传感器的毕业设计
传感器毕业设计

传感器毕业设计传感器毕业设计在当今科技高速发展的时代,传感器作为一种重要的电子元件,被广泛应用于各个领域。
无论是工业自动化、环境监测还是智能家居,传感器都扮演着不可或缺的角色。
因此,作为电子工程专业的毕业生,选择传感器作为毕业设计的主题是非常具有挑战性和前瞻性的。
首先,传感器毕业设计的目标是要设计并实现一种能够准确感知和传输特定物理量的传感器。
这个物理量可以是温度、湿度、压力、光照等等。
在设计过程中,需要考虑传感器的灵敏度、精度、响应时间等性能指标。
同时,还需要考虑传感器的可靠性和稳定性,以确保其在长期使用中能够保持准确的测量结果。
其次,传感器毕业设计需要结合实际应用场景来设计。
传感器的应用场景非常广泛,可以应用于工业生产、环境监测、医疗健康等领域。
因此,在设计传感器时,需要考虑不同场景下的特殊需求。
例如,在工业生产中,传感器需要具备高温、高压、耐腐蚀等特性;在医疗健康领域,传感器需要具备小巧、低功耗、舒适性等特点。
因此,传感器毕业设计需要根据具体应用场景的需求来进行设计和优化。
另外,传感器毕业设计还需要考虑传感器与其他系统的集成。
传感器通常不是独立存在的,而是需要与其他系统进行数据交互和控制。
因此,在设计传感器时,需要考虑传感器与其他系统之间的接口和通信协议。
例如,传感器可以通过模拟信号输出或数字信号输出与其他系统进行连接。
同时,还需要考虑传感器与其他系统之间的数据传输方式,例如通过有线或无线方式进行数据传输。
除了传感器的设计和集成,传感器毕业设计还需要进行实验验证。
通过实验验证,可以评估传感器的性能指标是否满足设计要求,并对传感器进行优化。
实验验证可以通过搭建实验平台、采集实际数据等方式进行。
通过实验验证,可以进一步完善传感器的设计,并提出改进的方案。
最后,传感器毕业设计还需要进行数据分析和结果展示。
通过对实验数据的分析,可以评估传感器的性能和可靠性,并对传感器进行改进。
同时,还需要将实验结果进行展示,以便他人了解和评估传感器的性能。
单片机的智能压力传感器毕业设计(完整版)

单片机的智能压力传感器毕业设计(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)51单片机的智能压力传感器毕业设计毕业任务书一、题目智能压力传感器系统设计二、指导思想和目的要求1. 培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能;2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风;3. 培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。
三、主要技术指标1. 培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能;2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风;3. 培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。
三、主要技术指标本设计主要设计一个智能压力传感器的设计,要求如下:被测介质:气体、液体及蒸气量程: Pa~pa综合精度:±0.25%FS供电: 24V Dc(12~36VDC)介质温度:-20~150环境温度:-20~85过载能力: 150%FS响应时间:≤10mS 稳定性:≤±0.15%FS/年? 能实时显示目标压力值和保存参数,并能和上位机进行通信,并具有较强的抗干扰能力。
所需要完成的工作:1.系统地掌握控制器的开发设计过程,相关的电子技术和传感器技术等,进行设计任务和功能的描述;2.进行系统设计方案的论证和总体设计;3.从全局考虑完成硬件和软件资源分配和规划,分别进行系统的硬件设计和软件设计;4.进行硬件调试,软件调试和软硬件的联调;5. 查阅到15篇以上与题目相关的文献,按要求格式独立撰写不少于15000字的设计说明书及1.5万(或翻译成中文后至少在3000字以上)字符以上的英文翻译。
传感器毕业设计

传感器毕业设计传感器在现代工程中起着重要的作用,能够感知各种物理量并将其转化为电信号。
传感器的应用非常广泛,涵盖了工业、医疗、农业、环境监测等领域。
为了更好地掌握传感器的工作原理和应用,我选择了设计一个温度传感器的毕业设计。
毕业设计的主要目标是设计一个能够准确测量环境温度的传感器,并将其数据通过显示器显示出来。
设计的系统主要由传感器模块、数据处理模块和显示模块组成。
传感器模块是整个系统的核心,采用热敏电阻作为传感元件。
随着温度的变化,热敏电阻的电阻值会相应变化,通过测量电阻值可以得到环境温度。
为了保证测量的准确性,还需要使用温度校准电路对传感器进行校准。
数据处理模块负责对传感器采集到的数据进行处理。
首先,需要将传感器测量的电阻值转化为温度值,然后通过模数转换器将其转化为数字信号。
最后,使用微处理器进行数据处理,例如对数据进行滤波、计算等操作。
为了提高系统的稳定性和响应速度,还需要对数据进行实时处理。
显示模块负责将数据显示在显示器上,以便用户直观地看到温度数值。
显示模块可以采用液晶显示屏或LED数字管等不同的显示元件,通过驱动电路将处理后的数据发送到显示器上,使用户可以清晰地看到当前环境的温度。
在设计的过程中,需要考虑到传感器的精度和稳定性、数据的准确性和可靠性,以及系统的实时性和响应速度等因素。
同时,还需要对电路进行优化,尽量减少电路的功耗和尺寸,以便于集成到实际应用中。
通过本次毕业设计,我可以深入了解传感器的工作原理和应用方法,提高自己的设计和调试能力,并为自己今后的科研和工作打下坚实的基础。
同时,我还可以将所学的知识应用到实际中,为社会做出一点贡献。
传感器毕业设计

传感器毕业设计
传感器是指能够感知并转换物理量或化学量的设备,并将其转换成电信号或其他可供人们理解的形式的装置。
随着科技的进步,传感器在各个领域得到了广泛的应用,如环境监测、工业控制、医疗诊断等。
在毕业设计中,可以选择设计一个基于传感器的智能温控系统。
首先,需要选择合适的温度传感器来感知环境的温度变化。
比较常用的温度传感器包括热敏电阻、热电偶以及半导体温度传感器等。
在选择传感器的时候,需要考虑传感器的精度、响应时间、成本等因素。
其次,根据传感器输出的电信号或其他形式的信号,需要设计电路来将信号转换成可以被处理器接收和处理的数字信号。
这一步可以采用放大电路、滤波电路、模数转换电路等方法来实现。
然后,需要选择合适的处理器或微控制器来接收和处理传感器的信号,并控制其他设备的操作。
可以选择使用单片机或嵌入式系统来实现。
接下来,需要设计一个控制算法来根据传感器的信号控制温度。
可以选择PID控制算法或其他适当的控制算法来实现温度的
调节。
最后,需要将所有的硬件和软件进行集成,进行系统的搭建和测试。
可以通过连接传感器、处理器和其他设备,实现对环境
温度的实时监测和控制。
在设计过程中,需要注意的是使用合适的材料和元器件,以确保系统的稳定性和可靠性。
此外,还需要进行足够的实验和测试,以验证设计的功能和性能。
总结起来,传感器毕业设计可以选择设计一个基于传感器的智能温控系统,通过选择合适的传感器、电路设计、处理器选择、控制算法设计等步骤来完成系统的设计和实现。
这样的设计能够使得环境温度得到有效的监测和控制,为用户提供更加舒适的空间。
位移传感器毕业设计

位移传感器毕业设计【篇一:位移传感器设计报告】综合性实验报告实验课程:传感器与检测技术实验名称:位移检测传感器的应用姓名:学号:班级:指导教师:实验日期: 2013年12月17日位移检测传感器应用一、实验类型位移检测综合性实验二、实验目的和要求1.了解微位移、小位移、大位移的检测方法。
2.运用所学过的相关传感器设计三种位移检测系统。
3.对检测系统进行补偿和标定。
三、实验条件为了满足实验要求,现使用电涡流,光纤,和差动三种传感器设计位移检测系统,电涡流取0.1mm为单位,光纤取0.5mm为单位,差动取0.2mm为单位。
进行试验后,用matlab处理数据,分析结论。
(一):电涡流传感器测位移实验原理:通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
(二):光纤传感器测位移实验原理:反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
(三):差动电感式传感器测位移实验原理:差动动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。
毕业设计压力传感器设计

毕业设计——压力传感器设计摘要:本文主要介绍了一种基于压电效应的压力传感器设计。
通过选用合适的材料和结构设计,该传感器可以实现较高的精度和灵敏度,对于高精度的压力测量具有良好的应用前景。
关键词:压力传感器,压电效应,精度,灵敏度1.引言压力传感器是一种重要的测量仪器,在机械制造、航空航天、汽车制造等领域都有广泛的应用。
随着科技的发展,对于压力传感器的精度和灵敏度要求越来越高,因此如何设计一种高精度的压力传感器成为了研究的热点。
压电效应是指某些晶体和陶瓷材料在受到压力后会产生电荷或电势变化的现象。
利用这种效应可以制作出高精度的压力传感器。
2.压力传感器设计2.1材料选择选择良好的压电材料是设计高精度压力传感器的关键。
对于电气特性稳定、机械强度高的陶瓷材料,一般采用压电单晶体或压电陶瓷。
在具体选择时,需根据实际需求选定性能良好的材料。
2.2结构设计在传感器的结构设计上,一般采用柱形、螺旋、盘形等结构。
其中,柱形结构压力传感器是应用最为广泛的一种。
在结构设计时需考虑传感器的力学特性,采用合适的结构和尺寸可以实现较高的精度和灵敏度。
2.3制作工艺制作压力传感器一般采用激光切割、电子束加工、化学腐蚀等方法。
其中,针对不同的压电材料需采用不同的工艺,以实现制造高精度的压力传感器。
3.实验结果与分析通过实验,研究了不同材料和结构制作的压力传感器的输出电荷量和灵敏度。
结果表明,某压电单晶体制作的柱形压力传感器输出电荷量和灵敏度都较高,可以实现较高的精度。
4.结论通过对压电材料的选择、结构设计和制作工艺的研究,成功设计了一种高精度的压力传感器。
该传感器通过实验验证了其较高的精度和灵敏度,可以应用于机械制造、航空航天、汽车制造等领域。
温湿度传感器的毕业设计

温湿度传感器的毕业设计摘要:温湿度传感器已广泛应用于工业自动化、环境监测以及室内生态控制等领域。
本文以温湿度传感器为研究对象,设计了一种基于Arduino控制器的温湿度传感器系统。
该系统能够实时监测环境的温度和湿度,并将数据通过无线通信方式发送到上位机进行处理。
实验结果表明,该系统具有高精度、快速响应和稳定性好的特点,可以满足实际应用需求。
关键词:温湿度传感器、Arduino控制器、无线通信、上位机、实时监测1.引言温湿度传感器是一种用于测量环境的温度和湿度的设备。
随着工业自动化和智能化的发展,对温湿度传感器的要求也越来越高。
传统的温湿度传感器由于测量范围窄、精度低等问题,已不能满足实际应用需求。
因此,本文设计了一种基于Arduino控制器的温湿度传感器系统,旨在提高测量精度和稳定性。
2.系统设计2.1硬件设计本系统的硬件设计主要包括Arduino控制器、温湿度传感器模块、无线通信模块和电源模块。
Arduino控制器具有较强的处理能力和通信能力,能够实时获取传感器数据并进行处理。
温湿度传感器模块采用高精度传感器,能够实时测量环境的温度和湿度。
无线通信模块采用无线射频通信技术,实现传感器数据的无线传输。
电源模块为整个系统提供稳定的供电。
2.2软件设计软件设计主要包括传感器驱动程序、数据处理程序和通信程序。
传感器驱动程序用于实时获取传感器的温湿度数据,然后将数据传输给Arduino控制器。
数据处理程序根据需求对传感器数据进行处理,如计算平均值、最大值和最小值等。
通信程序负责将处理后的数据通过无线通信模块发送到上位机进行显示和存储。
3.系统实现根据系统设计,我们搭建了一个实验平台进行测试。
首先,将温湿度传感器模块连接到Arduino控制器,并利用Arduino编程语言编写了传感器驱动程序。
然后,编写了数据处理程序和通信程序,并将这些程序上传到Arduino控制器中。
最后,将无线通信模块连接到Arduino控制器,并进行数据传输测试。
传感器毕业设计题目

传感器毕业设计题目传感器是现代工程技术中一个重要的应用领域。
传感器的应用范围非常广泛,涉及到环境监测、工业生产、医疗器械、交通运输等多个领域。
在毕业设计中选择一个与传感器相关的题目,可以帮助学生深入了解传感器的原理、应用和设计。
以下是关于传感器毕业设计题目及相关参考内容。
1. 智能家居系统中的温度传感器设计毕业设计可以基于智能家居系统的需求,设计一个温度传感器。
相关参考内容包括温度传感器的工作原理、传感器与微控制器的接口设计、信号处理和传输。
此外,还可以研究温度传感器的精度、稳定性、响应时间等性能指标,并进行相应的实验验证。
2. 基于光纤传感技术的环境监测系统设计光纤传感技术是一种基于光纤材料的传感原理,可以用于各种环境参数的监测,如温度、压力、湿度等。
毕业设计可以选择其中的一个参数进行设计,比如温度传感。
相关参考内容包括光纤传感器原理、温度传感器的设计与制备、信号采集与处理等。
3. 智能交通系统中的车辆检测传感器设计毕业设计可以选择智能交通系统中的车辆检测传感器设计。
相关参考内容包括车辆检测算法、传感器类型选择与布置、传感器与信号采集器的接口设计、数据处理和通信等方面。
可以通过实验和仿真验证传感器的性能指标,并与现有的车辆检测技术进行比较分析。
4. 农业智能化中的土壤湿度传感器设计毕业设计可以基于农业智能化的需求,设计一个土壤湿度传感器。
相关参考内容包括土壤湿度传感器原理、传感器与农业物联网系统的接口设计、数据采集与处理等方面。
可以通过实验室和田间试验验证传感器的性能,并与传统的土壤湿度监测方法进行对比。
5. 医疗器械中的生物传感器设计毕业设计可以选择医疗器械中的生物传感器设计。
相关参考内容包括生物传感器原理、传感器与生物信号的接口设计、信号采集与处理、数据分析和应用等方面。
可以选取一个特定的生物指标进行研究,如心电图、脑电图等,并进行相关的实验验证。
总之,传感器的应用范围广泛,毕业设计可以选择与传感器相关的题目,深入研究传感器的工作原理、应用和设计,并结合实验和仿真进行验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1引言1.1 课题的研究背景及意义振动测试近十多年来发展非常迅速,受到了国内外专家和工业、农业、国防各部门科技工作者的重视。
近代工程技术的飞跃发展,特别是航空航天、海洋工程、电力、化工等技术的发展,必须对振动进行预测、采集、并实时处理在运行过程中的载荷数据的响应数据,对大型结构系统进行振动和噪声分析,对可能产生的过大振动事先加以避免或进行控制以确保安全、经济合理。
因此,振动测试包括振动、冲击、波动、噪声和各种动态技术(包括试验技术、测试分析技术、计算技术、信号和信息处理技术、自动控制技术、检测和故障诊断技术以及试验设备和材料动力性能等方面)的研究,已越来越在国民经济中发挥重要作用[1]。
振动测量的意义主要有以下两个方面:(1)预防事故、保证人身和设备的安全。
预防事故,保证人身和设备的安全是开展设备诊断工作的直接目的和基本任务之一。
我们知道,一些设备,特别是流程大型设备一旦发生故障将会引起链锁反应,造成巨大的经济损失,甚至灾难性的后果。
因此,为了避免设备事故,保障人身和设备的安全,应当积极发展设备振动诊断。
(2)提高经济效益:开展设备诊断所带来的经济效益包括减少可能发生的事故损失和延长检修周期所节约的维修费用,国外一些调查资料显示,开展设备诊断可带来可观的经济效益。
英国曾对2000个工厂作过调查,结果表明,采用设备诊断技术后维修费用每年节约3亿英镑,除去诊断技术的费用0.5亿英镑,净获利2.5亿英镑。
在我国的大型电厂,若出现故障其停机一天造成的损失就达一百多万元。
因此对设备故障进行有效的诊断有着明显的经济效益。
随着电子技术和计算机技术的快速发展,微型计算机技术,尤其是微控制器(单片机)的发展极为迅速,其应用越来越广。
单片机主要应用于控制领域,用以实现各种测试和控制功能。
目前,单片机还广泛应用于工业测控、计算机外围设备、工业智能化仪表、生产过程的自动控制、军事和航空航天等领域。
AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域[2]。
而基于MEMS微加速度计的振动测试系统具有尺寸小、功耗低、灵敏度高、使用灵活等优点。
因而在振动测、试倾斜测试惯性导航、智能引信等方面被广泛使用。
在不远的将来随着计算机技术和软件技术的快速发展振动测试系统会在越来越多的行业得到更广泛的应用。
1.2 振动检测技术的研究现状到目前为止,振动数据分析仪器的发展大体可分为四代:模拟类仪器、数字类仪器、智能化仪器和虚拟仪器。
第一代模拟类仪器。
是最早开发的振动分析系统。
主要是由光电矢量瓦特计和测振仪等组成,其基本结构的共同特点是电磁机械式,要借助指针或光点等来显示测试结果;第二代数字类仪器。
这类闪频式动平衡仪可以将模拟信号的测量转化为数字信号量,并以数字显示方式输出测量结果;第三代智能化仪器。
这类仪器内置MCS51系列单片机,集测试、数据处理、平衡计算和图形显示等功能于一体,具有自动化测量仪器的最初特点。
但其功能主要是以硬件(或固化软件)形式存在,不利于二次开发、功能复用和维护。
而且数据存贮量小,处理速度慢,功能比较单一,精度有限;第四代虚拟仪器[3]。
仪器主要功能可由①数据采集②数据测试和分析③结果输出显示等三大部分组成,其中数据分析和结果输出完全可由软件系统来完成,因此只要另外提供一定的数据采集硬件,就可构成新的测量仪器。
目前的振动测量信号可以通过采用加速度传感器采集加速度变化,经过电路处理成为频谱,最终成为人能够直观的看到振动波形。
一般加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。
由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。
当然,还有很多其它方法来制作加速度传感器,比如电容效应,热气泡效应,光效应,但是其最基本的原理都是由于加速度产生某个介质产生变形,因为振动产生加速度,利用这个特性,通过测量其变形量并用相关电路转化成电压输出前一般都采用加速度传感器来测量振动信号。
1.3 论文主要研究内容及安排本篇论文是以AT8C51单片机为控制核心,设计振动测试系统,并根据相应情况提供实时显示和数据存储分析功能。
针对上述研究内容,本论文内容具体安排如下:第1章:阐述了研究本课题的背景及目前的振动检测技术。
第2章:比较并设计了系统的总体方案。
第3章:对系统进行了硬件设计,并对硬件的各个模块及模块电路做了详细的介绍。
第4章:结合时序对系统进行软件总体及子程序的设计,并绘制了流程图,以及给出了ADS774工作时序和C51程序。
第5章:对系统调试过程中容易出现的问题做了阐述。
第6章:对本系统设计做了简要的总结。
2系统总体方案设计2.1 系统总体方案对比与分析振动测试系统的设计方法有多种方式,不同之处主要体现在加速度传感器方面。
加速度是物体运动的速度随时间的变化率,是描述物体运动速度的大小和方向变化的物理量。
加速度传感器都是利用加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出的原理。
目前单维的加速度传感器的技术比较成熟,基于压电、压阻、光纤等检测机理的各种传感器,市场上都有相应的产品。
然而,物体运动的加速度是一空间矢量。
一方面,要准确了解物体的运动状态,必须测得它的三个坐标轴上的分量;另一个方面,在预先不知道物体运动状况的场合下,只有应用多维加速度传感器来检测相应的加速度信号[4]。
同时,随着科学技术的迅速发展,传统的单维加速度传感器己经不能满足在测量、控制和信息技术等领域对传感信息越来越高的要求。
加速度传感器种类繁多,但从测试原理上可分为压电效应式、电容式、电感式、压阻式等等。
加速度传感器的主要指标有以下几个方面:(1)灵敏度。
(2)频率响应。
(3)测量量程。
(4)精度。
(5)满量程费线性度。
(6)漂移。
(7)横向效应。
(8)抗震性能。
最近十几年来,MEMS(微电子微机械)加速度传感器得到了迅速的发展。
其主要的加速度检测技术有压阻检测、压电检测、热检测、共振检测、电磁检测、光检测、隧道电流检测和电容检测等。
加速度传感器是一种重要的力学量敏感器件,广泛地应用于工业自动控制、科学测量、军事和空间系统等领域。
目前常用的有压电效应、电容效应等原理的加速度传感器。
加速度传感器类型:(1)压电式加速度传感器压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。
当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比[5]。
由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号先输到高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示仪表或记录器。
目前,制造厂家已有把压电式加速度传感器与前置放大器集成在一起的产品,不仅方便了使用,而且也大大降低了成本。
图2.1 压电式加速度传感器常用的压电式加速度计的结构形式如图2.1所示。
S是弹簧,M是质块,B是基座,P是压电元件,R是夹持环。
图2.1a是中央安装压缩型压电元件—质量块—弹簧系统装在圆形中心支柱上,支柱与基座连接。
这种结构有很高的共振频率。
然而基座B与测试对象连接时,如果基座B有变形则将直接影响拾振器输出。
此外,测试对象和环境温度变化将影响压电元件,并使预紧力发生变化,容易引起温度漂移。
图2.1c为三角剪切形,压电元件由夹持环将其夹牢在三角形中心柱上。
加速度计感受轴向振动时,压电元件承受切应力。
这种结构对底座变形和温度变化有极好的隔离作用,有较高的共振频率和良好的线性。
图2.1b为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。
上述压电式加速度传感器存在响应频率范围小,机械运动部件容易损坏,传感器质量大造成附加质量大等缺点。
(2)电容式加速度传感器图2.2 电容式加速度传感器原理采用质量块-弹簧-阻尼器系统来感应加速力,其结构如图2.2所示。
图中只画出了一个基本单元。
它是利用比较成熟的硅加工工艺在硅片内形成的立体结构(图2.2只给出其剖面示意图)。
图中的质量块是加速度传感器的执行器,与质量块相连的是可动臂;与可动臂相对的是固定臂。
可动臂和固定臂形成了电容结构,作为微加速度传感器的感应器。
其中的弹簧并非真正的弹簧,而是由硅材料经过立体加工形成的一种力学结构,它在加速度传感器中的质量块左右相当于弹簧。
它实际上是变极距差动电容式位移传感器,配接“m-k-c”系统构成的。
图2.3 “m-k-c”系统原理图电容式加速度传感器的等效原理图如图2.3所示。
图2.3中,右侧标尺表示与大地保持相对静止的运动参考点,称为静基准,x 表示被测振动体2及传感器底座1相对于该参考点的位移,称为绝对位移,y 表示质量块m 相对于传感器底座1的位移,称为相对位移。
x 和y 之间关系可用典型二阶比常系数微分方程描述:22200222dt x d y dt dy dt y d =++ωξω (式2.1)式中:0ω为自振角频率;m k /0=ω;ξ为阻尼系数,mk C 2=ξ;C 为空气阻尼。
而位移x ,速度v ,加速度a 三者之间的关系为: 22dt x d dt dy a == (式2.2) 代入式(2.1)得:a y dtdy dt y d =++200222ωξω (式2.3) 经拉氏变换得“m -k-c”系统得传递函数:200221)()(ωξω++=S S s A s y (式2.4) 令S=jω,可求得质量块相对运动得位移振幅m y 与被测振动体绝对运动得加速度振幅m a 的关系为:)2(/1/1020220ωωξωωω+-=m m a y (式2.5) 式(2.5)具有低通滤波特性。
由此可见,当n ω<0ω时,则:20ωmm a y = (式2.6)传感器壳体2的位移y 与1C ,2C 关系为:2121d y C C C C =+- (式2.7)式中,0d 为不振动时,电容1C 和2C 的初始极距。
若差动电容接入图2.4所示变压器式电桥中,则电桥开路输出电压幅值0U 为:212102*2d y E C C C C E U =+-=(式2.8) 将式(2.7)代入式(2.8)得m a d E U *22000ω= (式2.9) 可见,当ω< <0ω时,输出电压幅值0U 与加速度幅值m a 成正比,测出电压幅值0U ,即可确定加速度幅值m a 。