高中物理选修3-1磁通量及安培力教案讲义有答案

合集下载

【精品】高中物理(人教版)选修3-1 优秀教案--3.4《磁场对通电导线的作用力》

【精品】高中物理(人教版)选修3-1 优秀教案--3.4《磁场对通电导线的作用力》

【精品】高中物理(人教版)选修3-1 优秀教案--3.4《磁场对通电导线的作用力》选修3-1第三章3.4 磁场对通电导线的作用力一、教材分析安培力的方向和大小是重点,弄清安培力、电流、磁感应强度三者方向的空间关系是难点。

安培力的方向一定与电流、磁感应强度方向垂直,但电流方向与磁感应强度的方向可以成任意角度;当电流方向与磁感应强度的方向垂直时,安培力最大。

对此学生常常混淆二、教学目标(一)知识与技能1、知道什么是安培力,会推导安培力公式F=BIL sinθ。

2、知道左手定则的内容,并会用它判断安培力的方向。

3、了解磁电式电流表的工作原理。

(二)过程与方法通过演示实验归纳、总结安培力的方向与电流、磁场方向的关系——左手定则。

(三)情感、态度与价值观1、通过推导一般情况下安培力的公式F=BIL sinθ,使学生形成认识事物规律要抓住一七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑(二)情景引入、展示目标通过第二节的学习,我们已经初步了解磁场对通电导线的作用力。

安培在这方面的研究做出了杰出的贡献,为了纪念他,人们把通电导线在磁场中所受的作用力叫做安培力。

这节课我们对安培力作进一步的讨论。

(三)合作探究、精讲点播1、安培力的方向教师:安培力的方向与什么因素有关呢?演示:如图所示,连接好电路。

演示实验:(1)改变电流的方向现象:导体向相反的方向运动。

(2)调换磁铁两极的位置来改变磁场方向现象:导体又向相反的方向运动。

教师引导学生分析得出结论(1)安培力的方向和磁场方向、电流方向有关系。

(2)安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面。

左手定则通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向。

高中物理教科版选修3-1学案第3章2磁场对通电导线的作用——安培力

高中物理教科版选修3-1学案第3章2磁场对通电导线的作用——安培力

2磁场对通电导线的作用——安培力[学习目标]1.[科学探究]通过实验探究知道安培力大小的决定因素.2.[科学思维]会用F=ILB计算B与I垂直情况下的安培力.3.[物理观念]掌握左手定则,并会用它判定安培力的方向.4.[物理观念]知道电动机的工作原理.一、安培力1.探究磁场对通电导线的作用(1)实验原理:将通电导线置于磁场中,它将受到力的作用.取一蹄形磁铁,认为它的两极间的磁场均匀,将一通电线框置于蹄形磁铁的两极间:①电流的大小可以由滑动变阻器调节.②通电导线在磁场中的长度可由并用的磁铁数目改变.③安培力的大小可通过弹簧测力计的读数求出.(2)实验装置:如图所示.(3)实验器材:铁架台,蹄形磁体(2个),线框,弹簧测力计,电流表,电源、滑动变阻器,开关,导线若干.(4)实验过程①按如图所示装置安装、连接实验器材,并使线框下端与磁场方向垂直.②在接通电路前先观察并记录下弹簧测力计的读数F0.③接通电路,调节滑动变阻器使电流表读数为I1,记录弹簧测力计的读数F1.④继续调节滑动变阻器使电流表读数为I2,I3,…,I n,观察并记录弹簧测力计相应的读数F2,F3,…,F n.⑤分别计算出F1-F0,F2-F0,F3-F0,…,F n-F0,并填入表格中.⑥列出I i与F i-F0(i=1,2,3,…,n)的对应关系.⑦紧挨着蹄形磁体再并排放上一个相同的蹄形磁体(相同的极性在同一侧),仍保持线框的竖直边在磁场区外,重复③~⑥过程.(5)实验结论①当通电导线与磁场方向平行时,导线不受力.②当通电导线与磁场方向垂直时,磁场对通电导线有力的作用,力的大小与导线中的电流、导线长度和磁场强弱有关.精确实验表明:通电导线与磁场方向垂直时,磁场对通电导线作用力的大小与导线长度和电流大小都成正比,比例系数与导线所在位置的磁场强弱有关.2.安培力的大小和方向(1)定义:磁场对通电导线的作用力.(2)公式:当通电导线与磁场方向垂直时F=ILB.式中比例系数B称为磁感应强度,单位为特(T),下节将进一步介绍.(3)安培力方向的判定——左手定则内容:伸出左手,四指并拢,使大拇指和其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直穿过手心,四指指向电流方向,则大拇指所指方向就是通电导线所受安培力的方向,如图所示.二、电动机——安培力的重要应用1.直流电动机的工作原理(1)直流电动机的构造如图所示是一个直流电动机的工作模型,由磁场(磁体)、转动线圈、滑环(两个半圆环A和B)、电刷及电源组成.(2)工作原理当电流由半圆环A流入时,则从B流出;当电流由B流入时,则从A流出.因此,滑环在其中起了一个换向器的作用.当线圈通电后,由于受到安培力的作用,线圈在磁场中旋转起来.2.电动机的分类(1)直流电动机.(2)交流电动机.1.正误判断(正确的打“√”,错误的打“×”)(1)通电导线所受安培力的方向与磁场的方向相同.(×)(2)通电的导线在磁场中一定受安培力.(×)(3)用左手定则判断安培力方向时,磁感线只要从掌心进入即可,不一定垂直穿过掌心.(×)(4)当导体在磁场中放置时,导体所受作用力为F=IBL.(×)2.把一小段通电直导线放入磁场中,导线受到安培力的作用,关于安培力的方向,下列说法中正确的是()A.安培力的方向一定跟磁场的方向相同B.安培力的方向一定跟磁场的方向垂直,但不一定跟电流方向垂直C.安培力的方向一定跟电流方向垂直,但不一定跟磁场方向垂直D.安培力的方向既跟磁场方向垂直,又跟电流方向垂直D[由左手定则知安培力的方向既垂直于磁场又垂直于电流,即安培力垂直于磁场和电流决定的平面,B与I不一定垂直.]3.如图所示,标出了磁场B的方向、通电直导线中电流I的方向,以及通电直导线所受磁场力F的方向,其中正确的是()C[由左手定则判断可知,C项正确.]安培力的大小和方向一、安培力的大小1.公式F=ILB中L指的是“有效长度”.当B与I垂直时,F最大;当B 与I平行时,F=0.2.弯曲导线的有效长度L,等于连接两端点直线的长度(如图所示);相应的电流沿L由始端流向末端.二、安培力的方向1.安培力方向的特点F⊥B,F⊥I,即F垂直于B、I决定的平面.2.当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流与磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过掌心.3.注意区别安培力的方向和电场力的方向与场的方向的关系:安培力的方向总是与磁场的方向垂直,而电场力的方向与电场的方向平行.【例1】如图所示,导线abc为垂直折线,其中电流为I,ab=bc=L,导线所在的平面与匀强磁场垂直,匀强磁场的强弱为B,求导线abc所受安培力的大小和方向.思路点拨:解析:法一:ab段所受的安培力大小F ab=ILB,方向向右,bc段所受的安培力大小F bc=ILB,方向向上,所以该导线所受安培力为这两个力的合力,如图所示,F=2ILB,方向沿∠abc的角平分线向上.法二:把导线abc等效成直导线ac,则等效长度ac=2L,故安培力F=BI·2 L=2ILB,方向垂直于ac,即沿∠abc的角平分线向上.答案:2ILB方向沿∠abc的角平分线向上[跟进训练]训练角度1安培力方向的判断1.(多选)下列图中,表示电流I的方向、磁场B的方向和磁场对电流作用力F的方向的关系正确的是()BCD[由左手定则可知,A图中磁场对电流作用力F的方向应竖直向上,所以A错误,而B、C、D都符合左手定则.]训练角度2安培力大小的计算2.如图所示,一段导线abcd位于磁感应强度为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135°.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力()A.方向沿纸面向上,大小为(2+1)ILBB.方向沿纸面向上,大小为(2-1)ILBC.方向沿纸面向下,大小为(2+1)ILBD.方向沿纸面向下,大小为(2-1)ILBA[将导线分为三段直导线,根据左手定则分别判断出各段所受安培力的方向,计算出安培力的大小,再求合力.导线所受合力F合=ILB+2BIL sin 45°=(2+1)ILB,方向沿纸面向上.]安培力作用下通电导体运动方向的判断(1)电流元法即把整段电流等效为多段直线电流元,运用左手定则判断出每小段电流元受安培力的方向,从而判断出整段电流所受合力的方向.(2)特殊位置法把电流或磁铁转到一个便于分析的特殊位置后再判断所受安培力方向,从而确定运动方向.(3)等效法环形电流和通电螺线管都可以等效成条形磁铁.条形磁铁也可以等效成环形电流或通电螺线管.通电螺线管也可以等效成很多匝的环形电流来分析.(4)利用结论法①两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;②两电流不平行时,有转动到相互平行且电流方向相同的趋势.(5)转换研究对象法因为电流之间,电流与磁体之间的相互作用满足牛顿第三定律.定性分析磁体在电流产生的磁场中的受力和运动时,可先分析电流在磁体的磁场中受到的安培力,然后由牛顿第三定律,再确定磁体所受电流的作用力.【例2】如图所示,把轻质导电线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直于线圈平面,线圈内通入如图方向的电流后,线圈()A.向左运动B.向右运动C.静止不动D.无法确定思路点拨:①熟悉条形磁铁周围空间的磁场分布.②通电线圈可等效成条形磁铁.③通电线圈也可看成由许多电流元组成.A[解法一等效法.把通电线圈等效成条形磁铁.由安培定则可知,线圈等效成条形磁铁后,左端是S极,右端是N极,异名磁极相互吸引,线圈向左运动.解法二电流元法.如图所示,取其中的上、下两小段分析,根据其中心对称性可知,线圈所受安培力的合力水平向左,故线圈向左运动.]上例中若将条形磁铁换成通电环形电流,如图所示,其他条件不变,则右侧线圈________.A[两个环形电流等效成两个小磁针,由于电流方向相同,所以小磁针的N极、S极顺序应相同,如图所示:根据异名磁极相互吸引,右侧线圈仍然向左运动,A项正确.][跟进训练]如图所示,两根垂直纸面、平行且固定放置的直导线M和N,通有同向等值电流,沿纸面与直导线M、N等距放置另一根可自由移动的通电导线ab,则通电导线ab在安培力作用下运动的情况是()A.a端转向纸里,b端转向纸外B.在纸面内逆时针转动C.a端转向纸外,b端转向纸里D.在纸面内顺时针转动A[导线M和N的磁感线都是同心圆,因此对ab上半段,M导线的磁感线指向右下,可以用左手定则判断a端受到向里的力,N导线的磁感线指向右上,也使a端受向里的力;同理也可以分析出b端受向外的力,从而使得a端转向纸里,b端转向纸外,故A正确;B、C、D错误.]安培力作用下导体的平衡1.解题步骤(1)明确研究对象;(2)先把立体图改画成平面图,并将题中的角度、电流的方向、磁场的方向标注在图上;(3)正确受力分析(包括安培力),然后根据平衡条件:F合=0列方程求解.2.分析求解安培力时需要注意的问题(1)首先画出通电导体所在处的磁感线的方向,再根据左手定则判断安培力方向;(2)安培力大小与导体放置的角度有关,但一般情况下只要求导体与磁场垂直的情况.【例3】质量为m=0.02 kg的通电细杆ab置于倾角为θ=37°的平行放置的导轨上,导轨的宽度d=0.2 m,杆ab与导轨间的动摩擦因数μ=0.4,磁感应强度B=2 T的匀强磁场与导轨平面垂直且方向向下,如图所示.现调节滑动变阻器的触头,试求出为使杆ab静止不动,通过杆ab的电流范围为多少?(已知最大静摩擦力等于滑动摩擦力,取g=10 m/s2)思路点拨:解答该题应注意以下关键点:①将立体图转换为平面图进行受力分析;②静摩擦力可能有两个方向,从而可求电流的范围.解析:杆ab中的电流为a到b,所受的安培力方向平行于导轨向上.当电流较大时,导体有向上的运动趋势,所受静摩擦力向下;当静摩擦力达到最大时,安培力为最大值F1,此时通过ab的电流最大为I max;同理,当电流最小时,应该是导体受向上的静摩擦力,此时的安培力为F2,电流为I min.正确地画出两种情况下的受力图如图所示,由平衡条件列方程求解.图1图2根据图1列式如下:F1-mg sin θ-f1=0N-mg cos θ=0f1=μNF1=BI max d解上述方程得:I max=0.46 A根据图2列式如下:F2+f2-mg sin θ=0N-mg cos θ=0f2=μNF2=BI min d解上述方程得:I min=0.14 A故所求范围为0.14 A≤I≤0.46 A.答案:0.14 A≤I≤0.46 A[跟进训练](多选)质量为m的金属细杆置于倾角为θ的导轨上,导轨的宽度为d,杆与导轨间的动摩擦因数为μ,有电流通过杆,杆恰好静止于导轨上,在如图所示的A、B、C、D四个选项中,杆与导轨的摩擦力一定不为零的是()A B C DCD[选项A中,通电细杆可能受重力、安培力、导轨的弹力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力变大或变小时,细杆有上滑或下滑的趋势,于是有静摩擦力产生.选项B中,通电细杆可能受重力、安培力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力减小时,细杆受到导轨的弹力和沿导轨向上的静摩擦力,也可能处于静止状态.选项C和D中,通电细杆受重力、安培力、导轨弹力作用具有下滑趋势,故一定受到沿导轨向上的静摩擦力,如图所示,所以杆与导轨间的摩擦力一定不为零.]A B C D1.[物理观念]安培力的概念;安培力的大小:当通电导线与磁场垂直时,F =BIL;安培力的方向:左手定则.2.[科学探究]探究磁场对通电导线的作用.1.关于通电导线所受安培力F的方向、磁场B的方向和电流I的方向之间的关系,下列说法正确的是()A.F、B、I三者必须保持相互垂直B.F必须垂直B、I,但B、I可以不相互垂直C.B必须垂直F、I,但F、I可以不相互垂直D.I必须垂直F、B,但F、B可以不相互垂直B[安培力F总是与磁场B和电流I决定的平面垂直,但B与I(即导线)可以垂直,也可以不垂直;通电导线受安培力时,F与磁场及F与电流都是垂直的,故A、C、D错误,B正确.]2.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()A.不动B.顺时针转动C.逆时针转动D.向纸面内平动B[环形电流I1、I2之间不平行,则必有相对转动,直到两环形电流同向平行为止,据此可得,从左向右看,线圈L1将顺时针转动.]3.如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可以自由转动.当导线中通有如图所示方向的电流I时,导线将(从上往下看)()A.顺时针转动,同时向下运动B.顺时针转动,同时向上运动C.逆时针转动,同时向下运动D.逆时针转动,同时向上运动C[将导线AB从N、S极的中间O分成两段,AO、BO段所在处的磁场方向如图甲所示.由左手定则可得AO段受安培力的方向垂直纸面向外,BO段受安培力的方向垂直纸面向里,从上向下看,导线AB将绕O点沿逆时针方向转动.再根据导线转过90°时的特殊位置判断其上下运动情况.如图乙所示,导线AB此时受安培力方向竖直向下,导线将向下运动. 由上述两个特殊位置的判断可知,当导线不在上述的特殊位置时,所受安培力使AB逆时针转动的同时还要向下运动.甲乙]4.如图所示,长为3l的直导线折成三段做成正三角形,并置于与其所在平面相垂直的匀强磁场中,磁场的强弱为B,当在该导线中通以电流强度为I的电流时,该通电导线受到的安培力大小为()A.2BIl B.32BIlC.2+32BIl D.0A[导线AB段和BC段的有效长度为2l sin 30°=l,所以该通电导线受到的安培力大小为F=BIl+BIl=2BIl,选项A正确.]5.如图所示,平行金属导轨PQ与MN都与水平面成θ角,相距为l.一根质量为m的金属棒ab在导轨上,并保持水平方向,ab棒内通有恒定电流,电流大小为I,方向从a到b.空间存在着方向与导轨平面垂直的匀强磁场,ab棒在磁场力的作用下保持静止,并且棒与导轨间没有摩擦力.重力加速度为g.求磁感应强度B 的大小和方向.解析:金属棒受力如图所示,根据力的平衡条件可知:F安=mg sin θ而F安=BIl可得B=mg sin θIl由左手定则可知,B的方向垂直导轨平面向下.答案:mg sin θIl方向垂直导轨平面向下。

高中物理选修3-1人教全国通用版讲义:第三章 微型专题 安培力的应用

高中物理选修3-1人教全国通用版讲义:第三章  微型专题  安培力的应用

微型专题安培力的应用[学习目标]1.会用左手定则判断安培力的方向和导体的运动方向.2.会分析导体在安培力作用下的平衡问题.3.会结合牛顿第二定律求导体棒的瞬时加速度.【知识总结】一、安培力作用下导体运动方向的判断方法1.电流元法即把整段电流等效为多段直线电流元,运用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力的方向.2.特殊位置法把电流或磁铁转到一个便于分析的特殊位置后再判断所受安培力方向,从而确定运动方向.3.等效法环形电流和通电螺线管都可以等效成条形磁铁.条形磁铁也可以等效成环形电流或通电螺线管.通电螺线管也可以等效成很多匝的环形电流来分析.4.利用结论法(1)两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;(2)两电流不平行时,有转动到相互平行且电流方向相同的趋势.5.转换研究对象法因为电流之间、电流与磁体之间的相互作用满足牛顿第三定律,定性分析磁体在电流产生的磁场中的受力和运动时,可先分析电流在磁体的磁场中受到的安培力,然后由牛顿第三定律,再确定磁体所受电流的作用力.例1如图1所示,把一重力不计的通电直导线AB水平放在蹄形磁铁磁极的正上方,导线可以在空间自由运动,当导线通以图示方向电流I时,导线的运动情况是(从上往下看)()图1A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升答案C解析如图所示,将导线AB分成左、中、右三部分.中间一段开始时电流方向与磁场方向一致,不受力;左端一段所在处的磁场方向斜向上,根据左手定则其受力方向向外;右端一段所在处的磁场方向斜向下,受力方向向里.当转过一定角度时,中间一段电流不再与磁场方向平行,由左手定则可知其受力方向向下,所以从上往下看导线将一边逆时针方向转动,一边向下运动,C选项正确.判断导体在磁场中运动情况的常规思路不管是电流还是磁体,对通电导体的作用都是通过磁场来实现的,因此,此类问题可按下面步骤进行分析:(1)确定导体所在位置的磁场分布情况.(2)结合左手定则判断导体所受安培力的方向.(3)由导体的受力情况判定导体的运动方向.针对训练1直导线AB与圆线圈的平面垂直且隔有一小段距离,直导线固定,线圈可以自由运动.当通过如图2所示的电流时(同时通电),从左向右看,线圈将()图2A.顺时针转动,同时靠近直导线ABB.顺时针转动,同时离开直导线ABC.逆时针转动,同时靠近直导线ABD.不动答案C解析由安培定则判断出AB导线右侧的磁场向里,因此环形电流内侧受力向下、外侧受力向上,从左向右看应逆时针方向转动,当转到与AB共面时,AB与环左侧吸引,与环右侧排斥,由于左侧离AB较近,则引力大于斥力,所以环靠近导线AB,故选项C正确.二、安培力作用下导体的平衡1.解题步骤(1)明确研究对象;(2)先把立体图改画成平面图,并将题中的角度、电流的方向、磁场的方向标注在图上;(3)正确受力分析(包括安培力),然后根据平衡条件:F合=0列方程求解.2.分析求解安培力时需要注意的问题(1)首先画出通电导体所在处的磁感线的方向,再根据左手定则判断安培力方向;(2)安培力大小与导体放置的角度有关,但一般情况下只要求导体与磁场垂直的情况,其中L 为导体垂直于磁场方向的长度,为有效长度.例2如图3所示,在与水平方向夹角为60°的光滑金属导轨间有一电源,在相距1 m的平行导轨上垂直导轨放一质量为0.3 kg的金属棒ab,ab中有由b→a、I=3 A的电流,磁场方向竖直向上,这时金属棒恰好静止.求:(g=10 m/s2)图3(1)匀强磁场磁感应强度的大小;(2)ab棒对导轨的压力.答案 (1) 3 T (2)6 N ,方向垂直导轨向下解析 (1)ab 棒静止,受力情况如图所示,沿导轨方向受力平衡,则mg sin 60°=F cos 60° 又F =BIL解得:B =mg tan 60°IL =0.3×10×33×1 T = 3 T.(2)根据牛顿第三定律得,ab 棒对导轨的压力为:F N ′=F N =mgcos 60°=0.3×1012N =6 N ,方向垂直导轨向下.针对训练2 如图4所示,金属棒MN 两端由等长的轻质绝缘细线水平悬挂,处于竖直向上的匀强磁场中,金属棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改变下列某一个条件,θ角的相应变化情况是( )图4A .金属棒中的电流变大,θ角变大B .两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D .磁感应强度变大,θ角变小 答案 A解析 选金属棒MN 为研究对象,其受力情况如图所示.根据平衡条件及三角形知识可得tan θ=BILmg ,所以当金属棒中的电流I 、磁感应强度B 变大时,θ角变大,选项A 正确,选项D错误;当金属棒质量m 变大时,θ角变小,选项C 错误;θ角的大小与悬线长短无关,选项B 错误.例3如图5所示,条形磁铁放在桌面上,一根通电直导线由S极的上端平移到N极的上端的过程中,导线保持与磁铁垂直,导线的通电方向如图所示.则这个过程中磁铁受到的摩擦力(磁铁保持静止)()图5A.为零B.方向由向左变为向右C.方向保持不变D.方向由向右变为向左答案B解析首先磁铁上方的磁感线从N极出发回到S极,是曲线,直导线由S极的上端平移到N极的上端的过程中,电流的受力由左上方变为正上方再变为右上方,根据牛顿第三定律磁铁受到的力由右下方变为正下方再变为左下方,磁铁静止不动,所以所受摩擦力方向由向左变为向右,B正确.三、安培力和牛顿第二定律的综合例4如图6所示,光滑的平行金属导轨倾角为θ,间距为L,处在竖直向下的磁感应强度为B的匀强磁场中,导轨中接入电动势为E、内阻为r的直流电源.电路中有一阻值为R的电阻,其余电阻不计,将质量为m、长度为L的导体棒由静止释放,导体棒的两端与导轨接触良好,求导体棒在释放瞬间的加速度的大小.(重力加速度为g)图6答案 g sin θ-BEL cos θm (R +r )解析 对导体棒受力分析如图所示,导体棒受重力mg 、支持力F N 和安培力F ,由牛顿第二定律得:mg sin θ-F cos θ=ma ①F =BIL ② I =E R +r ③ 由①②③式可得 a =g sin θ-BEL cos θm (R +r ).【课堂检测】1.(安培力作用下导体的运动)两个相同的轻质铝环能在一个光滑的绝缘圆柱体上自由移动,设大小不同的电流按如图7所示的方向通入两铝环,则两环的运动情况是( )图7A .都绕圆柱体转动B .彼此相向运动,且具有大小相等的加速度C .彼此相向运动,电流大的加速度大D .彼此背向运动,电流大的加速度大 答案 B解析 同向环形电流间相互吸引,虽然两电流大小不等,但根据牛顿第三定律知两铝环间的相互作用力必大小相等,选项B 正确.2. (安培力作用下导体的运动)一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图8所示,如果直导线可以自由地运动且通以方向为由a 到b 的电流,则导线ab 受到安培力的作用后的运动情况为( )图8A.从上向下看顺时针转动并靠近螺线管B.从上向下看顺时针转动并远离螺线管C.从上向下看逆时针转动并远离螺线管D.从上向下看逆时针转动并靠近螺线管答案D解析先由安培定则判断通电螺线管的南、北两极,找出导线左、右两端磁感应强度的方向,并用左手定则判断这两端受到的安培力的方向,如图甲所示.可以判断导线受到磁场力作用后从上向下看按逆时针方向转动,再分析导线转过90°时导线位置的磁场方向,再次用左手定则判断导线所受磁场力的方向,如图乙所示,可知导线还要靠近螺线管,所以D正确,A、B、C错误.3.(安培力作用下的平衡)(多选)如图9所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来,此时磁铁对水平面的压力为F N1,现在磁铁左上方位置固定一导体棒,当导体棒中通以垂直纸面向里的电流后,磁铁对水平面的压力为F N2,则以下说法正确的是()图9A.弹簧长度将变长B.弹簧长度将变短C.F N1>F N2D.F N1<F N2答案BC4.(安培力作用下的平衡)如图10所示,用两根轻细金属丝将质量为m、长为l的金属棒ab 悬挂在c、d两处,置于匀强磁场内.当棒中通以从a到b的电流I后,两悬线偏离竖直方向θ角而处于平衡状态.为了使棒平衡在该位置上,所需的磁场的最小磁感应强度的大小、方向为( )图10A.mgIl tan θ,竖直向上B.mgIl tan θ,竖直向下 C.mgIl sin θ,平行于悬线向下 D.mgIl sin θ,平行于悬线向上 答案 D解析 要求所加磁场的磁感应强度最小,应使棒平衡时所受的安培力有最小值.由于棒的重力恒定,悬线拉力的方向不变,由画出的力的三角形可知,安培力与拉力方向垂直时有最小值F min =mg sin θ,即IlB min =mg sin θ,得B min =mgIlsin θ,方向应平行于悬线向上.故选D.。

物理教案安培力 磁感应强度

物理教案安培力 磁感应强度

物理教案安培力磁感应强度一、教学内容本节课选自高中物理教材《物理》选修31第二章第五节“安培力与磁感应强度”。

具体内容包括:安培力的定义及其计算公式,磁感应强度的概念、物理意义及其测量方法。

二、教学目标1. 让学生掌握安培力的概念,理解安培力的大小与电流、磁场及导体长度之间的关系。

2. 让学生理解磁感应强度的物理意义,掌握磁感应强度的计算公式,并能运用其解决实际问题。

3. 培养学生运用物理知识进行实验设计和数据分析的能力。

三、教学难点与重点重点:安培力的定义和计算,磁感应强度的概念及其测量方法。

难点:安培力大小的计算,磁感应强度与安培力之间的关系。

四、教具与学具准备1. 教具:电流表、电压表、磁铁、导线、滑动变阻器、电流表架、电压表架、多媒体课件。

2. 学具:每组一套实验器材。

五、教学过程1. 情境引入利用多媒体展示磁悬浮列车、电磁起重机等实例,让学生思考这些设备是如何工作的,引出安培力的概念。

2. 理论讲解(1)安培力的定义:当电流通过导体时,在磁场中会受到一个力,这个力称为安培力。

(2)安培力的大小:安培力F = BILsinθ,其中B为磁感应强度,I为电流大小,L为导体长度,θ为导体与磁场的夹角。

(3)磁感应强度:磁感应强度B是描述磁场强弱的物理量,其单位为特斯拉(T),计算公式为B = F/IL。

3. 实践操作(1)实验一:测量安培力。

让学生分组进行实验,测量不同电流、磁场强度、导体长度下的安培力,并记录数据。

(2)实验二:测量磁感应强度。

利用实验一的数据,计算磁感应强度,并与标准值进行比较。

4. 例题讲解讲解一道关于安培力计算的例题,引导学生运用公式进行计算。

5. 随堂练习让学生独立完成一道关于磁感应强度的计算题,巩固所学知识。

六、板书设计1. 安培力的定义、计算公式。

2. 磁感应强度的概念、物理意义、计算公式。

3. 实验步骤、数据处理方法。

七、作业设计1. 作业题目:计算给定电流、磁场、导体长度下的安培力。

2024-2025学年高中物理第三章磁场2磁场对通电导线的作用——安培力教案教科版选修3-1

2024-2025学年高中物理第三章磁场2磁场对通电导线的作用——安培力教案教科版选修3-1
6. 实验操作技巧:在进行安培力实验时,需要注意导线的放置、磁场的强度和方向、电流的大小等因素。通过调整导线的位置和方向,可以观察到不同的安培力现象。
七、教学反思与改进
回顾本节课的教学,我认为在以下几个方面取得了较好的效果:
1. 通过实验演示,学生能够直观地观察到安培力的现象,增强了他们的感性认识。实验操作环节,学生积极参与,动手能力强,对安培力的理解更加深入。
2. 教学活动设计
为了促进学生的参与和互动,我设计了以下教学活动:
(1)实验演示:通过实验,让学生直观地观察安培力的现象,引发学生的兴趣和好奇心。在实验过程中,学生将亲自动手操作,观察不同电流、磁场条件下导线受到的安培力。
(2)角色扮演:学生分组扮演“磁场”、“电流”和“安培力”三个角色,通过角色扮演,让学生更好地理解三者之间的关系。
(2)视频:播放实验操作视频,帮助学生更好地理解实验过程和观察安培力的现象。
(3)在线工具:利用在线工具,如物理模拟软件,让学生模拟和观察安培力的产生和作用效果。
(4)实物模型:准备磁场、电流和安培力的实物模型,让学生更直观地理解三者之间的关系。
五、教学流程
(一)课前准备(预计用时:5分钟)
学生预习:
二、核心素养目标
本节课的核心素养目标主要包括物理观念、科学思维、实验探究和科学态度四个方面。首先,通过学习磁场对通电导线的作用,学生将建立正确的物理观念,理解安培力的产生原因和作用效果。其次,学生需要运用科学思维,分析安培力的方向和大小,以及与电流、磁场之间的关系。在此基础上,学生将进行实验探究,观察安培力的现象,验证理论知识,培养实验操作能力和问题解决能力。最后,通过学习本节课内容,学生将培养积极的科学态度,激发对物理学科的兴趣和好奇心,增强对科学知识的认同感和责任感。

2017-2018学年高中物理(SWSJ)粤教版选修3-1教学案:第三章第三节探究安培力含答案

2017-2018学年高中物理(SWSJ)粤教版选修3-1教学案:第三章第三节探究安培力含答案

第三节探究安培力1.磁场对通电导线的作用力称为安培力,安培力的方向由左手定则判定。

2.当磁感应强度与导线方向垂直时,安培力最大,为F=BIL。

当磁感应强度与导线方向平行时,安培力为零.3.磁感应强度是描述磁场强弱的物理量,其定义式为B=错误!。

4.磁通量表示垂直穿过某个面的磁感线的条数Φ=BS.一、安培力的方向1.安培力定义物理学上把磁场对电流的作用力叫安培力。

2.方向判定用左手定则判断安培力的方向:伸开左手,让拇指与其余四指垂直,并与手掌在一个平面内,让磁感线垂直穿入手心,四指指向电流方向,那么,拇指所指方向即为通电导线在磁场中的受力方向。

如图3.3。

1所示。

图3­3.1二、安培力的大小1.磁感应强度(1)定义:当通电导线与磁场方向垂直时,通电导线所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度。

(2)定义式:B=错误!。

(3)单位:特斯拉,符号T,1 T=1N A·m.(4)磁感应强度是矢量,既有大小,又有方向,当空间中同时存在几个不同强弱和方向的磁场时,合磁场的磁感应强度等于各个磁场在同一处产生的磁感应强度的矢量和。

(5)与磁感线的关系:①磁感线上每一点的切线方向都与该点磁感应强度的方向一致。

②磁感线的疏密程度表示磁感应强度的大小.2.匀强磁场(1)定义:在磁场的某一区域,磁感应强度的大小和方向处处相同,这个区域的磁场叫做匀强磁场.(2)产生:距离很近的两个异名磁极之间;通电螺线管内中间部分。

3.安培力的大小(1)当通电直导线与匀强磁场方向垂直时,安培力最大为F=BIL。

(2)当通电直导线与匀强磁场方向平行时,安培力等于零。

(3)当导线方向与磁场方向斜交时,所受安培力介于BIL和零之间.三、磁通量1.概念(1)定义:在匀强磁场中,磁感应强度B与一个垂直于磁场方向的面积S的乘积,叫做穿过这个面积的磁通量.(2)公式:Φ=BS.(3)单位:韦伯,简称韦,符号Wb,1 Wb=1 T·m2.(4)适用条件:①匀强磁场;②磁感线与平面垂直。

高中物理人教版选修3-1教学案:第三章 第4节 通电导线在磁场中受到的力 含答案

高中物理人教版选修3-1教学案:第三章 第4节 通电导线在磁场中受到的力 含答案

高中物理人教版选修3-1教学案:第三章第4节通电导线在磁场中受到的力含答案2.当磁感应强度B的方向与导线方向成θ角时,公式F=ILB sin_θ。

三、磁电式电流表图3-4-11.原理安培力与电流的关系。

2.构造磁铁、线圈、螺旋弹簧、指针、软铁、极靴。

如图3-4-1所示。

3.特点两极间的极靴和极靴中间的铁质圆柱,使极靴与圆柱间的磁场都沿半径方向,使线圈平面都与磁场方向平行,从而使表盘刻度均匀。

图3-4-24.工作原理如图3-4-2所示是线圈在磁场中受力的示意图。

当电流通过线圈时,导线受到安培力的作用,由左手定则知,线圈左右两边所受的安培力的方向相反,于是架在轴上的线圈就要转动,通过转轴收紧螺旋弹簧使其变形,反抗线圈的转动,电流越大,安培力就越大,螺旋弹簧的形变也就越大,所以,从线圈偏转的角度就能判断通过电流的大小。

线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变。

所以,根据指针的偏转方向,可以知道被测电流的方向。

5.优缺点优点是灵敏度高,可以测出很弱的电流;缺点是线圈的导线很细,允许通过的电流很弱。

1.自主思考——判一判(1)安培力的方向与磁感应强度的方向相同。

(×)(2)安培力的方向与磁感应强度的方向垂直。

(√)(3)应用左手定则时,四指指向电流方向,拇指指向安培力方向。

(√)(4)通电导线在磁场中不一定受安培力。

(√)(5)一通电导线放在磁场中某处不受安培力,该处的磁感应强度不一定是零。

(√)(6)若磁场一定,导线的长度和电流也一定的情况下,导线平行于磁场时,安培力最大,垂直于磁场时,安培力最小。

(×)2.合作探究——议一议图3-4-3(1)如图3-4-3所示,两条平行的通电直导线之间会通过磁场发生相互作用,在什么情况下两条直导线相互吸引,什么情况下两条直导线相互排斥?提示:每一条通电直导线均处在另一直导线电流产生的磁场中,根据安培定则可判断出直线电流产生的磁场的方向,再根据左手定则可判断出每一条通电直导线所受的安培力,由此可知,同向电流相互吸引,反向电流相互排斥。

高中物理人教版安培力教案

高中物理人教版安培力教案

高中物理人教版安培力教案一、教学内容本节课选自人教版高中物理选修31第二章第4节,主要详细讲解安培力的计算及其应用。

内容包括:安培力的大小与方向,安培力作用下的电流表指针偏转,安培力在磁场中的应用。

二、教学目标1. 让学生掌握安培力的计算公式,理解安培力与电流、磁场的关系。

2. 培养学生运用安培力解决实际问题的能力。

3. 使学生了解安培力在科技发展中的应用,提高学生的学习兴趣。

三、教学难点与重点重点:安培力的计算公式及其应用。

难点:安培力方向的理解,安培力作用下的电流表指针偏转现象。

四、教具与学具准备1. 磁场模型、电流表、导线、电池等实验器材。

2. 安培力计算公式、电流表指针偏转原理的PPT。

五、教学过程1. 实践情景引入利用电流表指针偏转的实验现象,引发学生思考:电流在磁场中为什么会受到力的作用?2. 基本概念讲解详细讲解安培力的定义,引导学生学习安培力的计算公式。

3. 例题讲解通过例题,演示安培力的计算方法,并分析安培力方向与电流、磁场的关系。

4. 随堂练习让学生独立完成安培力计算的练习题,巩固所学知识。

5. 实验演示演示安培力作用下的电流表指针偏转现象,引导学生理解安培力的实际应用。

6. 知识拓展介绍安培力在科技发展中的应用,如电机、发电机等。

六、板书设计1. 安培力的定义、计算公式、方向判定方法。

2. 安培力作用下的电流表指针偏转原理。

七、作业设计1. 作业题目:(1)计算给定电流和磁场下的安培力大小和方向。

(2)分析安培力在电机中的应用。

2. 答案:(1)安培力大小:F = BIL,方向:右手定则判定。

(2)安培力在电机中的应用:通过安培力实现电能与机械能的转换。

八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行反思,针对学生的掌握情况,调整教学方法。

2. 拓展延伸:引导学生学习电磁感应现象,了解安培力与其他电磁现象的联系。

重点和难点解析1. 安培力的计算公式及其应用2. 安培力方向的理解3. 安培力作用下的电流表指针偏转现象4. 实践情景引入和例题讲解5. 作业设计一、安培力的计算公式及其应用1. 电流元的概念:电流元是指电流在空间中的微小段,其长度为L,电流为I。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、磁通量磁感线和电场线一样也是一种形象描述磁场强度大小和方向分布的假想的线,磁感线上各点的切线方向即该点的磁感应强度方向,磁感线的密疏,反映磁感应强度的大小。

为了定量地确定磁感线的条数跟磁感应强度大小的关系,规定:在垂直磁场方向每平方米面积的磁感线的条数与该处的磁感应强度大小(单位是特)数值相同。

这里应注意的是一般画磁感线可以按上述规定的任意数来画图,这种画法只能帮助我们了解磁感应强度大小;方向的分布,不能通过每平方米的磁感线数来得出磁感应强度的数值。

(1)磁通量的定义穿过某一面积的磁感线的条数,叫做穿过这个面积的磁通量,用符号φ表示。

物理意义:穿过某一面的磁感线条数。

(2)磁通量与磁感应强度的关系按前面的规定,穿过垂直磁场方向单位面积的磁感线条数,等于磁感应强度B,所以在匀强磁场中,垂直于磁场方向的面积S上的磁通量φ=BS。

若平面S不跟磁场方向垂直,则应把S平面投影到垂直磁场方向上。

当平面S与磁场方向平行时,φ=0。

公式(1)公式:Φ=BS。

(2)公式运用的条件:a.匀强磁场;b.磁感线与平面垂直。

(3)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积。

此时,式中即为面积S在垂直于磁感线方向的投影,我们称为“有效面积”。

(3)磁通量的单位在国际单位中,磁通量的单位是韦伯(Wb),简称韦。

磁通量是标量,只有大小没有方向。

(4)磁通密度磁感线越密的地方,穿过垂直单位面积的磁感线条数越多,反之越少,因此穿过单位面积的磁通量——磁通密度,它反映了磁感应强度的大小,在数值上等于磁感应强度的大小,B =Φ/S。

六、磁场对电流的作用1.安培分子电流假说的内容安培认为,在原子、分子等物质微粒的内部存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,分子的两侧相当于两个磁极。

2.安培假说对有关磁现象的解释(1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软磁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了。

(2)磁体的消磁:磁体的高温或猛烈敲击,即在激烈的热运动或机械运动影响下,分子电流取向又变得杂乱无章,磁体磁性消失。

磁现象的电本质磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。

说明:①根据物质的微观结构理论,原子由原子核和核外电子组成,原子核带正电,核外电子带负电,核外电子在库仑引力作用下绕核高速旋转,形成分子电流。

在安培生活的时代,由于人们对物质的微观结构尚不清楚,所以称为“假说”。

但是现在,“假设”已成为真理。

②分子电流假说揭示了电和磁的本质联系,指出了磁性的起源:一切磁现象都是由运动的电荷产生的。

安培力通电导线在磁场中受到的力称为安培力。

3.安培力的方向——左手定则(1)左手定则伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场,让磁感线穿过手心,让伸开的四指指向电流方向,那么大拇指所指方向即为安培力方向。

(2)安培力F、磁感应强度B、电流I三者的方向关系:①,,即安培力垂直于电流和磁感线所在的平面,但B与I不一定垂直。

②判断通电导线在磁场中所受安培力时,注意一定要用左手,并注意各方向间的关系。

③若已知B、I方向,则方向确定;但若已知B(或I)和方向,则I(或B)方向不确定。

4.电流间的作用规律同向电流相互吸引,异向电流相互排斥。

安培力大小的公式表述(1)当B与I垂直时,F=BIL。

(2)当B与I成角时,,是B与I的夹角。

推导过程:如图所示,将B分解为垂直电流的和沿电流方向的,B对I的作用可用B1、B2对电流的作用等效替代,。

5.几点说明(1)通电导线与磁场方向垂直时,F=BIL最大;平行时最小,F=0。

(2)B对放入的通电导线来说是外磁场的磁感应强度。

(3)导线L所处的磁场应为匀强磁场;在非匀强磁场中,公式仅适用于很短的通电导线(我们可以把这样的直线电流称为直线电流元)。

(4)式中的L为导线垂直磁场方向的有效长度。

如图所示,半径为r的半圆形导线与磁场B垂直放置,当导线中通以电流I时,导线的等效长度为2 r,故安培力F=2BIr。

七、磁电式电流表1.电流表的构造磁电式电流表的构造如图所示。

在蹄形磁铁的两极间有一个固定的圆柱形铁芯,铁芯外面套有一个可以转动的铝框,在铝框上绕有线圈。

铝框的转轴上装有两个螺旋弹簧和一个指针,线圈的两端分别接在这两个螺旋弹簧上,被测电流经过这两个弹簧流入线圈。

2.电流表的工作原理如图所示,设线圈所处位置的磁感应强度大小为B,线圈长度为L,宽为d,匝数为n,当线圈中通有电流I时,安培力对转轴产生力矩:,安培力的大小为:F=nBIL。

故安培力的力矩大小为M1=nBILd。

当线圈发生转动时,不论通过电线圈转到什么位置,它的平面都跟磁感线平行,安培力的力矩不变。

当线圈转过角时,这时指针偏角为角,两弹簧产生阻碍线圈转动的扭转力矩为M2,对线圈,根据力矩平衡有M1=M2。

设弹簧材料的扭转力矩与偏转角成正比,且为M2=k。

由nBILd=k得。

其中k、n、B、I、d是一定的,因此有。

由此可知:电流表的工作原理是指针的偏角的值可以反映I值的大小,且电流表刻度是均匀的,对应不同的在刻度盘上标出相应的电流值,这样就可以直接读取电流值了。

1斜角为θ=30°的光滑导轨AB,上端接入一电动势E=3V、内阻不计的电源,导轨间距为L=10cm,将一个质量为m=30g,电阻R=0.5Ω的金属棒水平放置在导轨上,若导轨周围存在着垂直于导轨平面的匀强磁场,当闭合开关S后,金属棒刚好静止在导轨上,如图所示,求导轨周围空间的磁场方向和磁感应强度的大小是多少?解:合上开关S后金属棒上有电流流过,由闭合电路欧姆定律I==6A金属棒静止在导轨上,它受到重力mg和支持力N的作用,因导轨光滑,仅此二力金属棒不可能平衡,它必需受到垂直于导轨平面的安培力作用才能平衡,根据题意和左手定则判断出,磁场方向垂直轨面斜向下,金属棒受到磁场的安培力沿斜面向上,如图所示。

由进一步受力分析得出,若金属棒平衡,则它受到的安培力F应与重力沿斜面向下的分量mgsinθ大小相等,方向相反。

F=mgsinθ又因为F=BIL,则可以解得B=0.25T3、如图4所示,环形金属轻弹簧线圈,套在条形磁铁中心位置,若将弹簧沿半径向外拉,使其面积增大,则穿过弹簧线圈所包围面积的磁通量将()A.增大B.减小C.不变D.无法确定变化情况答案:B解析:图5为条形磁铁的磁场分布,由于磁场的磁感线是闭合的曲线,在磁体内部是由S极指向N极,在磁体外部是由N极指向S极,且在磁体外的磁感线分布在磁体四周很大的空间。

穿过弹簧线圈的磁感线有磁体内部向上的,也有磁体外部向下的,实际穿过弹簧线圈的磁通量是合磁通量,即向上的磁通量与向下的磁通量之差,当弹簧线圈的面积增大后,穿过弹簧线圈向上的磁通量没有变化,而向下的磁通量增大,所以合磁通量减小,故选B。

4、如图6所示,矩形线圈abcd的面积S=1×10-2m2,其平面与磁场方向夹角θ=30°,此时穿过线圈的磁通量Φ1=1×10-3Wb,求:(1)该匀强磁场的磁感应强度;(2)线圈以ab边为轴,cd边向左上方由图示位置转过60°角,求这时穿过线圈磁通量Φ2,上述过程中磁通量变化了多少?(3)若按(2)中转动方向,线圈从图示位置转过180°角的过程中,磁通量变化了多少?解析:首先沿着由b到a方向画出侧视图,如图7所示:(1)设匀强磁场磁感应强度为B,由Φ=BSsin30°得:(2)线圈由图示位置转过60°角时,其线圈平面与磁场方向垂直,此时穿过线圈的磁通量为:Φ2=BS=0.2×1×10-2Wb=2×10-3Wb变化的磁通量为:ΔΦ=Φ2-Φ1=(2×10-3-1×10-3)Wb=1×10-3Wb(3)设线圈在初始位置时磁通量为正,为:Φ1=1×10-3Wb翻转180°后,穿过线圈的磁通量为负,为:Φ3=-1×10-3Wb翻转180°的过程中磁通量的变化量为:ΔΦ=|Φ3-Φ1|=2×10-3Wb3、有一面积为100cm2的金属环,电阻为0.1Ω,环中磁场变化规律如图8所示,且磁场方向垂直于环面向里,在t1到t2这段时间内,环中流过的电荷量是多少?解析:因为Φ=B·S,当S一定时,ΔΦ=ΔB·S,由感应电动势为由图象可知,在t1到t2这段时间内,ΔB=0.1T,根据闭合电路欧姆定律和电流的定义可得,流过环中的电荷量q为4、如图9所示,竖直放置的长直导线通以恒定电流,有一矩形线框与导线在同一平面内,在下列情况下线圈产生感应电流的是()A.导线中电流变大B.线框向右平动C.线框向下平动D.线框以ab边为轴转动E.线框以直导线为轴转动答案:ABD解析:讨论是否产生感应电流,需分析通电导线周围的磁场分布情况,通电导线周围的磁感线是一系列同心圆,且由内向外由密变疏,即越远离导线磁感线越疏。

对A选项,因I增大而引起导线周围的磁场磁感应强度增大,故A正确。

对B选项,因离开直导线方向越远,磁感线分布越疏(如图乙所示),因此线框向右平动时,穿过线框的磁通量变小,故B正确。

对C选项,由乙图可知线框向下平动时穿过线框的磁通量不变,故C错。

对D选项,可用一些特殊位置来分析,当线框在如图乙所示位置时,穿过线框的磁通量很大,当线框转过90°时,穿过线框的磁通量最小:Φ=0,因此可以判定线框以ab轴转动时磁通量一定变化,故D正确。

对E选项,先画出俯视图(如图丙),由图可看出线框绕直导线转动时,在任何一个位置穿过线框的磁感线条数不变,因此无感应电流,故E错。

5、在做奥斯特实验时,下列操作中现象最明显的是()A.沿电流方向放置磁针,使磁针在导线的延长线上B.沿电流方向放置磁针,使磁针在导线的正下方C.电流沿南北方向放置在磁针的正上方D.电流沿东西方向放置在磁针的正上方解析:将导线沿南北方向放置在地磁场中处于静止状态的磁针的正上方,通电时磁针发生明显的偏转,是由于南北方向放置的电流的正下方的磁场恰好是东西方向。

答案:C总结升华:做本实验时,首先要考虑到地磁场的影响。

若导线东西放置,小磁针有可能不偏转,导致实验失败。

6、家用照明电路中的火线和零线是相互平行的,当用电器工作火线和零线都有电流时,它们将()A.相互吸引B.一会儿吸引,一会儿排斥C.相互排斥D.彼此不发生相互作用解析:火线与零线虽然都连接用电器,且相互平行,但是当用电器正常工作时,流过它们的电流方向相反,并且时刻相反。

相关文档
最新文档