概率论与数理统计答案(东华大学出版)第七章复习题
概率论与数理统计 第七章习题附答案

习题7-11. 选择题(1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X 为来自X的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()n i i X n μ=-∑. (C) μ和σ2.(D) X 和211()nii X X n=-∑.解 选(D).(2) 设[0,]X U θ, 其中θ>0为未知参数, 又12,,,n X X X 为来自总体X的样本, 则θ的矩估计量是( ) .(A) X . (B) 2X . (C) 1max{}i i nX ≤≤. (D) 1min{}i i nX ≤≤.解 选(B).3. 设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. 令()E X X =, 即12X θθ+=+, 得参数θ的矩估计量为21ˆ1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为1(1),01,0,n n i i i x x L θθ=⎧⎛⎫+<<⎪ ⎪=⎨⎝⎭⎪⎩∏其它. 当0<x i <1(i =1,2,3,…,n )时, L >0且 ∑=++=ni ixn L 1ln )1ln(ln θθ,令1d ln ln d 1ni i L nx θθ==++∑=0, 得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑,而θ的极大似然估计量为 1ˆ1ln nii nXθ==--∑.4. 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求未知参数λ的矩估计量与极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏,取对数 1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆxλ=,λ的极大似然估计量为1ˆXλ=. 习题7-22. 若1X ,2X ,3X 为来自总体2(,)XN μσ的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 问k 等于多少?解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.,习题7-31. 选择题(1) 总体未知参数θ的置信水平为0.95的置信区间的意义是指( ).(A) 区间平均含总体95%的值. (B) 区间平均含样本95%的值.(C) 未知参数θ有95%的可靠程度落入此区间. (D) 区间有95%的可靠程度含参数θ的真值. 解 选(D).(2) 对于置信水平1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下列说法不正确的是( ).(A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果α越小, 则可靠程度越高, 精确程度越低. (C) 如果1-α越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而1-α越小. 解 选(C )习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试, 取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200.设灯泡寿命服从正态分布N (μ, 902), 取置信度为0.95, 试求当天生产的全部灯泡的平均寿命的置信区间.解 计算得到1141.11,x = σ2 =902. 对于α = 0.05, 查表可得/20.025 1.96z z ==α.所求置信区间为/2/2(,)(1141.11 1.96,1141.11 1.96)(1082.31,1199.91).x x z z +=-=αα2. 为调查某地旅游者的平均消费水平, 随机访问了40名旅游者, 算得平均消费额为105=x 元, 样本标准差28=s 元. 设消费额服从正态分布. 取置信水平为0.95, 求该地旅游者的平均消费额的置信区间.解 计算可得105,x = s 2 =282.对于α = 0.05, 查表可得0.0252(1)(39) 2.0227t n t α-==.所求μ的置信区间为22((1),(1))(105 2.0227,105 2.0227)x n x n αα--+-=+=(96.045, 113.955).3. 假设某种香烟的尼古丁含量服从正态分布. 现随机抽取此种香烟8支为一组样本, 测得其尼古丁平均含量为18.6毫克, 样本标准差s =2.4毫克. 试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解 已知n =8, s 2 =2.42, α = 0.01, 查表可得220.0052(1)(7)20.278n αχχ-==,220.99512(1)(7)0.989n αχχ--==, 所以方差σ 2的置信区间为2222122(1)(1)(,)(1)(1)n S n S n n ααχχ---=--22(81) 2.4(81) 2.4(,)20.2780.989-⨯-⨯=(1.988, 40.768). 4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样本:X 1,X 2,…,X 12及Y 1,Y 2,…,Y 17, 算出221210.6g,9.5g, 2.4, 4.7x y s s ====. 假设这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别为12,μμ. 又设两总体方差2212σσ=. 求12μμ-置信水平为0.95的置信区间, 并说明该置信区间的实际意义.解 由题设22121210.6,9.5, 2.4, 4.7,12,17,x y s s n n ======2222112212(1)(1)(121) 2.4(171) 4.71.94212172wn s n s s n n -+--⨯+-⨯===+-+-120.0252(2)(27) 2.05181,t n n t α+-==所求置信区间为122(()(2)((10.69.5) 2.05181 1.94x y t n n s α-±+-=-±⨯ =(-0.40,2.60).结论“21μμ-的置信水平为0.95 的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时, 第一个正态总体的均值1μ比第二个正态总体均值2μ大-0.40~2.60,此结论的可靠性达到95%.。
东华理工大学概率论与数理统计练习册答案_

一、选择题
1.答案:(B)
2. 答案:(B)
3.答案:(C)
4. 答案:(C)
注:C成立的条件:A与B互不相容.
5. 答案:(C)
注:C成立的条件:A与B互不相容,即.
6. 答案:(D)
注:由C得出A+B=.
7. 答案:(C)
8. 答案:(D)
Байду номын сангаас
注:选项B由于
9.答案:(C)
注:古典概型中事件A发生的概率为.
.
12.答案:(D) 解:对任意的;选项C描述的是服从指数分布的随机变量的“无记忆 性”;对于指数分布而言,要求参数. 13.答案:(A) 解:选项A改为,才是正确的;
; . 14.答案:(B) 解:由于随机变量X服从(1,6)上的均匀分布,所以X的概率密度函数为.
而方程有实根,当且仅当,因此方程有实根的概率为 .
P(A|B)=.
15.答案:(D)
解:用A表示事件“密码最终能被译出”,由于只要至少有一人能译出
密码,则密码最终能被译出,因此事件A包含的情况有“恰有一人译出
密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译
出密码”,情况比较复杂,所以我们可以考虑A的对立事件“密码最终
没能被译出”,事件只包含一种情况,即“四人都没有译出密码”,
二、填空题
1.{(正,正,正),(正,正,反),(正,反,反),(反,反,
反),(反,正,正),(反,反,正),(反,正,反),(正,
反,正)}
2.或
3.0.3,0.5 解:若A与B互斥,则P(A+B)=P(A)+P(B),于是 P(B)=P(A+B)-P(A)=0.7-0.4=0.3; 若A与B独立,则P(AB)=P(A)P(B),于是 由P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B), 得. 4.0.7 解:由题设P(AB)=P(A)P(B|A)=0.4,于是 P(AUB)=P(A)+P(B)-P(AB)=0.5+0.6-0.4=0.7. 5.0.3 解:因为P(AUB)=P(A)+P(B)-P(AB),又,所以. 6.0.6 解:由题设P(A)=0.7,P()=0.3,利用公式知 =0.7-0.3=0.4,故. 7.7/12 解:因为P(AB)=0,所以P(ABC)=0,于是 . 8.1/4 解:因为 由题设 ,
第七章概率论与数理统计试题答案

第七章试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设整体X 服从[0,2θ]上的均匀散布(θ>0),x 1, x 2, …, x n 是来自该整体的样本,x为样本均值,则θ的矩估量θˆ=( ) A .x 2 B .x C .2x D .x 21答案:B 2.设整体nX X X N X ,,,),,(~212 σμ为来自整体X 的样本,2,σμ均未知,则2σ的无偏估量是( )A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1 D .∑=-+ni iXn 12)(11μ答案:A3.设整体X ~ N (2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自整体X 的一个样本,则以下关于μ的四个估量:)(41ˆ43211x x xx +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪个是无偏估量?( ) A .1ˆμB .2ˆμC .3ˆμD .4ˆμ答案:A4.设(X 1,X 2)是来自整体X 的一个容量为2的样本,则在下列E (X )的无偏估量量中,最有效的估量量是( ) A .)(2121X X + B .213132X X + C .214143X X + D .215253X X + 答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
4.设整体X 具有区间[0,θ]上的均匀散布(θ>0),x 1,x 2,…,x n 是来自该整体的样本,则θ的矩估量θˆ=___________。
答案:x 25.设整体X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x αα,x 1,x 2,…x n 为整体X 的一个样本,则未知参数α的矩估量αˆ=___________. 答案:x 16.设整体X 服从参数为λ的泊松散布,其中λ为未知参数.X 1,X 2,…,X n 为来自该整体的一个样本,则参数λ的矩估量量为___________. 答案:x7.设整体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估量.答案:41 8.设整体X ~ N (1,μ),(321,,x x x )为其样本,若估量量3213121ˆkx x x ++=μ为μ的无偏估量量,则k =___________。
(全)概率论与数理统计答案(东华大学出版)

第二章 离散型随机变量及其分布律第二节 一维离散型随机变量及其分布律习题Page 551、 一个口袋里有6只球,分别标有数字-3、-3、1、1、1、2,从中任取一个球,用ξ表示所得球上的数字,求ξ的分布律。
解答:因为ξ只能取-3、1、2,且分别有2、3、1个,所以ξ的分布律为:ξ-3 1 2 {}i P x ξ=2/63/61/62、 在200个元件中有30个次品,从中任意抽取10个进行检查,用ξ表示其中的次品数,问ξ的分布律是什么?解答:由于200个元件中有30个次品,只任意抽取10个检查,因此10个元件中的次品数可能为0、1、2到10个。
当次品数ξ为k 时,即有k 个次品时,则有10-k 个正品。
所以:ξ的分布律为:103017010200{},0,1,,10k k C C P k k C ξ-===。
3、 一个盒子中有m 个白球,n m -个黑球,不放回地连续随机地从中摸球,直到取到黑球才停止。
设此时取到的白球数为ξ,求ξ的分布律。
解答:因为只要取到黑球就停止,而白球数只有m 个,因此在取到黑球之前,所取到的白球数只可能为0m 中的任意一个自然数。
设在取到黑球时取到的白球数ξ等于k ,则第1k +次取到是黑球,以i A 表示第i 次取到的是白球;_i A 表示第i 次取到的是黑球。
则ξ的分布律为:__12112111{}()()(|)(|)11,0,1,,11k k k k P k P A A A A P A P A A P A A A m m m k n m k mn n n k n kξ++===--+-=⋅⋅⋅⋅=--+-。
4、 汽车沿街道行驶,要通过3个有红绿灯的路口,信号灯出现什么信号相互独立,且红绿灯显示时间相等。
以ξ表示该车首次遇到红灯前已通过的路口数,求ξ的分布律。
解答:因为只有3个路口,因此ξ只可能取0、1、2、3,其中{3}ξ=表示没有碰到红灯。
以i A 表示第i 个路口是红灯,因红绿灯显示时间相等,所以()1/2i P A =,又因信号灯出现什么信号相互独立,所以123,,A A A 相互独立。
华师概率论与数理统计答案7

华师概率论与数理统计答案7作业1.第27题如果P(A)=0.5,P(B)=0.4,且事件B与A独立,则P(AB)=()(A)0.1 (B)0.2 (C)0.3 (D)0.4A.;B.;C.;D.。
标准答案:B您的答案:题目分数:1.0此题得分:0.02.第28题设随机变量X的概率函数为123 ,k=0,1,2,...,则它的方差为D(X)=()(A)(B)A.;B.;C.;D..您的答案:题目分数:1.0此题得分:0.02 (C)(D)(1-)/3.第29题设随机变量X~e(1),Y~e(2),且X与Y相互独立。
令Z的方差为D(Z)=( )A.5/4B.3/4C.5D.3/2标准答案:A您的答案:题目分数:1.0此题得分:0.04.第30题设随机变量X~U(0,1),则它的方差为D(X)=()A.1/2B.1/3C.1/4D.1/12标准答案:D题目分数:1.0此题得分:0.05.第31题如果样本空间只包含有限个不同的基本事件,并且每个基本事件出现的可能性相等,那么这样的概率模型称为()A.古典概型B.几何概型C.伯努利概型D.统计概型标准答案:A您的答案:题目分数:1.0此题得分:0.06.第32题设(A)n(B)n-1 来自总体N(0,1)的简单随机样本,记,则=()(C)(D)A.见题B.见题D.见题标准答案:C您的答案:题目分数:1.0此题得分:0.07.第33题设样本X1,X2,...Xn,来自正态总体X~N(计量的为()),其中未知,样本均值为,则下列随机变量不是统(A)(B)X1 (C)Min(X1,,...Xn) (D)A.;B.;C.;D..标准答案:D您的答案:题目分数:1.0此题得分:0.08.第34题设随机变量X的分布函数为Z=max(X,Y)的分布函数是,随机变量Y的分布函数为=()。
若X 与Y独立,则最小值B.;C.;D..标准答案:C您的答案:题目分数:1.0此题得分:0.09.第35题设样本X1,X2,...Xn,来自正态总体X~N((A)2),其中2未知,样本均值为,则不是的无偏估计的为()(B)X1 (C)Xn (D)MAX(X1,,...Xn)A.;B.;C.;D..标准答案:D您的答案:题目分数:1.0此题得分:0.010.第36题设随机变量X~N(),则线性函数Y=a-bX服从分布()B.;标准答案:B您的答案:题目分数:1.0此题得分:0.011.第37题假设样本X1,X2,...Xn来自总体X~U(0,),则样本均值的数学期望等于()(A) (B)/2 (C)2/3 (D)3/4A.;B.;C.;D..标准答案:B您的答案:题目分数:0.5此题得分:0.012.第38题对于任意两事件A,B()(A)若(B)若(C)若(D)若?,则A,B一定独立,则A,B有可能独立,则A,B一定独立,则A,B一定不独立A.见题B.见题C.见题D.见题标准答案:B您的答案:题目分数:0.5此题得分:0.013.第39题设标准正态分布N(0,1)的分布函数为,则=()A.0B.0.1587C.0.5D.0.8413标准答案:B您的答案:题目分数:0.5此题得分:0.014.第53题假设样本X1,X2,...Xn来自总体X~U(0,),则样本均值的数学期望等于()(A) (B)/2 (C)2/3 (D)3/4A.;B.;C.;D..标准答案:B您的答案:题目分数:1.0此题得分:0.015.第54题设随机变量X的概率函数为P(X=k)=p(1-p),k=0.1,则它的数学期望为E(X)=( ) K1-K(A)p (B)1-p (C)P(1-p) (D)(1-p )/pA.;B.;C.;D..标准答案:A您的答案:题目分数:1.0此题得分:0.016.第55题设标准正态分布N(0,1)的分布函数为(A)(B)- (C)1- (D)1+,则()A.;B.;C.;D..标准答案:C您的答案:题目分数:1.0此题得分:0.017.第56题设A,B是两个随机事件,且,,,则必有()(A)(B)(C)?(D)A.见题B.见题C.见题D.见题标准答案:C您的答案:题目分数:1.0此题得分:0.018.第57题设随机变量X的概率函数为P(X=k)=p(1-p),k=0.1,则它的数学期望为E(X)=( ) K1-K(A)p (B)1-p (C)P(1-p) (D)(1-p )/pA.;B.;C.;D..标准答案:A您的答案:题目分数:0.5此题得分:0.019.第58题设随机变量X的概率密度为,且为偶函数,则()(A)(B)(C)(D)?A.见题B.见题C.见题D.见题标准答案:C您的答案:题目分数:0.5此题得分:0.020.第59题如果P(A)=0.5,P(B)=0.4,P(B│A)=0.6,则P(AB)=( )A.0.1B.0.2C.0.24D.0.3标准答案:D您的答案:题目分数:0.5此题得分:0.021.第91题设随机变量X和Y都服从正态分布,则( ). (A)服从正态分布(B)服从分布(C)服从F分布(D)或服从分布?A.见题B.见题C.见题D.见题标准答案:D您的答案:题目分数:1.0此题得分:0.022.第95题设随机变量X的分布函数为Z=min(X,Y)的分布函数是,随机变量Y的分布函数为=()。
《概率论与数理统计》习题及答案 第七章

《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。
概率论与数理统计课后习题答案 第七章

习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)
是
的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知
概率论与数理统计第七章练习题与答案详解

概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 参数估计
复习题(p.259)
1、 对某种布进行强力试验,共试验25块布,试验结果如下(单位:千克)
20 24 20 23 21 19 22 23 20 22 20 22 23 25 21 21 22 24 23 22 23 21 22 21 23 以ξ表示强力,试用矩法估计()ξE ,()ξD 。
解:强力试验的结果的频数
88.21251ˆ251===∑=i i ξξμ ()1056.2251ˆ251
22
=-=∑=i i ξξσ 2、 设总体ξ的密度函数
()⎪⎩⎪
⎨⎧<<=其它
02
2
θθx x f
0>θ未知,n ξξ,,1 为其样本,试求θ的矩法估计量。
解:()(
)
3312
2d 2
d 03220
22
θ
θθθθξθ
θ
θ
=⎪⎭⎫ ⎝⎛-=-==
⎰⎰x x x x x x x xf E
ξθE 3= ξθ
3ˆ= 3
、 设电话总机在某段时间内接到的呼叫数ξ服从泊松分布,现收集了42个数据
用极大似然估计法估计该分布的未知参数。
解:由习题7.1第5题
[]90476.12534831221017042
1ˆ=⨯+⨯+⨯+⨯+⨯+⨯==ξλ
4、 总体ξ的密度函数
()⎩⎨
⎧≤>=--c
x c
x x c x f 0
1
θθθ (0>c 为已知数) 1>θ未知参数,n ξξ,,1 为其样本,求θ的矩法估计量和极大似然估计量。
解:① 矩估计:()111d d 1-=+-⋅===+∞
+-+∞
-+∞
⎰⎰θθθθθξθθ
θθc x c x x c x x xf E c c c
c
-=ξξθ
ˆ
② 极大似然估计:()()1211
1--=--==
∏θθθθθθθn n n n
i i x x x c x c L ()()()n x x x c n n L 21ln 1ln ln ln +-+=θθθθ
()()0ln ln d ln d 21∆=-+=n x x x c n n
L θ
θθ
c
n x
n
n
i i
ln ln 1
-=
∑=θ c
n n
n
i i
ln ln ˆ1
-=∑=ξ
θ
5、 总体ξ的密度函数为
()⎪⎩
⎪⎨⎧≤>=--α
αβ
β
α
x x x f x 0e 1 (式中0
>+∞<<∞-βα为未知参数)
n ξξ,,1 为其样本,求βα,的极大似然估计量。
解:()⎪⎪
⎭
⎫ ⎝⎛--=--
∑
=
=
=∏n
i i i n x n
n
i x L 111
e
1
e
1
,αββ
α
β
ββα
()⎪⎭⎫ ⎝
⎛
∑-+
-==n i i x n n L 11ln ,ln αβββα
()0,ln ∆
==∂∂βαβαn L 无解,则取()1ˆξα
= ()01
,ln 12
∆==⎪⎭⎫ ⎝⎛∑---=∂∂n i i x n n L αβ
βββα αβ-∑==n
i i x 1
()
1ˆξξβ-= 6、 设总体()1,~1μξN ,n ξξ,,1 为其样本,又设总体()2,~2μηN ,n ηη,,1 为其样本,
又设这两样本独立,求21μμμ-=的无偏估计μˆ。
解:()∑=-=-=n
i i i n E E E 1
211ηξμμμ ηξμ
-=ˆ 7、 设()n
T ξξθ,,ˆ1 =的期望为θ,且()0ˆ>θD ,求证()
2ˆθ不是θ的无偏估计。
证明:()()()[]()θθθθθ
ˆˆˆˆ22
2D E D E +=+=
(
)0ˆ>θD ()2
2
ˆθθ>∴E ()2
ˆθ∴不是2
θ的无偏估计
8、 设分别自总体(
)2
1,σ
μN 和()
22
,σμ
N 中抽取容量为m 和n 的两独立样本,其样本方差
为21S 和22S 。
试证:对任意常数()1,=+b a b a ,2
22
1bS aS z +=是2
σ的无偏估计,并
确定常数b a ,使()z D 达到最小。
解:()222
2
2
22
1σσσ
σ=+=+=+=b a b a bES aES Ez
2221bS aS z +=∴是2
σ的无偏估计
4
224
242
22
2
2
1
2
2111212σσσ⋅⎥
⎦
⎤⎢⎣⎡-+-=-⋅+-⋅=+=n b m a n b m a DS b DS a Dz 令()()1112
2--+-=n a m a a F , ()()01
1212∆
=--+-='n a m a a F
1
1
,11-+-=-+-=
∴n m n b n m m a。