快速傅里叶变换的应用
快速傅里叶变换应用

所得到的模拟远程高空卫星照片。
从图4可看到,整个模拟远程高空卫星 轮廓清晰可见,达到了较为理想的效果。对 下一步利用光学系统装置采集的远程目标的 进一步识别提供了有利的条件。
– 数字音频广播 (DAB) – 数字视频广播(DVB) – 高清晰数字 (HDTV) 地面广播
目录
➢ 快速傅里叶变换的发展 ➢ FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
目录
➢ 快速傅里叶变换的发展 ➢ FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
➢ FFT/IFFT用于图像处理
卫星通信
OFDM应用
其他: –固线网络
• 高比特 数字用户线路 (HDSL) • 非对称数字用户线路 (ADSL) • 超高速数字用户线路 (VDSL)
➢ FFT/IFFT用于图像处理
卫星通信
OFDM应用
超宽带 (UWB Ultra-Wideband)
标准: IEEE 802.15.3a
相对于传统的窄带无线通信系统 ,UWB无线通信系 统具有高空间频谱效率 、高测距精度 、低截获概率 、 抗多径衰落 、不干扰现有通信系统 、低功耗 、低成本 等诸多优点和潜力。这些优点使 UWB 通信成为中短距 无线网络理想的传输接入技术之一。
快速傅里叶变换的基本概念及其应用

快速傅里叶变换的基本概念及其应用快速傅里叶变换,通常称为 FFT,是一种高效的计算傅里叶变换的算法。
它广泛应用于信号处理、图像处理、音频处理、通信系统等领域中。
在这篇文章中,我们将探讨快速傅里叶变换的基本概念及其应用。
傅里叶变换是一个将时间域信号转换为频域信号的数学工具。
它可以将一个时域信号表示为其构成频谱的复振幅和相位。
这个过程被广泛应用于信号处理、图像处理和通信系统中,因为它允许我们分析和操作复杂的信号。
然而,计算傅里叶变换的传统方法需要大量的计算量和时间。
这个计算量往往太大,以致于在处理复杂的信号时,传统的方法无法满足实时处理的需求。
这就是快速傅里叶变换的优越之处。
快速傅里叶变换是一种高效的算法,它可以在 O(n log n) 的时间内计算一个序列的傅里叶变换,而传统方法需要 O(n^2) 的计算时间。
这个算法的核心是分治策略。
即通过将序列分成两个较小的序列,然后对它们进行递归操作,最后将结果合并到一起来计算真正的傅里叶变换。
应用方面,快速傅里叶变换在信号处理、图像处理和通信系统中得到了广泛的应用。
在图像处理中,它可以用于提取图像中的纹理、过滤图像中的噪声和分析图像的频率。
在音频处理中,它可以用于调节音频的音色、混响和变调。
在通信系统中,它可以用于处理数字信号、降噪和解调。
总之,快速傅里叶变换是一个非常有用的数学工具,它广泛应用于信号处理、图像处理和通信系统中。
在实际应用中,我们需要根据实际情况选择适当的算法,并结合实际场景来进行优化。
通过利用它的优越性能,它可以帮助我们更有效地处理和操作复杂的信号。
FFT的算法原理应用

FFT的算法原理应用FFT(快速傅里叶变换)是一种用于计算傅里叶变换的算法,它通过分治法和迭代的方式,将O(n^2)时间复杂度的离散傅里叶变换(DFT)算法优化到O(nlogn)的时间复杂度。
FFT算法在信号处理、图像处理、通信系统等领域应用广泛。
1.算法原理:FFT算法的核心思想是将一个长度为n的序列分解为两个长度为n/2的子序列,然后通过递归的方式对子序列进行FFT计算。
在将子序列的FFT结果合并时,利用了傅里叶变换的对称性质,即可以通过递归的方式高效地计算出整个序列的FFT结果。
具体来说,FFT算法可以分为升序计算和降序计算两个过程。
升序计算是将原始序列转换为频域序列的过程,而降序计算则是将频域序列转换回原始序列的过程。
在升序计算中,序列的奇数项和偶数项被分开计算,而在降序计算中,FFT结果被奇数项和偶数项的和和差重新组合成原始序列。
2.算法应用:2.1信号处理:FFT算法在数字信号处理中广泛应用,可以将信号从时域转换为频域,从而实现滤波、降噪、频谱分析等操作。
例如,在音频处理中,可以利用FFT算法对音频信号进行频谱分析,从而实现声音的等化处理或实时频谱显示。
2.2图像处理:FFT算法在图像处理中也有重要的应用。
图像的二维傅里叶变换可以将图像从空间域转换为频域,从而实现图像的频域滤波、频域增强等操作。
例如,可以通过对图像进行傅里叶变换,找到图像中的频域特征,进而实现图像的降噪、边缘检测等功能。
2.3通信系统:FFT算法在通信系统中也有广泛应用,特别是在OFDM (正交频分复用)系统中。
OFDM系统可以将高速数据流分成多个低速子流,然后利用FFT对每一个子流进行频域调制,再通过并行传输的方式将它们叠加在一起。
这样可以提高信号的传输效率和容量,降低频率的干扰。
2.4数据压缩:FFT算法在数据压缩领域也得到了广泛应用。
例如,在JPEG图像压缩算法中,就使用了离散余弦变换(DCT),它可看做是FFT的一种变种。
快速傅里叶变换原理及其应用

快速傅里叶变换原理及其应用快速傅里叶变换的原理基于傅里叶级数展开定理,它认为任何一个周期信号可以由一组正弦和余弦函数的和表示。
快速傅里叶变换通过将时域信号划分为若干个频率组成的离散点,然后对这些点进行计算,得到频域信号的表示。
快速傅里叶变换的核心思想是将一个N点的DFT(离散傅里叶变换)分解为若干个较小的DFT,然后通过递归的方式进行计算。
这样可以大大减少计算量,提高算法的效率。
FFT算法的时间复杂度为O(NlogN),远远优于传统的DFT算法的时间复杂度O(N^2)。
由于快速傅里叶变换具有高效、快速的特点,因此被广泛应用于多个领域。
在音频处理中,FFT常用于信号的频谱分析和频率检测。
通过对音频信号进行FFT变换,可以得到频谱图,从而分析音频信号的频率成分和强度分布。
这在音乐制作、语音识别、音频编码等领域具有重要的应用。
在图像处理中,FFT常用于图像的频域滤波和图像压缩。
通过对图像进行二维FFT变换,可以将图像从空域转换到频域,然后对频域图像进行一系列的滤波操作,最后再通过逆变换将图像转换回空域。
这样可以实现图像的去噪、增强、模糊等效果。
在通信领域,FFT常用于信号的调制和解调。
通过对信号进行FFT变换,可以将信号从时域转换到频域,然后进行调制或解调操作,最后再通过逆变换将信号从频域转换回时域。
这在无线通信、数字电视等领域具有广泛的应用。
在科学研究领域,FFT常用于信号的频谱分析和频率测量。
通过对科学实验中的信号进行FFT变换,可以得到信号的频率成分和幅度信息,从而帮助科学家研究信号的特性和变化规律。
总之,快速傅里叶变换作为一种高效的计算算法,在音频、图像、通信、科学研究等多个领域都具有重要的应用价值。
它不仅可以将时域信号转换为频域信号,还可以对频域信号进行滤波、压缩、调制等操作,从而实现对信号的处理和分析。
快速傅里叶变换推导

快速傅里叶变换推导摘要:1.快速傅里叶变换的概念与意义2.傅里叶变换的定义与性质3.快速傅里叶变换的算法原理4.快速傅里叶变换的实际应用正文:一、快速傅里叶变换的概念与意义快速傅里叶变换(Fast Fourier Transform,FFT)是一种高效的计算离散傅里叶变换(Discrete Fourier Transform,DFT)及其逆变换的算法。
DFT 是一种将时间域信号转换到频率域的方法,常用于信号处理、图像处理等领域。
然而,当信号长度很长时,DFT 的计算复杂度较高,因此,为了加速计算,提出了快速傅里叶变换算法。
二、傅里叶变换的定义与性质傅里叶变换是一种将信号从时域转换到频域的方法。
对于一个信号f(t),其傅里叶变换结果为频谱F(ω),可以通过以下公式计算:F(ω) = ∫[f(t) * e^(-jωt) dt],其中积分范围为-∞到∞。
傅里叶变换具有以下性质:1.傅里叶变换是线性的,即满足线性性质的信号可以通过傅里叶变换分开。
2.傅里叶变换是可逆的,即频域信号可以通过傅里叶逆变换转换回时域信号。
3.傅里叶变换具有时域与频域之间的帕斯卡三角关系,即频谱的幅度与相位分别对应时域信号的幅度与相位。
三、快速傅里叶变换的算法原理快速傅里叶变换算法的原理是将DFT 分解成更小的子问题,并重复利用子问题的计算结果。
具体来说,如果将信号长度为N 的DFT 表示为:X_k = ∑[x_n * e^(-j2πnk/N)],其中n 为时域索引,k 为频域索引。
那么,如果将信号长度分解为2 的幂次方形式(如N = 2^m),则可以将DFT 分解为两个较短的DFT 的加权和,即:X_k = ∑[x_n * e^(-j2πnk/N)] = ∑[x_n * e^(-j2πn(k-m)/2^m)] + e^(-j2πkm/2^m) * ∑[x_n * e^(-j2πn(k+m)/2^m)]其中,第一个和式计算偶数项的DFT,第二个和式计算奇数项的DFT。
快速傅里叶变换FFT算法及其应用

快速傅里叶变换FFT算法及其应用快速傅里叶变换(Fast Fourier Transform, FFT)是一种高效的计算离散傅里叶变换(Discrete Fourier Transform, DFT)的算法,它可以将一个时间域上的信号转换为频域上的表示。
FFT算法的提出改变了信号处理、图像处理、音频处理等领域的发展,广泛应用于各种科学与工程领域。
FFT算法的基本思想是将一个N点的DFT分解为多个较小规模的DFT,然后再通过合并子问题的解来得到原问题的解。
这种分治思想使得FFT算法的时间复杂度从O(N^2)降低到了O(NlogN),大大提高了计算效率。
FFT算法主要利用了DFT的对称性和周期性质,通过递归和迭代的方式,以分离出DFT的实部和虚部的形式计算出频域上的信号。
FFT算法的应用非常广泛。
在通信领域中,FFT算法常被用于信号的频谱分析、频域滤波、信号调制解调等方面。
在图像处理中,FFT算法可用于图像增强、滤波、噪声去除等。
在音频处理中,FFT算法可以用于音频压缩、声音合成等。
此外,FFT算法还广泛应用于科学计算、数字信号处理、雷达信号处理、语音识别、生物信息学等领域。
以音频处理为例,使用FFT算法可以将音频信号从时域转换到频域表示,使得我们可以对音频信号进行频谱分析。
通过FFT计算,我们可以获取音频信号的频率分量、频谱特征、能量分布等信息。
这对于音频的压缩、降噪、音频增强、音频特征提取等操作非常有帮助。
例如,在音频压缩中,我们可以根据音频信号的频谱特性,选择性地保留主要的频率成分,从而实现压缩效果。
而在音频增强中,我们可以通过FFT计算,去除或减弱一些频率上的噪声,提高音频的质量。
在实际应用中,为了提高计算效率和减少计算量,通常会使用基于FFT算法的快速卷积、快速滤波等技术。
这些技术可以利用FFT算法的高效性质,实现更快速、更准确的计算。
此外,也可以采用多线程、并行计算等技术,进一步提高FFT算法的性能。
快速傅里叶变换及其应用

数值与符号计算实验快速傅里叶变换及其应用1 实验要求2 实验原理计算离散傅里叶变换的一种快速算法,简称FFT。
快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。
采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。
快速傅氏变换,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X (m),即N点DFT变换大约就需要N2次运算。
当N=1024点甚至更多的时候,需要N2=1048576次运算.在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k, k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。
这样变换以后,总的运算次数就变成N+2(N/2)2=N+N2/2。
继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。
如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。
3 算法思想及代码实现3.1 复数类及常规运算函数定义了复数类,以及复数的“+”,“-”,“*”,“÷”四则运算。
从傅里叶变换到快速傅里叶变换

从傅里叶变换到快速傅里叶变换摘要:1.傅里叶变换的概念及应用背景2.傅里叶变换的计算方法3.快速傅里叶变换的产生4.快速傅里叶变换的计算方法及优化5.快速傅里叶变换的应用场景正文:一、傅里叶变换的概念及应用背景傅里叶变换是一种重要的信号处理技术,它可以将一个信号从时域转换到频域,从而揭示信号的内在结构和特性。
在数学领域,傅里叶变换是通过将一个信号(通常是一个函数)分解成一组不同频率的正弦波的和来实现的。
傅里叶变换在许多领域都有广泛的应用,例如信号处理、图像处理、音频处理等。
例如,在音频处理中,傅里叶变换可以将音频信号从时域转换为频域,从而方便我们分析音频信号的频率成分和谐波分量。
二、傅里叶变换的计算方法傅里叶变换的计算方法是通过傅里叶级数或者离散傅里叶变换(DFT)来实现的。
其中,傅里叶级数是一种基于无限积分的计算方法,而离散傅里叶变换(DFT)则是一种基于有限积分的计算方法。
在实际应用中,由于信号通常是有限长度的,因此我们通常使用离散傅里叶变换(DFT)来计算傅里叶变换。
离散傅里叶变换(DFT)是一种将信号从时域转换为频域的计算方法,它可以将信号分解成一组不同频率的正弦波的和。
三、快速傅里叶变换的产生由于傅里叶变换的计算量较大,当信号长度较长时,计算量会变得非常大,这使得傅里叶变换在实际应用中受到了限制。
为了解决这个问题,人们提出了快速傅里叶变换(FFT)算法。
快速傅里叶变换(FFT)是一种基于分治算法的计算方法,它可以将傅里叶变换的计算量从O(N^2) 降低到O(NlogN),从而大大提高了傅里叶变换的计算效率。
四、快速傅里叶变换的计算方法及优化快速傅里叶变换(FFT)的计算方法是通过将信号分解成较小的子信号,并对这些子信号进行递归处理,最终再将这些子信号组合起来,从而实现傅里叶变换的计算。
为了进一步提高快速傅里叶变换的计算效率,人们提出了许多优化方法,例如蝶形算法、位反转算法等。
这些优化方法可以进一步减少计算量,从而提高计算效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---通信领域应用举例
大话傅里叶变换
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e. 其他
FFT/IFFT用于图像处理
卫星通信
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
FFT/IFFT用于图像处理
卫星通信
OFDM应用
光纤通信 优点:
通信容量大、传输距离远; 抗电磁干扰、传输质量佳; 原材料丰富。尺寸小、重量轻,便于铺设和运输。
—数据调制 —保护间隔和循环前缀 —同步 —信道均衡 —自适应调制
OFDM简介
OFDM的主要思想是:将信道分成若干正交子信道,将高速数据 信号转换成并行的低速子数据流,调制到每个子信道上进行传输, 如下图所示:
OFDM简介
FFT在OFDM 中的作用
OFDM简介
OFDM的优点:
FFT/IFFT用于图像处理
卫星通信
FFT/IFFT用于数字图像处理
早在1964 年美国喷气推进实验室(JPL)使用计算机 对“徘徊者 7 号”太空飞船发回的四千多张月球照片处 理后,使原本模糊不清的图像变得清晰逼真,收到了令 人满意的效果。 此后几年这项技术在空间研究计划中得以继续使用, 同时也标志了数字图像处理这门学科的诞生。 在 1965 年快速傅里叶变换(FFT)算法出现后,才能 利用计算机对它进行运算,从而为这一数学工具赋予了 新的生命力。 对图像进行傅里叶变换,是将图像信号变换到频域进 行分析,它不仅反映图像的灰度结构特征,而且能使快 速卷积、目标识别等许多算法易于实现。
难题:
色散容限; 频谱利用率等。
OFDM应用
光纤通信
光正交频分复用(OOFDM)技术以其卓越的对色散及 偏振模色散容忍能力、高效的频谱效率(SE)等特点受到 广泛关注。OOFDM技术能够与高阶调制技术、波分复 用(WDM)和偏振复用(PDM)等技术相结合,从而提高光 纤传输系统的传输速率、色散容限和频谱利用率。
卫星通信
OFDM简介
OFDM(Orthogonal Frequency Division Multiplexing)即正 交频分复用,是一种能够充分利用频谱资源的多载波传输方式。
常规频分复用与OFDM的信道分配情况如下图所示,可以看出 OFDM至少能够节约二分之一的频谱资源:
OFDM简介
OFDM 的关键技术
参考书籍
更多内容请参考:
《快速傅里叶变换:算法与应用》 作者:K.R.Rao D.N.Kim J.J.Hwang 译者:万帅 杨付正 出版:机械工业出版社 2012.12
谢 谢 !
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
FFT/IFFT用于图像处理
卫星通信
OFDM应用
其他: –固线网络
• 高比特 数字用户线路 (HDSL) • 非对称数字用户线路 (ADSL) • 超高速数字用户线路 (VDSL)
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
FFT/IFFT用于图像处理
卫星通信
OFDM应用
IEEE802.11(Wi-fi Wireless Fidelity)
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
FFT/IFFT用于图像处理
卫星通信
OFDM应用
超宽带 (UWB Ultra-Wideband) 标准: IEEE 802.15.3a
频域直扩结构 (FDDS) 多支路分集结构 (MBD) 多支路频域均衡结构 (MBFDE) 双层多载波频分复用结 构 (DLMC-FDM) 双层多载波频率分集结构 (DLMC2FD) 双层多载波跳频结构 (DLMC2FH)
OFDM应用
多频结构:
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
带宽利用率很高; 能够应对恶劣信道条件; 符号长度增加减小了ISI(符号间干扰); 简化了信道均衡; 各个子信道的正交调制和解调可以很容易的通过DSP芯片利用 FFT/IFFT实现。
OFDM的缺点:
对同步误差十分敏感; 峰值平均功率比(PAPR)较高,容易引起信号畸变。
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
FFT/IFFT用于数字图像处理
卫星通信
利用图像处理函数将图像信号读入 经傅里叶变换变换到空间频域 用滤波器去除图像信号中的噪声信号 利用傅里叶反变换将信号还原
图3是模拟远程高空卫星照片, 图4是在 Matlab 5.3 中:
所得到的模拟远程高空卫星照片。
从图4可看到,整个模拟远程高空卫星 轮廓清晰可见,达到了较为理想的效果。对 下一步利用光学系统装置采集的远程目标的 进一步识别提供了有利的条件。
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB图像处理
卫星通信
OFDM应用
第四代移动通信技术(LTE:Long Term Evolution)
核心技术: OFDM(还有可能应用于将来的5G) 多天线MIMO 64QAM 全IP扁平的网络结构 优化的帧结构等
目前较常用的是基-2 DIT-FFT算法和分裂基FFT 算法。
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
FFT/IFFT用于图像处理
– 数字音频广播 (DAB) – 数字视频广播(DVB) – 高清晰数字 (HDTV) 地面广播
目录
快速傅里叶变换的发展 FFT/IFFT用于OFDM技术
1.简介 2.应用举例
a. 第四代移动通信技术(LTE) b. IEEE802.11(Wi-fi) c. 超宽带 (UWB) d. 光纤通信 e.其他
OFDM应用
第四代移动通信技术(LTE:Long Term Evolution) LTE上行链路所采用的SC-FDMA多址接入技术是一 种基于DFT-spread OFDM的传输方案,同OFDM相比, 它具有较低的峰均比。 DFT-spread OFDM多址接入技术:
OFDM应用
第四代移动通信技术(LTE:Long Term Evolution) 利用DFTS-OFDM可以方便的实现SC-FDMA多址接 入方式,多用户复用频谱资源时只需要改变不同用户 DFT的输出到IDFT输入的对应关系就可以实现多址接入, 同时子载波之间具有良好的正交性,避免了多址干扰。 SC-FDMA多址接入技术:
快速傅里叶变换的产生与发展
快速傅里叶变换(FFT)是 1965 年 J.W.Cooley 和 J.W.Tukey巧妙地利用 WN 因子的周期性和 对称性,构造的 DFT 快速算法,与之对应的则 是快速傅里叶逆变换(IFFT)。在以后的几十年 中, FFT算法有了进一步的发展,如:
基-2 DIT-FFT算法 基-2 DIT-FFT算法 基于稀疏矩阵因式分解的快速算法 分裂基FFT算法
超宽带 (UWB Ultra-Wideband)
超宽带 (UWB) 技术与正交频分复用 (OFDM) 调制 相结合的 UWB-OFDM 系统可能成为短距离 、高数据 率无线网络理想的传输接入方案之一。 UWB-OFDM 系统的实现结构主要分为单频(SingleBand) 结构和多频带 (Multi-Band) 结构两大类: 单频结构:
相对于传统的窄带无线通信系统 ,UWB无线通信系 统具有高空间频谱效率 、高测距精度 、低截获概率 、 抗多径衰落 、不干扰现有通信系统 、低功耗 、低成本 等诸多优点和潜力。这些优点使 UWB 通信成为中短距 无线网络理想的传输接入技术之一。 然而 ,为了使 UWB 无线网络在密集多径环境中提供 高数据率 、多用户同时通信 、以及使UWB系统同众多 的窄带通信系统共存 ,UWB 系统仍然面临着众多严峻的 挑战。