第四章 傅里叶变换及应用
傅里叶变换及其应用

傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种重要的数学工具和数学分析方法,广泛应用于信号处理、图像处理、通信系统、量子力学等领域。
通过将一个函数表示成一组正弦和余弦函数的叠加,傅里叶变换能够将时域中的信号转化为频域中的信号,从而使得复杂的信号处理问题变得更加简单。
本文将介绍傅里叶变换的原理、性质以及其在实际应用中的几个重要方面。
一、傅里叶变换的原理和基本定义傅里叶变换是将一个函数f(x)表示成指数函数的叠加的过程。
设f(x)在时域上是以周期T为基本周期的连续函数,那么其傅里叶变换F(k)在频域上将成为以1/T为基本周期的连续函数。
傅里叶变换的基本定义如下:F(k) = ∫[f(x) * e^(-i2πkx/T)]dx其中,i是虚数单位,k是频率变量。
通过这样的变换,我们可以将时域上的函数转换为频域上的函数,从而可以更加清晰地分析信号的频谱特征。
二、傅里叶变换的性质傅里叶变换具有一些重要的性质,这些性质使得傅里叶变换成为一种强大的工具。
1. 线性性质:傅里叶变换具有线性性质,即若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则对应线性组合的傅里叶变换为aF(k) +bG(k),其中a和b为常数。
2. 时移性质:若f(x)的傅里叶变换为F(k),则f(x - a)的傅里叶变换为e^(-i2πak/T)F(k),即时域上的平移将对频域上的函数进行相位调制。
3. 频移性质:若f(x)的傅里叶变换为F(k),则e^(i2πax/T)f(x)的傅里叶变换为F(k - a),即频域上的平移将对时域上的函数进行相位调制。
4. 尺度变换性质:若f(x)的傅里叶变换为F(k),则f(ax)的傅里叶变换为1/|a|F(k/a),即函数在时域上的尺度变换会对频域上的函数进行缩放。
5. 卷积定理:若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则f(x) * g(x)的傅里叶变换为F(k)G(k),即在频域上的乘积等于时域上的卷积。
第四章 离散傅立叶变换(DFT)

x ( n )W N
kn
n0
X ( k ) DSK [ x ( n )] N 点
x ( n )W N
k=0, 1, …, N-1
n0
式中的周期序列 ~ N 是有限长序列x(n)的周期延拓 x 序列,其定义为
~ (n ) xN
m
x ( n mN )
(4.2.3)
X(N-k)=X*(k) k
0 ,1, 2 , N 2 1
共需要N2/2次复数乘法,比直接按定义计算少一半。 对一般的复序列,DFT也有共轭对称性。
4.3.5 循环卷积定理 1) 两个有限长序列的循环卷积
设序列h(n)和x(n)的长度分别为N和M。h(n)与x(n)的L点
循环卷积定义为
1 e
8k
1 e
j
k
2
k
j
2
k
e
j
(e
k j
e e
j
2
k
)
k
16
16
k
j
16
e
j
(e
k
)
7 16
sin( sin(
2
k)
e
k=0, 1, 2, …, 15
k)
16
x(n)的幅频特性函数曲线、 8点DFT、 16点DFT和 32点DFT的模分别如图4.2.1(a)、 (b)、 (c)和(d)所示。
通常又定义周期序列的主值序列为
x N ( n ) ~N ( n ) R N ( n ) x
比较以上四种变换的计算式可得到:
第四章 傅里叶变换及应用

0
j
a
f(x ) F ()e j
U (,t) () cos at () sin at
a
() e jat e jat () e jat e jat
2
a
2j
x
f()d
F ()
0
j
1 2
()ejat ()ejat
1 2a
() j
e
jat
() j
e
jat
u(x,t)
1 2
(x,
y,
0)
(x,
y)
n1
m1
bmn
mnc
sin
m
a
x
sin
n
b
y
由于三角函数系的正交性, 得
amn
4 ab
a 0
b(x, y)sin m x sin n y dxdy,
0
ab
bmn
4
abc mn
a 0
b
(
x,
y)
sin
m
x
sin
n
y
dxdy,
0
ab
第四章 傅里叶变换及应用
傅里叶变换是积分变换的一种, 它可用来求解无界区域上的定解问题。
F(x ,y ,z )
f (x, y, z)e j(xxy yzz)dxdydz (3)
当然,我们也可以定义傅立叶逆变换
f
(x,
y,
z)
1
(2
)3
F (x ,y ,z )e j(xxy yzz)dxdydz (4)
傅立叶变换的性质:
1) 线性性质 设 f, g 是绝对可积函数,, 是任
意复常数,则
第四章-连续时间傅里叶变换

谱线间隔
0
2π T
k
nT 2T1
2,4,6时,ak 0
k
(b) T=8 T1 -4 0
谱线间隔
0
2π T
k
nT 2T1
4,8,12时,ak 0
k 4
T 2T1 T 2T1
T 不变T1 时
1/ 2
20 0 0 40
1/ 4
80 0 0 40
1/8
0 0
80
T
2T1
2T1 1 k0 T0 2
2T1 1 k0 T0 4
2020/8/9
4.0 引言
在工程应用中常见的信号是非周期信号:
➢对非周期信号应该如何进行分解? ➢非周期信号的频谱如何表示? 在时域,若一个周期信号的周期趋于无穷大,则周期信号将演 变成一个非周期信号。 考查连续时间傅立叶级数在周期趋于无穷大时的变化,就能得 到对非周期信号的频域表示方法。
2
4.1 非周期信号的表示— 连续时间傅立叶变换
第4章 连续时间傅立叶变换
The Continuous time Fourier Transform
本章的主要内容: 1. 连续时间非周期信号的傅立叶变换 2. 傅立叶级数与傅立叶变换之间的关系 3. 傅立叶变换的性质 4. 采样定理
说明:内容1-3对应于教材第4章的4.1-4.6节; 内容4对应与教材第7章7.1-7.3节部分内容
T / 2 x(t )e jk0t dt
T / 2
当 T
0
2
T
d,
k0 ,
若令
lim
T
Tak
X(
j)
则有
X ( j) x(t)e jtdt
傅里叶变换及其应用

傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种将一个函数(或信号)从时域(时间域)转换为频域的数学技术。
它是由法国数学家傅里叶(Jean-Baptiste Joseph Fourier)提出的,因此得名。
傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用,并且为这些领域的发展做出了重大贡献。
一、傅里叶变换的定义和性质傅里叶变换可以将一个连续函数表示为正弦和余弦的加权和,它的数学公式如下:F(ω) = ∫[f(t) * e^(-iωt)] dt其中,F(ω)表示频域上的函数,f(t)表示时域上的函数,e^(-iωt)是复指数函数。
傅里叶变换有一些重要的性质,如线性性、时移性、频移性、对称性等。
这些性质使得傅里叶变换成为一种非常有用的工具,在信号处理中广泛应用。
二、傅里叶级数与傅里叶变换的关系傅里叶级数是傅里叶变换的一种特殊形式,主要用于分析周期性信号。
傅里叶级数可以将一个周期为T的函数展开成正弦和余弦函数的和。
而傅里叶变换则适用于非周期性信号,它可以将一个非周期性函数变换为连续的频谱。
傅里叶级数和傅里叶变换之间存在着密切的关系,它们之间可以相互转换。
傅里叶级数展开的周期函数可以通过将周期延拓到无穷大,得到其对应的傅里叶变换。
而傅里叶变换可以通过将频谱周期化,得到其对应的傅里叶级数。
三、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中有着重要的应用。
通过将信号从时域转换到频域,我们可以分析信号的频谱特性,如频率成分、幅度、相位等。
这对于音频、图像、视频等信号的处理非常有帮助,例如音频信号的降噪、图像的去噪、视频的压缩等。
2. 图像处理傅里叶变换在图像处理中也有广泛的应用。
通过对图像进行傅里叶变换,可以将图像从时域转换为频域,进而进行频域滤波和频域增强等操作。
这些操作可以实现图像的模糊处理、边缘检测、纹理分析等。
3. 通信在通信领域中,傅里叶变换是无线通信、调制解调、信道估计等技术的基础。
《快速傅里叶变换(FFT) 第四章》

方法: 分解N为较小值:把序列分解为几个较短的 序列,分别计算其DFT值; 利用旋转因子WNk的周期性、对称性、可 约性进行合并、归类处理,以减少DFT的运 算次数。 k ( kn WN m WNN m WN ( nlN ) WNk lN ) n WN 周期性: N m m N m N m m m m 对称性:Wm WNm [W WN N WNN [WNNN m ]] WN WN 2 WN WN 可约性:W mN N W knmW kn / m W kn m kmn ,m 2 2
x ( r ) W x ( r )W x ( r ) W x ( r )W e (r W x r) xxr) W( r ) W (WW (r )W W e W (2 ) x x x(2 r 1)
W e
2 j 2 kr 2 kr N N /2
N 2
2 这样将N点DFT分解为两个N/2点的DFT
N X (k ) X 1 (k ) W X 2k(k ) k 0,1, 1 N X (k ) X 1 (k ) WN X 2 (k ) k 0,1, N 1 2 k X (kN X 1 (k ) WN X 2 (k ) k 0,1, 2 1 ) N2 k X (k N X 1 (k ) WN X 2 (k ) k 0,1, 1 N ) k X (k 2 N X 1 (k ) WN X 2 (k ) k 0,1, N 1 ) 2 k 2 X (k ) X (k ) W X (k ) k 0,1, 2 1
4.1 离散傅里叶变换的高效计算思路 DFT是信号分析与处理中的一种重要变换。但直接 计算DFT的计算量与变换区间长度N的平方成正比, 当N较大时,计算量太大,直接用DFT算法进行谱分 析和信号的实时处理是不切实际的。
信号与系统(第四章)-离散傅里叶变换与快速傅里叶变换

反转,并取主值区间序列
周期延拓
反转后
向右平移1位 向右平移3位
向右平移2位
于是,由
y
(n)
3
x(k
)h((n
k
))
4
G4
(n)
,得
k 0
y(0) 1114 13 02 8
y(1) 1 2 1114 03 7
y(2) 1312 11 04 6
y(3) 14 1312 01 9
➢ 线卷积与圆周卷积
• 线卷积的移位是平移,圆周卷积的移位是周期位 移。
• 线卷积不要求两序列长度一致。若 x(n)与h(n)的长度分别为M和N,则 y(n)=x(n)*h(n)的长度为M+N-1。 圆周卷积要求两序列长度一致,否则短序列须补 零,使两序列等长后,才可进行圆周卷积。
DFT ax1(n) bx2(n) aDFT x1(n) bDFT x2(n)
(4.9)
当序列x1(n)和x2(n)长度不一致时,则可通过将较 短序列补零,使两序列长度一致,此时,式(4.9)成立。
2、圆周位移特性 圆周时移:圆周时移指长度为N的序列x(n),以N 为周期做周期延拓生成xp(n),位移m位后,得序 列xp(n-m),在此基础上取其主值区间上序列。
于是
x(n)
x(t)
t nTs
k
X e jk1nTs k
X e X e
j
2 T1
knTs
k
j 2 nk N
k
(4.3)
k
k
式(4.3)两边同乘
e
j 2 N
nm
,再取合式
N 1
,得
n0
第4(5)章 傅里叶级数和变换

t0
2 2
f (t ) cos( n1t )dt
2 T1
2
E cos( n1t )dt
4 T1
0
E cos( n1t )dt
2
4E 1 sin n1t T1 n1
变
0
不 变
2E n an sin n T1
n sin 2E n T1 n n T1 T1 2 E n Sa ( ) T1 T1
§4.1 引言 信号与系统的时域分析→变换域分析(频域分析)
第四章 连续系统的频域分析P116
任一周期信号都可以用三角函数的线性组合来表示
1822年,法国数学家傅里叶提出;
Poisson、Gauss等将其应用到电学中;
20世纪后,谐振电路、滤波器、正弦振荡器等为傅立 叶分析的应用开辟了广阔的前景 周期信号——傅里叶级数 非周期信号——傅里叶变换
T 2 T 2 T 2 T 2
(3) 半波重迭信号 fT(t)=f(t±T/2)
f (t )
-T/2
T/2
t
半波重叠周期信号只含有正弦与余弦 的偶次谐波分量,而无奇次谐波分量。
(4) 半波镜像信号 fT(t)=f(t±T/2)
f (t )
T/2 0 T
t
半波镜像周期信号只含有正弦与余弦的奇 次谐波分量,而无直流分量与偶次谐波分量。
④ t =±π,±2π,…±nπ;Sa(t)=0
正弦分量的幅度: bn
2 T1
t 0 T1
2 2
t0
f (t ) sin( n1t )dt
2 T1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解下列定解问题
uut(t
x,
c2 (uxx y,0)
uyy
(x,
), y),
ut
(x,
y, 0)
(x,
y),
0 x a, 0 y b, t 0, 0 x a, 0 y b,
u(0, y,t) u(a, y,t) 0,
0 y b,t 0,
u(x,0,t) u(x,b,t) 0,
Y ( y) Y ( y) 0, 0 y b.
代入边界条件
X (0) X (a) 0
得特征值问题
X (x) X (x) 0,0 x a,
X (0) X (a) 0.
求得特征值和对应的特征函数为
m
m
a
2
,
X
m
(
x)
Am
sin
m
a
x
,
m 1,2,L .
类似地, 我们得到
0
j
a
f(x ) F ()e j
U (,t) () cos at () sin at
a
() e jat e jat () e jat e jat
2
a
2j
x
f()d
F ()
0
j
1 2
()ejat ()ejat
1 2a
() j
e
jat
() j
e
jat
u(x,t)
1 2
d 2U (,t)
dt 2
U (,0)
a 2 2U (, t (), dU (,0)
dt
),
(),
t0
U (,t) Acosat Bsin at
f(x ) F ()e j
U (,0) A ()
B () a
U (,t) () cos at () sin at
x
f()d
F ()
F(x ,y ,z )
f (x, y, z)e j(xxy yzz)dxdydz (3)
当然,我们也可以定义傅立叶逆变换
f
(x,
y,
z)
1
(2
)3
F (x ,y ,z )e j(xxy yzz)dxdydz (4)
傅立叶变换的性质:
1) 线性性质 设 f, g 是绝对可积函数,, 是任
意复常数,则
F 1 F ( )F
1
x2 e 4t
2 t
从而方程的解
F 1 F *
1
x2 e 4t
2 t
*
1
x2
e 4t
2 t
u( x,t)
1
s2
x s e 4t ds
2 t
例用用常积数分变变易换法法可解解方得程:
U
,
t
ut
2u
x2
ef2(t x,t) t
需要注意
傅立叶变换的取值范 用傅里叶变换求解波动方程的初值问题:
2u
t
2
u ( x,0)
a2 2u , x 2
(x), u(x,0)
t
(x),
解:取变换符氏
x , t 0 x
ux,t U ,t, (x) (), (x) ().
n1 m1
n1 m1
n1
(amn
m1
cos mnct
bmn
sin mnct) sin
m
a
x
sin
n y
b
其中系数
amn Cmn AmBn , bmn Dmn AmBn.
下面, 我们利用初始条件确定系数
u(x,
y, 0)
( x,
y)
n1
amn
m1
sin
m
a
x
sin
n
b
y
ut
(x,
y,
0)
(x,
y)
n1
m1
bmn
mnc
sin
m
a
x
sin
n
b
y
由于三角函数系的正交性, 得
amn
4 ab
a 0
b(x, y)sin m x sin n y dxdy,
0
ab
bmn
4
abc mn
a 0
b
(
x,
y)
sin
m
x
sin
n
y
dxdy,
0
ab
第四章 傅里叶变换及应用
傅里叶变换是积分变换的一种, 它可用来求解无界区域上的定解问题。
Y (0) Y (b) 0
及特征值问题
Y ( y) Y ( y) 0, 0 y b,
Y (0) Y (b) 0.
其特征值和对应的特征函数为
n
n
b
2
,
Yn
(
y)
Bn
sin
n
b
y
,
n 1,2,L .
记
mn
m2 n2
a2 b2
代入关于t的方程
Tmn
(t)
2 mn
c
2Tmn
(t)
(x
at)
(x
at)
1 2a
xat
( )d
0
xat
0
(
)d
1 (x at) (x at) 1
xat
( )d
2
2a xat
作业:用傅里叶变换求解无界弦的 振动问题P128 例5
F f g F( f ) F(g)
2) 微分性质 设 f , f ' 绝对可积函数,则
F f ' iF f ,F f(n) (i)nF f
3)乘多项式 设 f , x f 绝对可积,则
F xf i d F f
d
4)相似性质 设 f (x) 绝对可积,则
F ( f (ax))( ) 1 F ( f )( ), a 0.
Fx(,R,)te02 (t
)
d
.
而 u x,0 x 0
解: 则
作关于 x
F
ux,t
的U2傅1,立tt叶e 变x42t u换x。,et设e2ti
x
dx
U f,xt,tFF,t
1
ex
x2
4t
方程变为
2 t
0tdFU(dt,,
U , t
t
)F
2U1
,
t
|t02(t )
eF4(
F ( f(x)ei0x ) F ( 0 ),
二. 傅里叶变换的应用
例1 用傅里叶变换法解热传导方程定解问题:
u 2u
t x2 , x R, t 0
u x,0 x , x R
解:作关于 x 的傅立叶变换, 设
u x,t U , t u x,t ei xdx
x
0,
上述方程通解为
Tmn (t) Cmn cos mn ct Dmn sin mn ct
于是得到
umn (x, y, t) X mn (x)Ymn ( y)Tmn (t),
利用叠加原理, 得到定解问题的形式解
u( x, y, t) umn ( x, y, t) X m ( x)Yn ( y
1
F ei xd
2
(2)
反演公式
注1:
在有些参考文献中, 1 因子被分解
2
成 1 1 , 并且分别含在上述两个式子
2 2
(1)和(2)中. 而在式(1)中的函数e jx
e 写成 j x, 从而在式(2)中函数e j x 写
成 e j x. 这些本质上同定义(1)(2)没
有差别.
注2:
在三维无界空间中, 若 f (x, y, z) 是绝对可 积函数, 则可定义三重傅里叶变换
f)
*(
,
) 1 e
( x )2 4(t )
x2
ed4( t
)
d
2 00 t 2 (t )
*
1
x2
e 4t
2 t
t
f ( x, )*
1
x2
e d 4(t )
0
2 (t )
傅立叶变换是一种把分析运算化为代数 运算的有效方法,但
1.傅立叶变换要求原象函数在R上绝对 可积.大部分函数不能作傅立叶变换
2.傅立叶变换要求函数在整个数轴上有 定义,研究混合问题时失效.
积分变换法求解问题的步骤
•对方程的两边做 傅里叶变换将偏微分方程变 为常微分方程 •对定解条件做相应的积分变换,导出新方程 对应的定解条件 •求常微分方程及定解条件的解
•对解的变换式取相应的逆变换,得到原定解 问题的解
数学物理方程+定解条件 解
傅里叶变换可以把线性偏微分方 程变为含有较少变量的线性偏微分方 程或常微分方程,从而使问题得到简 化
一. 傅立叶变换
如果函数 f (x) 在 (, )上绝对可积,它的傅立叶变
换定义如下:
F ei x f xdx
(1)
如果F 满足上面的条件,我们可以定义傅立叶逆
变换为:
f x
|a|
a
5)延迟性质 设 f (x) 绝对可积,则
F( f ( x y)) eiyF ( f ), y R.
6) 卷积性质 设f , g 是绝对可积函数, 令
f g x f x t g t dt
则 F f g F f Fg
7)积分性质
F
f()d
1
i
F(
f
)(
),
8)频移性质