酵母单杂交
酵母单杂交[整理版]
![酵母单杂交[整理版]](https://img.taocdn.com/s3/m/168b073876eeaeaad0f33067.png)
酵母单杂交[整理版]1.酵母单杂交的基本原理酵母单杂交技术是1993年由酵母双杂交技术发展而来的,其基本原理为:真核生物基因的转录起始需转录因子参与,转录因子通常由一个DNA特异性结合功能域和一个或多个其他调控蛋白相互作用的激活功能域组成,即DNA结合结构域(DNA—bindingdomain,BD)和转录激活结构域(activationdomain,AD)。
用于酵母单杂交系统的酵母GAL4蛋白是一种典型的转录因子,GAL4的DNA结合结构域靠近羧基端,含有几个锌指结构,可激活酵母半乳糖苷酶的上游激活位点(UAS),而转录激活结构域可与RNA聚合酶或转录因子TFIID相互作用,提高RNA聚合酶的活性。
在这一过程中,DNA结合结构域和转录激活结构域可完全独立地发挥作用。
据此,我们可将GAL4的DNA结合结构域置换为文库蛋白编码基因,只要其表达的蛋白能与目的基因相互作用,同样可通过转录激活结构域激活RNA聚合酶,启动下游报告基因的转录。
酵母单杂交原理示意图2.酵母单杂交技术的特点酵母单杂交体系自1993年由Wang和Reed创立以来,在生物学研究领域中已经显示出巨大的威力。
应用酵母单杂交体系已经验证了许多已知的DNA与蛋白质之间的相互作用,同时发现了新的DNA与蛋白质的相互作用,并由此找到了多种新的转录因子。
近来,已有应用酵母单杂交体系进行疾病诊断的研究报道。
随着酵母单杂交体系的不断发展和完善,它在科研、医疗等方面的应用将会越来越广泛。
采用酵母单杂交体系能在一个简单实验过程中,识别与DNA特异结合的蛋白质,同时可直接从基因文库中找到编码蛋白的DNA序列,而无需分离纯化蛋白,实验简单易行。
由于酵母单杂交体系检测到的与DNA结合的蛋白质是处于自然构象,克服了体外研究时蛋白质通常处于非自然构象的缺点,因而具有很高的灵敏性。
目前,多种酵母单杂交体系的试剂盒和相应的cDNA文库已经商品化,为酵母单杂交体系的使用提供了有利的条件。
酵母单杂交的原理和应用

酵母单杂交的原理和应用原理酵母单杂交是一种将两个酵母菌株或菌株中的两个基因进行互换的技术。
通过将两个酵母菌株或对应的基因进行交叉杂交,可以产生两个新的酵母菌株,这两个新的酵母菌株中具有不同的基因组,但仍保留了原始酵母菌株的某些特性。
酵母单杂交的原理可以分为以下几个步骤:1.找到两个酵母菌株中的亲本菌株。
亲本菌株通常是胞垢酵母菌株,其特点是易于培养和操作。
2.分别制备两个酵母菌株的孢子悬液,并将其混合在一起。
孢子悬液中含有酵母菌的基因,通过混合可以实现互相交换。
3.将混合后的孢子悬液进行萃取和培养,以获得新的酵母菌株。
在酵母单杂交中,通过杂交两个不同的酵母菌株,可以产生大量的变异体,这些变异体可以用来研究酵母菌的基因功能、代谢途径等方面的问题。
应用酵母单杂交在生物科学研究中有着广泛的应用。
以下是一些常见的应用场景:1.基因功能研究:酵母单杂交可以用于研究酵母菌株中的某个基因在生物过程中的作用。
通过杂交产生的变异体可以用来观察该基因在细胞周期调控、基因表达调控等方面的功能。
2.蛋白质相互作用:酵母单杂交也可以用于研究蛋白质之间的相互作用。
通过将两种不同的蛋白质基因进行杂交,可以观察到是否有相互作用的情况。
这对于研究蛋白质的结构和功能起着关键的作用。
3.药物筛选:酵母单杂交可以用于筛选新的药物靶标。
通过杂交产生的酵母变异体,可以将其暴露在不同的药物中,观察其对药物的敏感性和影响,从而筛选出具有治疗潜力的药物。
4.基因组学研究:酵母单杂交可以用于研究酵母菌株中的基因组组成和结构。
通过杂交产生的菌株,可以用来进行基因组重组、基因定位及测序等工作,从而深入了解酵母菌的基因组特征。
总之,酵母单杂交作为一种强有力的研究工具,广泛应用于生物科学领域。
它可以帮助研究人员深入了解酵母菌的基因功能、蛋白质相互作用及药物筛选等方面的问题,为生物科学的发展做出贡献。
结论酵母单杂交是一种重要的实验技术,它通过交换酵母菌株中的基因,产生新的变异体。
酵母单杂交

酵母单杂交酵母单杂交技术最早是1993年由Li等从酵母双杂交技术发展而来,通过对报告基因的表型检测,分析DNA与蛋白之间的相互作用,以研究真核细胞内的基因表达调控。
由于酵母单杂交方法检测特定转录因子与顺式作用元件专一性相互作用的敏感性和可靠性,现已被广泛用于克隆细胞中含量微弱的、用生化手段难以纯化的特定转录因子。
酵母单杂交(Yeast one-hybrid)是根据DNA结合蛋白(即转录因子)与DNA顺式作用元件结合调控报道基因表达的原理,克隆与靶元件特异结合的转录因子基因(cDNA)的有效方法。
其理论基础是:许多真核生物的转录激活子由物理和功能上独立的DNA结合区(DNA-binding domain BD)和转录激活区(Activation domain AD) 组成,因此可构建各种基因与AD的融合表达载体,在酵母中表达为融合蛋白时,根据报道基因的表达情况,便能筛选出与靶元件有特异结合区域的蛋白。
理论上,在单杂交检测中,任何靶元件都可被用于筛选一种与之有特异结合区域的蛋白。
(百度百科)酵母单杂交法酵母单杂交体系(yeast one-hybrid system)常用于研究DNA-蛋白质间的相互作用。
酵母单杂交体系可识别稳定结合于DNA上的蛋白质,可在酵母细胞内研究真核DNA-蛋白质间的相互作用,并通过筛选DNA文库直接获得靶序列相互作用蛋白的编码基因。
也可用于分析鉴定细胞中转录调控因子与顺式作用元件相互作用。
酵母单杂交原理:将已知的顺式作用元件构建到最基本启动子(minimal promoter,Pmin)上游,把报告基因连接到Pmin下游。
将待测转录因子的cDNA与酵母转录激活结构域(activation domain,AD)融合表达载体导入细胞,该基因产物如果能够与顺式作用元件结合,而激活Pmin启动子使报告基因表达。
酵母单杂交体系主要用于分离编码结合于特定顺式调控元件或其他DNA位点的功能蛋白编码基因,验证反式转录调控因子的DNA结合结构域,准确定位参与特定蛋白质结合的核苷酸序列。
酵母单杂交技术

酵母单杂交技术1.酵母单杂交的基本原理酵母单杂交技术是1993年由酵母双杂交技术发展而来的,其基本原理为:真核生物基因的转录起始需转录因子参与,转录因子通常由一个DNA特异性结合功能域和一个或多个其他调控蛋白相互作用的激活功能域组成,即DNA 结合结构域(DNA—bindingdomain,BD)和转录激活结构域(activationdomain,AD)。
用于酵母单杂交系统的酵母GAL4蛋白是一种典型的转录因子,GAL4的DNA结合结构域靠近羧基端,含有几个锌指结构,可激活酵母半乳糖苷酶的上游激活位点(UAS),而转录激活结构域可与RNA聚合酶或转录因子TFIID相互作用,提高RNA聚合酶的活性。
在这一过程中,DNA结合结构域和转录激活结构域可完全独立地发挥作用。
据此,我们可将GAL4的DNA结合结构域置换为文库蛋白编码基因,只要其表达的蛋白能与目的基因相互作用,同样可通过转录激活结构域激活RNA聚合酶,启动下游报告基因的转录。
酵母单杂交原理示意图2.酵母单杂交技术的特点酵母单杂交体系自1993年由Wang和Reed创立以来,在生物学研究领域中已经显示出巨大的威力。
应用酵母单杂交体系已经验证了许多已知的DNA与蛋白质之间的相互作用,同时发现了新的DNA与蛋白质的相互作用,并由此找到了多种新的转录因子。
近来,已有应用酵母单杂交体系进行疾病诊断的研究报道。
随着酵母单杂交体系的不断发展和完善,它在科研、医疗等方面的应用将会越来越广泛。
采用酵母单杂交体系能在一个简单实验过程中,识别与DNA特异结合的蛋白质,同时可直接从基因文库中找到编码蛋白的DNA序列,而无需分离纯化蛋白,实验简单易行。
由于酵母单杂交体系检测到的与DNA结合的蛋白质是处于自然构象,克服了体外研究时蛋白质通常处于非自然构象的缺点,因而具有很高的灵敏性。
目前,多种酵母单杂交体系的试剂盒和相应的cDNA文库已经商品化,为酵母单杂交体系的使用提供了有利的条件。
酵母单杂交

酵母单杂交(yeast one hybrid)技术,是体外分析DNA与细胞内蛋白质相互作用的一种方法,通过对酵母细胞内报告基因表达状况的分析,来鉴别DNA结合位点并发现潜在的结合蛋白基因,或对DNA结合位点进行分析。
运用此技术,能筛选到与DNA结合的蛋白质,并可直接从基因文库中得到编码该蛋白质的核苷酸序列,而无需复杂的蛋白质分离纯化操作,故在蛋白研究中,具有一定的优势;而且,酵母属真核细胞,通过酵母系统得到的结果,比其他体外技术获得的结果,更能体现真核细胞内基因表达调控的真实情况。
1 酵母单杂交技术的原理酵母单杂交技术,最早是1993年由Li et al 从酵母双杂交技术发展而来,酵母双杂交技术通过对报告基因的表型进行检测以实现对蛋白质间相互作用的研究,而酵母单杂交技术则通过对报告基因的表型检测,分析DNA、蛋白之间的相互作用,以研究真核细胞内的基因表达调控。
目前认为真核生物的转录起始,需要转录因子的参与。
这些转录因子通常由一个DNA特异性结合功能域和一个或多个与其他调控蛋白相互作用的激活功能域组成,即DNA结合结构域(DNA-binding domain, BD)和转录激活结构域(activation domain, AD)。
用于酵母单杂交系统的酵母GAL4蛋白即是一种典型的转录因子用于酵母单杂交系统的酵母GAL4蛋白即是一种典型的转录因子。
研究表明GAL4的DNA结合结构域,靠近羧基端,含有几个锌指结构,可激活酵母半乳糖苷酶的上游激活位点(UAS);而转录激活结构域,可与RNA聚合酶或转录因子TFIID相互作用,提高RNA聚合酶的活性。
在这一过程中,DNA结合结构域和转录激活结构域可完全独立地发挥作用。
据此,我们可将GAL4的DNA结合结构域置换为其他蛋白,只要它能与我们想要了解的目的基因相互作用,就照样可以通过其转录激活结构域激活RNA聚合酶,从而启动对下游报告基因的转录。
正是基于这一理论,酵母单杂交系统由2部分组成:(1)将文库蛋白片段,与GAL4转录激活域融合表达的cDNA文库质粒; (2)含有目的基因和下游报告基因的报告质粒。
酵母单杂交技术原理和步骤

酵母单杂交技术原理和步骤酵母单杂交技术是一种重要的遗传学工具,用于研究酵母细胞的基因功能和相互作用。
它的原理是通过将两个不同的酵母细胞株进行融合,使它们的细胞核融合在一起,形成一个杂合细胞。
这种杂合细胞具有两个不同的基因组,可以用来研究基因的表达和相互作用。
酵母单杂交技术的步骤如下:1. 选择两个不同的酵母细胞株作为杂交体。
这两个细胞株通常具有不同的突变性状,以便研究特定基因的功能。
2. 将这两个细胞株培养在适当的培养基中,使它们处于良好的生长状态。
3. 将两个细胞株的细胞分别取出,进行预处理。
预处理的目的是使细胞在杂交过程中更容易融合。
4. 将两个预处理过的细胞混合在一起,并进行高温处理。
高温处理可以破坏细胞壁,促进细胞核的融合。
5. 经过高温处理后,将混合的细胞进行适当的稀释和培养,以分离和培养杂合细胞。
6. 对形成的杂合细胞进行筛选和鉴定,得到所需的杂合株。
这通常涉及使用特定的培养基和选择筛选剂,以选择具有特定基因型的杂合细胞。
通过酵母单杂交技术,我们可以研究基因的功能和相互作用。
例如,可以通过杂交两个突变株,观察它们的杂交后代的表型变化,从而推断出这两个基因在酵母细胞中的相互作用关系。
此外,还可以使用酵母单杂交技术来筛选和鉴定与特定基因相互作用的蛋白质,从而揭示基因调控网络的复杂性。
酵母单杂交技术是一种重要的遗传学工具,可以帮助我们研究酵母细胞的基因功能和相互作用。
通过融合不同的酵母细胞株,形成杂合细胞,我们可以研究基因的表达和相互作用,揭示基因调控网络的复杂性。
这种技术对于理解细胞生物学和疾病机制的研究具有重要意义。
酵母单杂交的原理及应用

酵母单杂交的原理及应用1. 引言酵母单杂交是一种基因工程技术,通过将不同的酵母菌株进行杂交,实现基因的转移和重组。
这种技术在生物医药领域和食品工业等多个领域有广泛的应用。
本文将介绍酵母单杂交的原理,以及其在生物学研究和应用领域的具体应用。
2. 酵母单杂交的原理酵母单杂交是基于两个重要的生物学现象:酵母菌的性别和重组。
酵母菌是一种真核生物,有两种性别:雄性和雌性。
酵母菌的重组是指在有性生殖过程中,两个父本酵母菌的基因经过交换,重新组合成新的基因。
酵母单杂交的原理如下: - 首先,选择两个具有不同性别的酵母菌株。
- 将这两个株种分别培养在不同的培养基中,分别生成没有交配伴侣的单倍体细胞。
- 利用化学或物理方法将两种单倍体细胞融合在一起,形成杂交细胞。
- 将杂交细胞培养在适宜的培养基中,使其进行有性生殖。
- 在有性生殖的过程中,两个亲本酵母的基因进行交换和重组,形成新的基因组。
重组的结果可能是基因突变、基因删除、基因重复等。
- 通过筛选和鉴定,筛选出具有特定性状的酵母单杂交子代。
3. 酵母单杂交的应用3.1 用于基因功能研究酵母单杂交可以用于揭示基因的功能和相互作用关系。
通过将感兴趣的基因与其他酵母菌基因进行单杂交,可以确定该基因的功能和参与的生物过程。
此外,酵母单杂交也可以用于酵母基因组的大规模互作网络研究,帮助科学家理解复杂的生物调节网络。
3.2 用于疾病研究与药物筛选许多疾病与基因突变有关,通过酵母单杂交可以研究基因突变对蛋白质功能的影响,从而揭示疾病机制。
此外,酵母单杂交还可以用于药物筛选。
通过将药物与酵母菌基因进行单杂交,可以评估药物对基因的作用和效果,为新药的发现提供线索。
3.3 用于产酵母菌株的改良与优化酵母单杂交可以用于改良和优化产酵母菌株的特性。
通过筛选和鉴定具有特定性状的酵母单杂交子代,可以选择出高产酵母菌株或改良后的酵母菌株。
这对于酿酒、发酵食品和酶工程等产业具有重要意义。
酵母单杂交原理

酵母单杂交原理
酵母单杂交原理是一种用于确定两个菌株是否有性交配能力的实验方法。
该方法基于酵母细胞具有两个性态(a和α),分
别具有不同的补体性别。
酵母菌株通常分为两种性别,一种是补体型a,另一种是α型。
两个不同性别的酵母菌株可以繁殖,形成两性型细胞。
要进行酵母单杂交实验,首先需要准备两种不同性别的酵母菌株,分别称为a型和α型。
然后,将这两个菌株混合在一起,
使它们发生性交配。
在实验开始之前,先将a型酵母菌株接种到一块固体培养基上,形成一个小斑点。
接着,取α型酵母菌株的细胞液,加入到已经接种了a型细胞的培养基上。
接种后的培养皿放置在适当的条件下培养,使两个菌株可以进行性交配。
在性交配过程中,a型和α型酵母细胞会发生核融合,将它们
的细胞核合并成单一的细胞。
这个过程称为杂交。
经过一段时间的培养,培养皿中的细菌会繁殖产生大量的后代细胞。
这些后代细胞又被称为单杂合子,因为它们只具有一个性态。
为了确定是否发生了性交配,需要进行筛选。
一种常用的方法是在培养基中添加特定的选择标记物,如抗生素。
只有发生性交配的细胞能够生存下来,而未发生性交配的细胞会被选择标
记物杀死。
通过观察培养基上的生长情况,可以确定是否有单杂合子的出现。
如果有单杂合子的出现,证明两个菌株具有性交配能力;如果没有单杂合子的出现,证明两个菌株无法发生性交配。
酵母单杂交实验是分析酵母菌株性别和性交配能力的重要方法,对于理解酵母的遗传特性和研究基因功能具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林大学 植物科学学院 2010级硕士
1993年,由Wang和Reed等创立发展出一种研究蛋白质和 DNA相互作用的实验体系。
Wang MM,Reed RR. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature,1993, 364(6433):121-126.
PADH1
cDNA插入片段
GAL4-AD
TADH1 转化
LEU2
酵母转化体 DRE DRE DRE DRE Pmin LacZ URA3
筛选 挑取阳性克隆
测序,进一步验证结合活性
优点
简单易行,无需分离纯化蛋白,酵母菌属于真真核生物,杂 交体系检测到的与DNA结合的蛋白质是处于自然构象克服了 体外研究时蛋白通常处于非自然构象的缺点,因而灵敏性很 高
缺点
有时由于插入的靶元件与酵母内源转录激活因子可能发 生相互作用,或插入的靶元件不需要转录激活因子就可以激 活报道基因的转录,因而存在假阳性结果。
如果酵母表达的AD杂合蛋白对细胞有毒性或者融合蛋 白在宿主细胞内不能稳定的表达,或者融合蛋白发生错误折 叠,或者不能定位于细胞核内,以及融合的GAL4-AD封闭 了蛋白上与DNA作用的位点则都可能干扰AD杂合蛋白结合 于靶元件的能力,从而产生假阴性的结果。
酵母单杂交系统应用
1. 鉴别DNA结合位点,并发现潜在的结合蛋白基因,目前对于 酵母单杂交技术的应用主要体现在这方面。 Chew et al (1999)应用酵母单杂交技术证实了在大鼠 脑中存在的COUP-TFⅠ、EAR2和NURR1等蛋白质GRIK5基 因的内含子结合蛋白。
2. 对DNA结合结构域进行分析 如果能得到DNA结合结构域的 结构信息,就可以用酵母单杂交技术对该结构进行分析. Mak et al (1996)运用此技术测试哺乳动物具有基本的 螺旋- 环- 螺旋(bHLH)结构的转录因子,通过对肌调节因子 4(MRF4)的研究,证实其具有转录活性。
谢谢!
质粒质粒上,可以表达AD杂合蛋白
酵母菌株:Y187
GAL4基因是缺失型的;基因组中引入 额外的报告基因LEU、TRP、 HIS
报告基因
常用的酵母单杂交体系基本选用HIS3或者LacZ作为报告
将插入目标元件的pHIS2质粒转化Y187酵母后,在不同浓度的3-AT的SD/-His/-Trp平板进行 培养,获得能抑制组氨酸渗漏的最低3-AT浓度,一般不超过45mmol/取mRNA,
经过反转录获得cDNA。
一个获取水稻金属应答转录因子的引物: CDSⅢ:5’-ATTCTAGAGGCCGAGGCGGCCGACATG-d(T)30VN-3’ SMARTⅢ :5’-AAGCAGTGGTATCAACGCAGAGTGGCCATTATGGCCGGG-3’
酵母单杂交是在酵母双杂交的基础上,20世纪9,省略了在酵母双杂交系统中采用 的BD-X蛋白质杂交体,而用特异的DNA序列取代DNAGal4结合位 点
酵母单杂交系统原理
将已知的特定顺式作用原件构建到最基本启动子(Pmin) 上游,把报告基因连接到Pmin下游
编码待测转录因子cDNA与已知酵母转录激活结构域(AD) 融合表达载体导入酵母细胞,该基因产物如果能够和顺式作用 原件结合,就能激活Pmin启动子,使报告基因得到表达
顺式元件
转录因子
AD
顺式元件
顺式元件
Pmin
报告基因
转录因子与顺式元件结合,激活最基本启动子Pmin,使 报告基因表达,若连接如3个以上顺式作用元件,可增强转 录因子的识别和结合效率
基因,虽然有的体系将带有报告基因的载体直接整合与酵母 染色体上,在大部分实验中报告基因都位于质粒DNA上
LacZ reporter - Blue/White Screening HIS3 reporter - Screen on His+ media (usually need to add 3AT to increase selectivity)
基本流程
1. 筛选含有报道质粒的酵母细胞 具体过程为: 合成靶序列; 将靶序列插入pHIS2载体的多克隆位点;
一般为将0.1mg pHIS2质粒用EcoRⅠ和SacⅠ进行完全双酶切,T4连接酶连接,靶序 列: pHIS2质粒=5:1的比例进行
酵母转化;
选用乙酸锂法
消除报道基因在酵母细胞中的TD7-rec2质粒表达AD杂合蛋白,转化完毕后将
菌液均匀涂布于SD/-His/-Leu/-Trp+最低抑制本底HIS泄露浓 度3-AT平板上,30鉴定 用3-AT抗性检测,即提高3-AT浓度,以排除假阳性,取
第3步获得的阳性克隆,充分悬浮于200μLTE溶液,涂布于含 60mmol/L3-AT +SD/-His/-Leu/-Trp选择性培养基上,只有真 正的阳性克隆才能在这种条件下生长
基本流程
5. 其他 得到的阳性酵母细行测序和序列比对等后续工作