用不动点法求数列通项

合集下载

不动点法求数列通项公式

不动点法求数列通项公式

不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020不动点法求数列通项公式通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的.首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点.下面结合不动点法求通项的各种方法看几个具体的例子吧.◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项.【说明:这题是“相异不动点”的例子.】先求不动点∵a[n+1]=2/(a[n]+1)∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】=(2/(a[n]+1)-1)/(2/(a[n]+1)+2)=(2-a[n]-1)/(2+2a[n]+2)=(-a[n]+1)/(2a[n]+4)=(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项.【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x即:x^2-2x+1=0∴x=1 【重合不动点】∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点】a[n]-1=(a[n-1]-1)/a[n-1]两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)即:1/(a[n]-1)-1/(a[n-1]-1)=1∵a[1]=3∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项.【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)(n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1 【重合不动点】设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2) b[n+1]=b[n]n/(n+2)即:b[n+1]/b[n]=n/(n+2)于是:【由于右边隔行约分,多写几行看得清楚点】b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】b[n-2]/b[n-3]=(n-3)/(n-1)b[n-3]/b[n-4]=(n-4)/(n-2).b[5]/b[4]=4/6b[4]/b[3]=3/5b[3]/b[2]=2/4 【这里保留分子】b[2]/b[1]=1/3 【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)]◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项.【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】∵a[n+1]=(2a[n]+1)/3求不动点:x=(2x+1)/3,得:x=1 【重合不动点】∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】即:a[n+1]-1=(2/3)(a[n]-1)∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列即:a[n]-1=(2/3)^(n-1)∴a[n]=1+(2/3)^(n-1)【又】∵a[n+1]=(2a[n]+1)/3∴3a[n+1]=2a[n]+1这时也可以用待定系数法,甚至直接用观察法,即可得到:3a[n+1]-3=2a[n]-2∴a[n+1]-1=(2/3)(a[n]-1)【下面同上】◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2 【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】∵x[1]=2>√2∴(x[1]-√2)/(x[1]+√2)=3-2√2∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数列即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]}◎例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项.【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便.】求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1){2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]【下面用“三角代换”,看看是否更巧妙一些.】∵a[n+1]=(1+a[n])/(1-a[n])∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tan θ]=tan(π/4+θ)∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4∵a[1]=2∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列即:arctan(a[n])=arctan2+(n-1)π/4∴a[n]=tan[(n-1)π/4+arctan2]。

用不动点法求数列通项公式

用不动点法求数列通项公式

用不动点法求数列通项公式不动点法,又称不动数法、固定点法或迭代法,是一种用于寻找方程解的数值方法。

该方法通过迭代计算,从一个初始值开始,不断反复进行同一种运算,直到找到一个稳定的结果。

对于数列来说,不动点法可以用于推导数列的通项公式。

首先,我们需要了解数列的定义。

一个数列是由一系列数字按照一定规律排列而成的序列。

常见的数列有等差数列和等比数列等。

数列的通项公式是一个能够根据数列的位置n来计算第n项的数学公式。

假设我们有一个数列a1,a2,a3,...,我们希望通过不动点法求得其通项公式。

1.定义迭代函数首先,我们需要定义一个迭代函数f(x),它将数列的其中一项x映射到数列的下一项f(x)。

f(x)的选择需满足以下两个条件:-f(x)应该与x具有相同的性质,即f(x)也是数列的一项。

-通过不断迭代f(x),我们最终能够达到数列的稳定点或不动点。

数列的稳定点是指在这个点上,f(x)等于x本身。

2.寻找不动点我们通过迭代运算来寻找数列的稳定点。

从数列的任意一项开始,通过不断地对这一项应用迭代函数f(x),直到找到一个稳定的结果。

即:x=f(x)这个方程的解就是不动点,也就是数列的稳定点。

在找到不动点之后,我们就可以得到数列的通项公式。

3.推导通项公式我们以等差数列为例,根据已知的前两项a1和a2,以及等差d,我们希望通过不动点法来推导等差数列的通项公式。

假设f(x)=x+d,其中d为等差。

我们进行迭代:x1=a1x2=f(x1)=a1+dx3=f(x2)=a1+2d...xn = f(x(n-1)) = a1 + (n-1)d当迭代到第n项时,我们发现xn与数列的第n项an相等。

即:xn = an = a1 + (n-1)d所以,我们得到了等差数列的通项公式。

同样地,对于等比数列,我们可以选择相应的迭代函数进行迭代,最终得到等比数列的通项公式。

总结:通过不动点法,我们可以通过迭代运算来寻找数列的稳定点,从而得到数列的通项公式。

高考数学复习--不动点法求数列通项

高考数学复习--不动点法求数列通项

即数列
1
an
是公差为
1 2
,首项为
1 a1
1
的等差数列,
所以 1 1 1 n 1 1 n 1
an a1 2
22
an
2 n 1
.
思考:递推函数具有什么结构,能够用取倒数? 是不是递推函数是分式函数都可以取倒数!
典型例题:
变式 1:数列an 中, a1 1
an1
1 2 an
,求 an 的通项公式.
变式 1:数列an 中, a1 1
an1
1 2 an
,求 an 的通项公式.
解:由条件 an1
1 2 an
得: an1 1
1 2 an
1
an 1 2 an
两端同时取倒数得: 1 2 an 1 1 an1 1 an 1 an 1
即数列
1 an
1
是公差为
1
,首项为
1 a1
1
高考数学复习
不动点法求数列通项
知识梳理:函数不动点的定义 函数的不动点是被这个函数映射到其自身的一个点,即如果 x0 ,使 f (x0 ) x0 ,
则称 x0 为 f (x) 的一个不动点.
⑴代数意义:若方程 f (x) x 有实数根 x0 ,则函数 f x 有不动点 x0 .
⑵几何意义:若函数 y f (x) 的图像与 y x 的图像有公共点 (x0 , y0 ) ,则 x0 为 y f (x) 的不动点.
分析:这个题目两端同时取倒数还可以吗?
1 an1 2 an
那么 an1
2an 2 an
为什么能够行?
具有什么结构特点可以取倒数?
an1
1 2 an

数列专题与柯西不等式用不动点法求数列的通项

数列专题与柯西不等式用不动点法求数列的通项

用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列.定理2:设)0,0()(≠-≠++=bc ad c dcx b ax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pc a k --=) (2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2) 证明:由x x f =)(得x dcx b ax x f =++=)(,所以0)(2=--+b x a d cx (1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a p a qc a pc a qc a b qd a pc a b pd a qc a pc a qd b a qc a pd b a pc a q dca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qca pc a k --=,则q a p a k q a p a n n n n --=----11 (2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp所以ap cp pd b -=-2,cd a p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da c k +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a n n n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得n n nn n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式 解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以na a a n += 定理3:设函数)0,0()(2≠≠+++=e a fex c bx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++ 证明: k x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k ∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是, 1121x x 0≠∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a n n n ∈+==+,求数列}{n a 的通项. 解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2± 再经过反复迭代,得 由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a 其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题:例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n。

数列-不动点法求通项公式

数列-不动点法求通项公式

用不动点法求递推数列d t c b t a t n n n +⋅+⋅=+1(a 2+c 2≠0)的通项 1.通项的求法 为了求出递推数列dt c b t a t n n n +⋅+⋅=+1的通项,我们先给出如下两个定义: 定义1:若数列{n t }满足)(1n n t f t =+,则称)(x f 为数列{n t }的特征函数. 定义2:方程)(x f =x 称为函数)(x f 的不动点方程,其根称为函数)(x f 的不动点. 下面分两种情况给出递推数列d t c b t a t n n n +⋅+⋅=+1通项的求解通法. (1)当c=0,时, 由d t c b t a t n n n +⋅+⋅=+1d b t d a t n n +⋅=⇒+1, 记k d a =,c db =,则有c t k t n n +⋅=+1〔k ≠0〕, ∴数列{n t }的特征函数为)(x f =kx+c,由kx+c=x ⇒x=k c -1,则c t k t n n +⋅=+1⇒)1(11k c t k k c t n n --=--+ ∴数列}1{kc t n --是公比为k 的等比数列, ∴11)1(1-⋅--=--n n k k c t k c t ⇒11)1(1-⋅--+-=n n k kc t k c t . (2)当c ≠0时,数列{n t }的特征函数为:)(x f =dx c b x a +⋅+⋅ 由x dx c b x a =+⋅+⋅0)(2=--+⇒b x a d cx 设方程0)(2=--+b x a d cx 的两根为x 1,x 2,则有:0)(121=--+b x a d cx ,0)(222=--+b x a d cx ∴12)(1x a d cx b -+= (1)222)(x a d cx b -+=……(2) 又设212111x t x t k x t x t n n n n --⋅=--++(其中,n ∈N *,k 为待定常数). 由212111x t x t k x t x t n n n n --⋅=--++⇒2121x t x t k x dt c b t a x d t c b t a n n n n n n --⋅=-+⋅+⋅-+⋅+⋅ ⇒212211x t x t k dx t cx b at dx t cx b at n n n n n n --⋅=--+--+……(3) 将(1)、〔2〕式代入(3)式得:2122221121x t x t k ax t cx cx at ax t cx cx at n n n n n n --⋅=--+--+ ⇒212211))(())((x t x t k x t cx a x t cx a n n n n --⋅=----⇒21cx a cx a k --= ∴数列{21x t x t n n --}是公比为21cx a cx a --(易证021≠--cx a cx a )的等比数列. ∴21x t x t n n --=1212111-⎪⎪⎭⎫ ⎝⎛--⋅--n cx a cx a x t x t ⇒12121111212111211--⎪⎪⎭⎫ ⎝⎛--⋅---⎪⎪⎭⎫ ⎝⎛--⋅--⋅-=n n n cx a cx a x t x t cx a cx a x t x t x x t .2.应用举例例1:已知数列{a n }中,a 1=2,3121+=+n n a a ,求{a n }的通项。

不动点法求数列通项公式

不动点法求数列通项公式

不动点法求数列通项公式通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的.首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点.下面结合不动点法求通项的各种方法看几个具体的例子吧.◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项.【说明:这题是“相异不动点”的例子.】先求不动点∵a[n+1]=2/(a[n]+1)∴令x=2/(x+1),解得不动点为:x=1 和x=-2 【相异不动点】∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】=(2/(a[n]+1)-1)/(2/(a[n]+1)+2)=(2-a[n]-1)/(2+2a[n]+2)=(-a[n]+1)/(2a[n]+4)=(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项. 【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x即:x^2-2x+1=0∴x=1 【重合不动点】∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点】a[n]-1=(a[n-1]-1)/a[n-1]两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)即:1/(a[n]-1)-1/(a[n-1]-1)=1∵a[1]=3∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项.【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)(n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1 【重合不动点】设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2)b[n+1]=b[n]n/(n+2)即:b[n+1]/b[n]=n/(n+2)于是:【由于右边隔行约分,多写几行看得清楚点】b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】b[n-2]/b[n-3]=(n-3)/(n-1)b[n-3]/b[n-4]=(n-4)/(n-2).b[5]/b[4]=4/6b[4]/b[3]=3/5b[3]/b[2]=2/4 【这里保留分子】b[2]/b[1]=1/3 【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)]◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项. 【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】∵a[n+1]=(2a[n]+1)/3求不动点:x=(2x+1)/3,得:x=1 【重合不动点】∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】即:a[n+1]-1=(2/3)(a[n]-1)∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列即:a[n]-1=(2/3)^(n-1)∴a[n]=1+(2/3)^(n-1)【又】∵a[n+1]=(2a[n]+1)/3∴3a[n+1]=2a[n]+1这时也可以用待定系数法,甚至直接用观察法,即可得到:3a[n+1]-3=2a[n]-2∴a[n+1]-1=(2/3)(a[n]-1)【下面同上】◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2 【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】∵x[1]=2>√2∴(x[1]-√2)/(x[1]+√2)=3-2√2∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数列即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]}◎例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项.【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便.】求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1){2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]【下面用“三角代换”,看看是否更巧妙一些.】∵a[n+1]=(1+a[n])/(1-a[n])∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tan θ]=tan(π/4+θ)∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4∵a[1]=2∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列即:arctan(a[n])=arctan2+(n-1)π/4∴a[n]=tan[(n-1)π/4+arctan2]。

用“不动点法”求数列的通项公式

用“不动点法”求数列的通项公式

用“不动点法”求数列的通项公式用“不动点法”求数列的通项公式对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”.利用“不动点法”可以构造新数列,求数列的通项公式.例(1)在数列{an}中,a1=1,an+1=an+1,求数列{an}的通项公式.解设f(x)=x+1,令f(x)=x,即x+1=x,得x=2,∴x=2是函数f(x)=x+1的不动点,∴an+1-2=(an-2),∴数列{an-2}是以-1为首项,以为公比的等比数列,∴an-2=-1×n-1,∴an=2-n-1,n∈N.(2)已知数列{an}满足a1=3,an+1=,求该数列的通项公式.解由方程x=,得数列{an}的不动点为1和2,===·,所以是首项为=2,公比为的等比数列,所以=2·n-1,解得an=+2=,n∈N.(1)若f(x)=ax+b(a≠0,1),p 是f(x)的不动点.数列{an}满足an+1=f(an),则an+1-p=a(an-p),即{an-p}是公比为a的等比数列.(2)设f(x)=(c≠0,ad-bc≠0),数列{an}满足an+1=f(an),a1≠f(a1).若f(x)有两个相异的不动点p,q,则=k·.1.已知数列{an}满足an+1=-an-2,a1=4,求数列{an}的通项公式.解设f(x)=-x -2,由f(x)=x,得x=-.∴an+1+=-,又a1=4,∴是以为首项,以-为公比的等比数列,∴an+=×n-1,∴an=-+·n-1,n∈N.2.已知数列{an}满足a1=2,an=(n≥2),求数列{an}的通项公式.解解方程x=,化简得2x2-2=0,解得x1=1,x2=-1,令=c·,由a1=2,得a2=,可得c=-,∴数列是以=为首项,以-为公比的等比数列,∴=·n-1,∴an=.3.设数列{an}满足8an+1an-16an+1+2an+5=0(n≥1,n∈N),且a1=1,记bn=(n≥1).求数列{bn}的通项公式.解由已知得an+1=,由方程x=,得不动点x1=,x2=.所以==·,所以数列是首项为-2,公比为的等比数列,所以=-2×n-1=-,解得an=.故bn==,n∈N.。

数列不动点法求通项

数列不动点法求通项

数列不动点法求通项
以《数列不动点法求通项》为标题,写一篇3000字的中文文章什么叫数列不动点法?它是一种求解数学数列中特定元素的解法,又称作不动点迭代。

其中的一种典型的应用场景就是通过它来求解数列的通项。

一、数列不动点法的基本原理与概念
数列不动点法是一种基于极限理论的迭代解法,其核心思想就是能够将一组数字反复迭代,最终能够收敛到一个不变的、固定的数字,这个数字就叫做不动点,也叫稳定点或者可靠的结果。

在数列的研究中,数列的不动点可以帮助我们了解其数列的总体规律,并且可以推导出满足条件的通项。

二、数列不动点法求解数列的通项的过程
1、将每一项的值进行相应的迭代,得到迭代后的值。

2、将迭代后的值进行比较,如果出现不动点,则表明数列收敛到某一个点,那么就可以利用该点作为数列的通项,即可将数列中任意一个元素进行表达。

3、进一步利用已求得的不动点,寻找数列的特征值,并结合相应的条件,寻找出满足条件的通项。

三、数列不动点法的优势
数列不动点法比较简单,只需要根据数学原理,采用简单的迭代方式,就能够推导数列中任意一个元素,从而大大节约了解决数列问题所需要的时间和精力。

此外,数列不动点法在求解数列的通项时,
和其他方法相比,更加精准,可以得到更为准确的结果。

四、数列不动点法应用的实例
1、数列 4、9、14、19、24……的第n项是多少?
利用数列不动点法,可以得出第n项的值为5n+4,即第n项的值等于第一项的值(4)加上公差(5)乘以(n-1)次。

2、数列 8、7、6、5、4……的第n项是多少?
利用数列不动点法,可以得出第n项的值为n+7,即第n项的值为第一项的值(8)减去公差(1)乘以(n-1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义:方程的根称为函数的不动点.
利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.
定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.
证明:因为是的不动点
由得
所以是公比为的等比数列.
定理2:设,满足递推关系,初值条件
(1):若有两个相异的不动点,则(这里)
(2):若只有唯一不动点,则(这里)
证明:由得,所以
(1)因为是不动点,所以,所以
令,则
(2)因为是方程的唯一解,所以
所以,所以
所以
令,则
例1:设满足,求数列的通项公式
例2:数列满足下列关系:,求数列的通项公式
定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,
证明:是的两个不动点

于是,
方程组有唯一解
例3:已知数列中,,求数列的通项.
其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知且,求数列的通项.
解: 作函数为,解方程得的不动点为
.取,作如下代换:
逐次迭代后,得:
已知曲线22:20(1,2,)n C x nx y n -+==K .从点(1,0)P -向曲线n C 引斜率为(0)
n n k k >的切线n l ,切点为(,)n n n P x y .
(1)求数列{}{}n n x y 与的通项公式;
(2)证明:13521n n n
x x x x x y -⋅⋅⋅⋅<<L 设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,
22x p q =-,12n n n x px qx --=-(34n =,,
…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,14
q =
,求{}n x 的前n 项和n S . 已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的
导数,设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,. (1)求αβ,的值;
(2)证明:对任意的正整数n ,都有n a α>;
(3)记ln (12)n n n a b n a βα
-==-L ,,,求数列{}n b 的前n 项和n S 13陕西文21.(本小题满分12分)已知数列{}n a 满足,
*11212,,2
n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。

山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对任意的n N +
∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)
当b=2时,记
1
()
4
n
n
n
b n N
a
+
+
=∈求数列{}
n
b的前n项和
n
T。

相关文档
最新文档