《正切函数的性质与图像》PPT课件

合集下载

正切函数的图象和性质_课件ppt_新课标高中(必修4)

正切函数的图象和性质_课件ppt_新课标高中(必修4)

tan1670 tan1730
y tan x在 , 上是增函数, 2
167 173 180
0 0
4
0
5
2 tan tan 4 5 11 13 tan( ) tan( ). 4 5

反馈演练
1、比较大小:
0 < (1)tan138 _____tan143 。 13π 17π (2)tan()_____tan() > 4 5 2、求函数 y 3 tan(3x 3 ) 的定义域,值域, 单调区间、对称中心坐标及渐近线方程。 0
非奇非偶函数
最小正周期是

3
补充练习
1. 已知
a tan1, b tan 2, c tan 3,则( c )
B.c<b<a C .b<c<a D. b<a<c
A.a<b<c
2.求y (tan x) 2 4 tan x 1 的值域; -5,+
3. 已知 是三角形的一个内角,且有 tan 1, 则的取值范围是 ( c )
例题分析
例3 求函数
y tan 3x 的周期.
解:
因为 tan(3x ) tan 3x,
T 3 形如 y A tan(x ) k 的周期是 T
反馈练习:求下列函数的周期:
即tan3(x+ )=tan3x, f ( x ) f ( x) 3 3
O1
A O
-1
3
2 3

4 3
5 3
2
x
y
1
-4
-3

正切函数的性质与图像 -公开课PPT课件

正切函数的性质与图像 -公开课PPT课件

kπ)
,k
Z
内都是增函数。
强调:
a.不能说正切函数在整个定义域内是增函数;
b.正切函数在每个单调区间内都是增函数;
c. 每个单调区间都跨两个象限:四、一或 二、三。
图像特征: 1、间断性:正切曲线是被互相平行的直线 x k , k Z
2
所隔开的无穷多支曲线组成的。
2、在每一个开区间 ( k , k ), k Z 内,图像自左向
23
23
tan[ (x 2) ] f (x 2)
2
3
因此函数的周期为2.

k x k K∈Z 解得
2
2 32
5 2k x 1 2k K∈Z
3
3
因此,函数的单调递增区间是 ( 5 2k, 1 2k), k Z
33
提高练习
求函数
的定义域、值域,并指出它的
有最大值、最小值
O
x
因此,正切函数的值域是
实数集R
问题、如何利用正切线画出函数 的图像?
y tan x
,x
2

2
角 的终边 Y
T3

3
,ta
n3)
A
0
X
3
作图 利用正切线画出函数 y tan x,x , 的图像: 2 2 作法: (1) 等分:把单位圆右半圆分成8等份。
(2) 作正切线 (3) 平移
22 右呈上升趋势,向上与直线 x
k , k Z
无限接近但
永不相交;向下与直线
x
2
k
,k
Z无限接近但永不
2
相交。
将 x k , k Z 称为正切曲线的渐近线。
2

正切函数的性质与图像 课件

正切函数的性质与图像 课件

4
2
1 –/2 0 /2x
3
x
2
,
3xk来自2,k
3
k
Z
3 3 tan x 3
3
例3、比较下列每组数的大小。
(1) tan167 与tan173
(2)tan(11
4
)

tan(13
5
)
方法归纳: 利用诱导公式把相应的角 化到y=tanx的同一
单调区间内,再利用y=tanx的单调性解决。
例4.求下列函数的周期.
f x tanx tan x f x
∴ y tan x是周期函数, 是它的一个周期.
我们先来作一个周期内的图象。 想一想:先作哪个区间上的图象好呢?
( , )
22
二、探究用几何法作正切函数图象
问题2、如何利用正切线画出函数
y
tan
x
,x

22
的图像?
大家试一试:利用单位圆把点( 3
,tan
3

表示在直角坐标系中。
角 的终边 Y
T3

3
,tan

3
A
0
X
3
利用正切线画出函数
y
tan
x
,x
2

2
的图像:
作法: (1) 等分:把单位圆右半圆分成8等份。
(2) 作正切线
(3) 平移 (4) 连线
3
8

4

8
,8
,4
3
,8
o
3 0 3
2 8 48
84 8 2
说明:函数具有奇偶性的必要条件之一是定义域 关于原点对称,故验证f(-x)=f(-x)或 f(-x)= -f(x)成立前,要先判断定义域 是否关于原点对称.

正切函数的性质与图象 课件(34张)

正切函数的性质与图象 课件(34张)
提示:奇偶性.
数学
[问题1-4] 结合正切函数的图象.你能判断一下它的单调性吗?




提示:在每一个开区间(- +kπ, +kπ)(k∈Z)上都单调递增.
梳理
正切函数y=tan x的性质与图象
y=tan x
图象
数学

定义域
{x|x∈R,且 x≠kπ+ ,k∈Z}

R .
值域
周期
最小正周期为 π .
奇偶性
奇函数 .
单调性
在开区间




(kπ- ,kπ+ )(k∈Z)
内递增
数学
小试身手
1.函数 y=tan 2x 的周期为( A
)

(A)

(B)π
(C)2π
(D)4π

解析:由题意可知,函数 y=tan 2x 的周期为 T= .故选 A.

数学
2.函数 f(x)=3tan(x+π)是( A
)




x 的范围即可.②若ω<0,可利用诱导公式先把 y=Atan(ωx+ )中 x 的系
数化为正值,再利用“整体代换”的思想,求得 x 的取值范围即可.
(2)比较正切值的大小
第一步:运用学过的三角函数的周期和诱导公式将角化到同一单调区
间上;
第二步:运用正切函数的单调性比较大小关系.
数学
备用例题
数学
5.4.3
正切函数的性质与图象
数学
核心知识目标
核心素养目标
1.了解正切函数图象的画法,理解
通过利用正切函数的图象与性质

《正切函数的性质与图像》人教版数学高一下册PPT课件

《正切函数的性质与图像》人教版数学高一下册PPT课件

1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.
(1)正切函数的定义域和值域都是 R.( × ) (2)正切函数在其定义域内是单调递增函数.( × ) (3)函数 y=|tanx|与 y=tanx 的周期相等,都是 π.( √) (4)函数 y=tanx 的所有对称中心是(kπ,0)(k∈Z).( ×) (5)直线 y=a 与正切函数 y=tanx 的图象相邻两个交点之间的距离为 π.(√ )

第一章 三角函数
[拓展](1)正切函数图象的对称中心是k2π,0(k∈Z),不存在对称轴. (2)直线 x=π2+kπ(k∈Z)称为正切曲线的渐近线,正切曲线无限接近渐近线. (3)函数 y=Atan(ωx+φ)+b 的周期是 T=|ωπ|.
第一章 三角函数
[知识点拨]正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性. (2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),… 上都是增函数. (3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函 数在(-π2,π2)∪(π2,32π)∪…上是增函数.
[思路分析] 先确定在一个周期-π2,2π内的 x 值的范围,再写出不等式的解集.
第一章 三角函数
[解析] 函数 y=tanx 在区间-π2,π2内的图象如图所示.
作直线 y=1,则在-π2,π2内,当 tanx>1 时,有π4<x<π2,又函数 y=tanx
的周期为 π,则 tanx>1 的解集是xπ4+kπ<x<π2+kπ,k∈Z
(1)tan32°___<___tan215°. (2)tan185π___<___tan-289π.

高中数学《正切函数的图像和性质》公开课PPT课件

高中数学《正切函数的图像和性质》公开课PPT课件
1.4.3 正切函数的性质与图象
1.在诱导公式中,tan(x+π)=tan x,tan(-x) =-tan x.想一想,这两个公式体现了正切函 数的什么性质? 2.回想一下正弦曲线的画法,利用正弦线画出 [0,2π]上的图象.你能否利用正切线画出函数 y =tan x,x∈-π2,π2的图象?
2
4.求函数 y= tan x+lg(1-tan x)的定义域.
解析:
由题意得t1a-n txa≥n 0x>0
,即tan x≥0 tan x<1

∴0≤tan x<1.∴kπ≤x<kπ+π4,
Байду номын сангаас
即函数的定义域为{x|kπ≤x<kπ+π4,k∈Z}.
与正切函数有关的定义域和值域问题
(1)求函数y= 1- tanx 的定义域;
(1)求函数 y=tan-12x+π4的单调区间; (2)比较 tan 1、tan 2、tan 3 的大小.
[解题过程] (1)y=tan-12x+π4=-tan12x-π4, 由 kπ-π2<12x-π4<kπ+π2,k∈Z, 得 2kπ-π2<x<2kπ+32π,k∈Z, 所以函数 y=tan-12x+π4的单调递减区间是 2kπ-π2,2kπ+32π,k∈Z.
所以函数y=tan |x|的值域为R.
[题后感悟] 解形如tan x>a的不等式的步骤:
1.(1)求函数 y= tan x- 3的定义域; (2)已知 f(x)=tan2x-2tan x|x|≤π3,求 f(x)的值 域.
解析: (1)要使函数有意义,必须使 tan x- 3 ≥0 即 tan x≥ 3. ∴kπ+π3≤x<kπ-π2,k∈Z. ∴函数 y= tan x- 3的定义域为 kπ+π3,kπ-π2(k∈Z)

正切函数的性质与图象 课件

正切函数的性质与图象 课件
π + ,∈Z 求x 的范围,该范围就是不等式的解集.当 ω<0 时,先利
用诱导公式将 x 的系数变为正值,再进行上述步骤.
【变式训练 5】 求函数 y= tan + 1 + lg(1 − tan )的定义域
.
tan + 1 ≥ 0,
解:由题意得
即-1≤tan x<1.
1-tan > 0,
故函数的单调递增区间为
- , +
3 18 3
18
π
π
3x− ≠kπ+ (∈
3
2
即函数的定义域为 ≠
递减区间.
(∈Z),不存在单调
反思求函数y=Atan(ωx+φ),A≠0,ω>0的定义域和单调区间,可以通
过解不等式的方法去解答:把“ωx+φ(ω>0)”看作一个整体,借助正切
函数的定义域和单调区间来解决.若ω<0,则先利用诱导公式将x的
首先观察α,β是否在正切函数的同一个单调区间,若是,则直接运
用正切函数的单调性比较大小;若不是,则先利用诱导公式,将角α,β
π π
转化到正切函数的同一单调区间内,通常是转化到区间 - , 再运
内,
2 2
用正切函数的单调性比较大小.
19π
23π
与 tan
的大小.
7
8
19π


解:tan
= tan 3π= −tan ,
π
π
(2)由 T= , 得6π= , ∴
||
||
1
答案:(1)3π (2)±
6
1
-
3
π
+

最新《正切函数的性质与图像》ppt课件ppt课件

最新《正切函数的性质与图像》ppt课件ppt课件

2.体现中考性质要求。“有利选拔、兼顾水 平、平稳过渡、稳中求变”的命题指导思想。
3.体现“思想性、人文性、综合性、实践性” 的学科性质和“教育性、应用性”的学科特点。
(1)选材体现时代性、地域性、应用性和探究性。 应该选取时代化和生活化突出的话题,引导学生在真 实的情境中感受、选择、体验、探究,关注热点,重 视实践。
2 的值 tan x 与它对应,按照这个对应法则所建立的函数 表示为 y tan x ,它叫做正切函数。
正弦函数性质研究回顾
1、定义域和值域:定义域为R,值域为[-1,1]
xπ 22π k k( Z)时 yma , x1;
23、、单周调期性性::T增 区 2间 : [2 x k π π 2 , 2 2k k π π π k] ( Z) ( k 时 Z ym ) i n, 1;
又由 f(xT)Atan[(xT)]
Atan(xT)
只需 T
T
小结:
你今天有什么收获?
课外拓展:
请定义一个余切函数 并研究它的性质呢?
作业:练习册6.2(A)组
2010年盐城市思想品德 《中考说明》解读
盐城市初级中学 陈巧云
一、认识《中考说明》的地位和作用 二、准确把握和使用《中考说明》
3
变式问题
1:讨论函数
y
tan(
x
) 的性质。
63
变式问题 2:求函数 y 3 tan( x ) 的
63
周期和单调区间。
思考: 正切函数是周期函数,周期是π.
函数 的周期是什么?
y t a n ( x ) (
0 )
f(x)A tan ( x)
解析:设此函数周期为T,则有 f(xT)f(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又由 f(xT)Atan[(xT)]
Atan(xT)
只需 T
T
.
10
小结:
你今天有什么收获?
.
11
课外拓展:
请定义一个余切函数 并研究它的性质呢?
作业:练习册6.2(A)组
.
12
P: (0.645, 0.764)
1.8
1.6
1.4
1.2
T
1
0.8
P
0.6
0.4
0.2
-2. 5
-2
-1. 5
-1
-0. 5
O
0.5M
1A
1.5
2
-0. 2
-0. 4
-0. 6
-0. 8
-1
.
-1. 2
6
-1. 4



进 线



图进Βιβλιοθήκη 像线性质 :
⑴ 定义域: x|xR,xk2,kZ
⑶ 周期性:
.
2
问题2:哪位同学能结合前几节中所学过 的正弦函数,解释一下三角函数 的定义方法?
对于任意实数 x (角对应的弧度数)都有唯一确定 的值 sin x 与它对应,按照这个对应法则所建立的函 数表示为 y sin x ,它叫做正弦函数。
问题3:我们能否定义一个跟“正切值”相 关的函数呢?
对于任意实数 x ( x k , k Z )都有唯一确定
2 的值 tan x 与它对应,按照这个对应法则所建立的函数 表示为 y tan x ,它叫做正切函数。
.
3
正弦函数性质研究回顾
.
4
1、定义域和值域: 定义域为R,值域为[-1,1]
xπ 22π k k( Z)时 yma , x1;
32、、单周调期性性::T增 区 2间 : [2 x k π π 2 , 2 2k k π π π k] ( Z) ( k 时 Z ym ) i n, 1;
3
变式问题
1:讨论函数
y
tan(
x
) 的性质。
63
变式问题 2:求函数 y 3 tan( x ) 的
63
周期和单调区间。
.
9
思考: 正切函数是周期函数,周期是π.
函数 的周期是什么?
y t a n ( x ) (
0 )
f(x)A tan ( x)
解析:设此函数周期为T,则有 f(xT)f(x)
⑵ 值域: R
⑷ 奇偶性: 奇函数,图象关于原点对称。
⑸ 单调性:在每一个开区间 (k,k)kZ,
22 内都是增函数。
(6)对称中心:(k ,0) k Z
2
.
7
例题讲解:
例 1.(1)比较 tan167°与 tan173°的大小。
(2)比较 tan 与 tan( 2 ) 的大小。
6
3
.
8
例 2. 讨论函数 y tan(x ) 的性质。
6.2 正切函数的图象与性质
洋泾中学 教研组
.
1
一、引入
问题1:我们所学过函数的定义是什么?
如果在某个变化的过程中有两个变量 x, y ,
并且对于 x 在某个范围内的每一个确定的值,按
照某种对应法则 f ,y 都有唯一确定的值和它对 应,那么 y 就是 x 的函数, x 叫做自变量, x 的 取值范围叫做函数的定义域,和 x 对应的 y 的值 叫做函数值,函数值的集合叫做函数的值域, y 是 x 的函数,记作 y f (x) 。
减 区 间 : [2 k π 2 , 2 k π 23 π ] ( k Z )
4、奇偶性: 奇函数
22
.
5
正切函数的图像和性质
二、探究用正切线作正切函数图象
三角函数线 动画演示
移动 点
正弦线:MP
sinα=y = 0.764
余弦线:OM
cosα=x = 0.645
正切线:AT
tanα=y/x = 1.185
相关文档
最新文档