(an
jbn )
10
非周期信号的频谱分析
当周期信号的周期T1无限大时,就演变成 了非周期信号的单脉冲信号
T1
频率也变成连续变量
1
2
T1
0 d
n1
11
非周期函数傅立叶变换分析式
F (w) f (t )e jwt dt f(t) Nhomakorabea1
2
F ().e jtd
频谱演变的定性观察
1
2
T1
F (n1)
-T/2
T/2
F (n1) 1
F (n1 )
-T/2
T/2
1
2
2
13
三.从物理意义来讨论FT
(a) F(ω)是一个密度函数的概念 (b) F(ω)是一个连续谱 (c) F(ω)包含了从零到无限高
傅里叶变换
连续时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期 性
离散时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期
性
连续函数的 傅立叶变换
一、三角函数的傅里叶级数:
f1(t) a0 (an cos n1t bn sin n1t) n1
直流 分量
基波分量 n =1
谐波分量 n>1
N 1
j 2 mn
X (m) x(n)e N , m 0,1, 2,3, 4,...N 1
数字像处理中的离散傅里叶变换

数字像处理中的离散傅里叶变换数字图像处理中的离散傅里叶变换数字图像处理是指利用计算机或其他数字设备对图像进行处理、分析和改良的过程。
而数字信号处理中的离散傅里叶变换是一种常用的图像处理工具,它能将图像从时域转换到频域,分析图像的频谱特征,从而实现一系列的图像处理操作。
本文将介绍数字图像处理中的离散傅里叶变换原理、应用以及一些常见的变换方法。
一、离散傅里叶变换的原理离散傅里叶变换(Discrete Fourier Transform,DFT)是对离散信号进行频域分析的一种数学工具。
离散傅里叶变换可以将一个长度为N的离散序列变换成一个长度为N的频谱序列。
其离散傅里叶变换的数学表达式如下:X(k) = Σ(x(n)*e^(-j2πkn/N)) (n=0,1,...,N-1; k=0,1,...,N-1)其中,X(k)为频谱序列,x(n)为原始信号序列,e为自然对数的底,j为虚数单位。
离散傅里叶变换可以将时域上的图像转换为频域上的频谱图,进而分析图像的频谱特征。
二、离散傅里叶变换的应用离散傅里叶变换在数字图像处理中有广泛的应用,主要包括以下几个方面:1. 图像滤波:通过离散傅里叶变换可以实现图像频域上的滤波操作,对图像进行降噪、增强边缘等处理。
例如,可以利用傅里叶变换将图像转换到频谱域,通过频谱的阈值处理去除高频噪声,然后再将图像转换回时域。
2. 图像压缩:离散傅里叶变换常被用于图像数据的压缩。
通过将图像转换到频域,可以利用频域的统计特性进行数据的压缩。
例如,可以通过选择合适的频率分量进行舍弃或者量化,以减少图像数据的存储空间。
3. 图像识别:离散傅里叶变换可以提取图像的频谱特征,用于图像识别和模式匹配。
例如,可以通过傅里叶变换得到图像的频谱图,并提取频谱的主要特征进行分类和识别。
4. 彩色图像处理:离散傅里叶变换可用于彩色图像处理。
可以将彩色图像的每个通道分别进行离散傅里叶变换,然后进行频域上的处理操作,最后再将变换后的通道合成为最终的彩色图像。
图像处理1--傅里叶变换(FourierTransform)

图像处理1--傅⾥叶变换(FourierTransform)楼下⼀个男⼈病得要死,那间壁的⼀家唱着留声机;对⾯是弄孩⼦。
楼上有两⼈狂笑;还有打牌声。
河中的船上有⼥⼈哭着她死去的母亲。
⼈类的悲欢并不相通,我只觉得他们吵闹。
OpenCV是⼀个基于BSD许可(开源)发⾏的跨平台计算机视觉库,可以运⾏在Linux、Windows、Android和Mac OS操作系统上。
它轻量级⽽且⾼效——由⼀系列 C 函数和少量 C++ 类,同时提供了Python、Ruby、MATLAB等语⾔的接⼝,实现了和计算机视觉⽅⾯的很多通⽤算法。
OpenCV⽤C++语⾔编写,它的主要接⼝也是C++语⾔,但是依然保留了⼤量的C语⾔。
该库也有⼤量的Python、Java andMATLAB/OCTAVE(版本2.5)的接⼝。
这些语⾔的API接⼝函数可以通过在线获得。
如今也提供对于C#、Ch、Ruby,GO的⽀持。
所有新的开发和算法都是⽤C++接⼝。
⼀个使⽤CUDA的GPU接⼝也于2010年9⽉开始实现。
图像的空间域滤波:空间域滤波,空间域滤波就是⽤各种模板直接与图像进⾏卷积运算,实现对图像的处理,这种⽅法直接对图像空间操作,操作简单,所以也是空间域滤波。
频域滤波说到底最终可能是和空间域滤波实现相同的功能,⽐如实现图像的轮廓提取,在空间域滤波中我们使⽤⼀个拉普拉斯模板就可以提取,⽽在频域内,我们使⽤⼀个⾼通滤波模板(因为轮廓在频域内属于⾼频信号),可以实现轮廓的提取,后⾯也会把拉普拉斯模板频域化,会发现拉普拉斯其实在频域来讲就是⼀个⾼通滤波器。
既然是频域滤波就涉及到把图像⾸先变到频域内,那么把图像变到频域内的⽅法就是傅⾥叶变换。
关于傅⾥叶变换,感觉真是个伟⼤的发明,尤其是其在信号领域的应⽤。
⾼通滤波器,⼜称低截⽌滤波器、低阻滤波器,允许⾼于某⼀截频的频率通过,⽽⼤⼤衰减较低频率的⼀种滤波器。
它去掉了信号中不必要的低频成分或者说去掉了低频⼲扰。
图像处理中的傅里叶变换

FFT是DFT的一种高效实现,它广 泛应用于信号处理、图像处理等 领域。
频域和时域的关系
频域
频域是描述信号频率特性的区域,通过傅里叶变换可以将 时域信号转换为频域信号。在频域中,信号的频率成分可 以被分析和处理。
时域
时域是描述信号时间变化的区域,即信号随时间的变化情 况。在时域中,信号的幅度和时间信息可以被分析和处理。
其中n和k都是整数。
计算公式
X(k) = ∑_{n=0}^{N-1} x(n) * W_N^k * n,其中W_N=exp(-
2πi/N)是N次单位根。
性质
DFT是可逆的,即可以通过DFT 的反变换将频域信号转换回时域
信号。
快速傅里叶变换(FFT)
定义
快速傅里叶变换(FFT)是一种高 效计算DFT的算法,它可以将DFT 的计算复杂度从O(N^2)降低到 O(NlogN)。
通过傅里叶变换,我们可以方便地实现图像的滤波操作,去除噪声或突出某些特 征。同时,傅里叶变换还可以用于图像压缩,通过去除高频成分来减小图像数据 量。此外,傅里叶变换还可以用于图像增强和图像识别,提高图像质量和识别准 确率。
PART 02
傅里叶变换的基本原理
离散傅里叶变换(DFT)
定义
离散傅里叶变换(DFT)是一种 将时域信号转换为频域信号的方 法。它将一个有限长度的离散信 号x(n)转换为一个复数序列X(k),
傅里叶变换的物理意义是将图像中的每个像素点的灰度值表 示为一系列正弦波和余弦波的叠加。这些正弦波和余弦波的 频率和幅度可以通过傅里叶变换得到。
通过傅里叶变换,我们可以将图像中的边缘、纹理等高频成 分和背景、平滑区域等低频成分分离出来,从而更好地理解 和处理图像。
数字图像处理中的常用变换

一、离散傅里叶变换1.离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
在实际应用中通常采用快速傅里叶变换以高效计算DFT。
DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。
DFT的应用十分广泛,如:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。
2.离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1.离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。
传统的正交变换多是复变换,运算量大,不易实时处理。
随着数字图像处理技术的发展,出现了以离散余弦变换(DCT)为代表的一大类正弦型实变换,均具有快速算法。
目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。
由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。
对给定长度为N 的输入序列f(x),它的DCT 变换定义为:⎪⎭⎫ ⎝⎛+⨯=∑-=102)12(cos )()(2)(N x N x x f u C N u F μπ式中:1,,1,0u -=N ,式中的)(u C 的满足:⎪⎩⎪⎨⎧==其它1021)(u u C在数字图像处理中,通常使用二维DCT 变换,正变换为:⎪⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N x N y N v y N u x y x f v C u C N v u F ππ 其逆变换IDCT 为:⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N u N v N v y N u x v u F v C u C N y x f ππ 式中:1,,1,0u -=N ,1,,1,0v -=N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可见照片上面有着很有规律的条纹。
那么其FFT频谱图上面就会有非常规则的点。
这些点就是条纹在频域空间的对应。
如果擦掉这些点,做一次FFT反变换,那么就能够很好地恢复原图像。
但是,不可避免的,图像变得有点模糊了
一般而言,高频率留下的是图像细节。
低频率留下的是图像整体。
通过滤波永远只会使图像失去更多的信息,而不是增加细节。
计算机科学学院技术交流与讲座活动(学院会议室一教12楼)主要议题为:
1 物联网场景化应用技术,广州杰赛科技股份有限公司总工程师,傅仁轩研究员。
傅仁轩,1967年11月生,中国电子科技集团第七研究所,高级专家;广东省物联网协会专家;广东省安全技术防范协会专家委,广东省国防军工专家,广州市海珠区专业技术拔尖人才。
主持科技部、省级重大重点项目40余项,获得中国电子集团科学技术奖等多项,主要从事信息处理,物联网应用的研究与开发工作。
2 生物识别技术在智能小区管理系统的应用,佛山科学技术学院教授级高工蒋业文。
蒋业文,1964年9月出生,美国Drexel大学生物医学工程学院访问学者,曾任中外合资佛山寰球通信器材有限公司总工程师、副总经理,兼职担任佛山市星光楼宇设备有限公司总工程师,现任佛山科学技术学院电子信息工程学院教授级高级工程师,硕士生导师。
多年来从事嵌入式系统设计、数字图像处理、智能小区与安防技术等方面的研究和应用,主持开发的生物识别智能小区管理系统等多项电子产品获得了广泛的市场认可。
主持完成10余项省级重大项目,其中的技术成果获国际先进水平和国内领先水平评价,并获得广东省科学技术奖励2项,佛山市科学技术奖励2项。
3 活动地点:计算机科学学院会议室。
时间:2017年10月20日本周五下午4:00-5:30.。