教案立体几何2
立体几何最全教案

立体几何最全教案doc一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和判定,提高空间想象能力。
2. 过程与方法:通过观察、操作、思考、交流等活动,培养学生分析问题、解决问题的能力。
3. 情感态度价值观:激发学生对立体几何的兴趣,培养学生的创新意识和团队协作精神。
二、教学内容1. 第一课时:立体几何的基本概念(1)空间点、线、面的位置关系(2)平面、直线、圆锥面、球面的方程2. 第二课时:平面与直线的位置关系(1)平面与直线的交点(2)平面与直线的平行与垂直3. 第三课时:直线与直线的位置关系(1)直线与直线的交点(2)直线与直线的平行与垂直4. 第四课时:空间几何图形的性质与判定(1)空间四边形的性质与判定(2)空间三角形的性质与判定5. 第五课时:立体图形的面积与体积(1)立体图形的面积计算(2)立体图形的体积计算三、教学方法1. 采用问题驱动法,引导学生主动探究立体几何的基本概念和性质。
2. 利用多媒体课件,直观展示立体几何图形,提高学生的空间想象力。
3. 创设实践操作环节,让学生动手制作立体模型,加深对立体几何的理解。
4. 组织分组讨论,培养学生的团队协作能力和交流表达能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的准确性、规范性,评估学生的学习效果。
3. 考试成绩:定期进行立体几何的知识测试,检验学生的掌握程度。
4. 学生反馈:收集学生对立体几何教学的意见和建议,不断优化教学方法。
五、教学资源1. 教材:《立体几何》2. 多媒体课件:立体几何图形展示、动画演示3. 教具:立体模型、几何画板4. 网络资源:相关立体几何的论文、教案、教学视频六、教学策略1. 案例分析:通过分析典型立体几何案例,让学生理解和掌握基本概念和性质。
2. 启发式教学:提问引导学生思考,激发学生探究立体几何问题的兴趣。
立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1 ?学问与技能(1)通过实物操作,增加同学的直观感知。
(2)能按照几何结构特征对空间物体举行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2. 过程与办法(1)让同学通过直观感触空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让同学观看、研究、归纳、概括所学的学问。
3. 情感态度与价值观(1)使同学感触空间几何体存在于现实生活周围,增加同学学习的乐观性,同时提高同学的观看能力。
(2)培养同学的空间想象能力和抽象括能力。
二、教学重点、难点重点:让同学感触大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观看、思量、沟通、研究、概括。
(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 研究:经典的建造给人以美的享受,其中神秘为何?世间万物,为何千姿百态?2. 提问:学校与初中在平面上讨论过哪些几何图形?在空间范围上讨论过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深化讨论一些空间几何图形,即学习立体几何,注重学习办法:直观感知、操作确认、思维辩证、度量计算二、讲授新课:1. 教学棱柱、棱锥的结构特征:②提问:举例生活中有哪些实例给我们以两个面平行的形象?②研究:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有D哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫棱柱→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)结合图形熟悉:底面、侧面、侧棱、顶点、高、对角面、对角线?②分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等表示:棱柱ABCDE-A 'B'C'D''②研究:埃及金字塔具有什么几何特征?②定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形熟悉:底面、侧面、侧棱、顶点、高?→研究:棱锥如何分类及表示?②研究:棱柱、棱锥分离具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方?2. 教学圆柱、圆锥的结构特征:②研究:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥?→列举生活中的棱柱实例→结合图形熟悉:底面、轴、侧面、母线、高.→表示办法②研究:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.②观看书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 质疑答辩,排难解惑,进展思维,老师提出问题,让同学思量。
《立体几何》全套教案设计(优质课)

《立体几何》序言课【教学目标】1.使学生了解立体几何研究的对象、内容:2.使学生初步理解立体几何中的主要数学思想方法(类比思想、转化思想、展开思想)3.培养学生空间想象能力,初步建立空间概念【教学重点】空间概念的建立与立体几何中的主要数学思想方法【教学难点】空间概念的建立【教学过程】一.引入新课1.请同学们用六根长度相等的火柴搭正三角形,试试看,最多达成几个正三角形?学生动手试验后,教师总结:在平面内最多只能搭成两个,而在空间能搭成四个。
同时,向学生展示正四面体骨架模型,再让学生看图1.2.请同学们想一想,是否存在三条直线两两互相垂直?若存在请举出实际中的例子。
学生讨论后,教师总结:在同一平面内不存在,因为a⊥c,b⊥c,得到a∥b;但在空间是存在的,如教室墙角处的三条直线AB,AC,AD两两互相垂直(如图2)。
请同学们观察正方体(向学生展示正方体模型)中一个顶点处的三条棱之间的关系,也是两两互相垂直的(如图3)3.小结:现实世界中许多问题,只在平面内研究是很不够的,还需要在空间这个更广阔的领域内来考虑,这就是我们将要学习的新课程--立体几何(板书课题)二、讲授新课1.立体几何的研究对象、内容提问1:平面几何的研究对象、内容是什么?答:对象是平面图形,具体说是研究点、线、面;内容是平面图形的画法、形状、位置关系、大小计算及应用。
提问2:立体几何的研究对象、内容又是什么?让学生观察正方体、圆柱、正四面体骨架等,引导学生与平面几何进行类比。
在学生回答的基础上,教师小结为:立体几何的研究对象--空间图形(由空间的点、线、面组成)立体几何的研究内容--空间图形的画法、形状、位置关系、大小计算及应用,是平面几何的推广2.空间图形与平面图形的画法的不同点提问:同学们虽然还没有掌握空间图形的画法,但已经见到了老师画的正方体、圆柱、正四面体的直观图,同学们想一想,空间图形与平面图形的画法有什么不同?经过分析,平面图形的画法是真实的,而空间图形的直观图是不真实的,如正方体的底面本是正方形,但在直观图中都画成平行四边形。
苏教版数学高一 苏教版必修2《立体几何第2课时》学案

第三课时 中心投影和平行投影
【学习导航】
知识网络
学习要求
1.初步理解投影的概念。
掌握中心投 影和平行投影的区别和联系。
2.了解并掌握利用正投影鉴别简单组合体的三视图。
3.初步理解由三视图还原成实物图的思维方法.
【课堂互动】
自学评价
1.投影的定义:
. 2.中心投影的定义: 平行投影的定义: 平行投影的分类: 3.主视图(或正视图)的定义: 俯视图的定义: 左视图的定义:
【精典范例】
一、如何画一个实物的三视图?
例1:画出下列几何体的三视图。
中心投影和平行投影
空间几何体的三视图 柱、锥、台、 球的三视图 简单组合体的三视图
解答:见书12页例1
点评:1.画三视图的方法和步骤
(1)选择确定正前方,确定投影面,正前方应垂直于投影面,然后画出这时的正投影面------主视图
(2)自左到右的方向垂直于投影面,画出这时的正投影------左视图
⑶自上而下的方向是固定不变的。
在物体下方确定一个水平面作为投影-----俯视图
2.作图规律:长对正,宽相等,高平齐
例2:设所给的方向为物体的正前方,试画出它的三视图。
听课随笔。
立体几何教案 第二章 多面体与旋转体 球的直观图画法和球的表面积 教案_1

立体几何教案第二章多面体与旋转体球的直观图画法和球的表面积教案教学目标1.掌握球的正等测画法;2.熟记球的表面积公式;3.激发学生研讨公式的兴趣和掌握推导方法,从而培养学生的空间想象能力,逻辑思维能力和转化能力.教学重点和难点重点:球的表面积及表面积公式的推导.难点:球表面积公式的推导.教学设计过程一、复习提问师:圆的直观图用什么方法画出的.生:(思考片刻,要求学生答出)一般不用斜二测,而用正等测画.师:用正等测画圆的直观图规则是什么?生:(要求思考1分钟后回答)1.在已知图形⊙O中,互相垂直的轴Ox,Oy画直观图时,把它们画成对应的轴O'x',O'y',使∠x'Oy'=120°(或60°).2.已知图形上平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段.3.平行于x轴或y轴的线段、长度不变.二、讲新课1.球的直观图的画法:师:我们学习了圆的直观图的画法,球和圆有何不同.生:球是立体图形,圆是平面图形.师:那么球的直观图是否和圆的直观图画法类似.生:(学生思考后,举手回答)应有三个坐标轴.师:你怎么考虑的.生:因为圆是平面图形,两条相交直线确定平面,球是立体图体,只有三条互相垂直的直线才能确定空间.师:以上同学回答得很好,球是立体图形,它需要在三维空间中完成.讲解课本p.84例2,画半径为R 的球的直观图.画法:(略)2.球的表面积.师:圆的面积是多少?生:(异口同声回答)S=πR2师:圆的面积S=πR2,是怎样得来的,你知道吗?生:书上告诉的.(全班学生大笑)师:对了,这个结论是书上直接给出的.因为我们所学的知识还无法来解决它的推导过程,待今后继续深造来解决.师:我们今天来学习球的面积公式.同学们要特别注意知识的形成过程.师:(让学生目测实心半球)是半球面积大,还是底面的大圆面积大?(培养学生的观察能力和估算能力)(全班学生积极发言,充分调动了回答问题的积极性,这个问题较易回答)师:(同学们再目测一下)看看上面的面积是大圆面积的几倍(估算一下),是6倍吗?(部分学生回答不可能)师:是4倍吗?(教室里肃静,仍有一部分学生回答说:可能性不大)师:是2倍吗?生:差不多!师:上面的面积正好是下面底面大圆的2倍.为什么是2倍呢?正是我们今天解决的问题.师:圆柱、圆锥、圆台的表面积公式,都是利用它的展开图求出的,由于球面不能展开成平面图形,所以球的表面积公式无法用展开图求出,为了求得球的表面积公式,我们先来证明一个预备定理:定理球面内接圆台(圆台上、下底面是球的两个截面)的高为h,球心到母线的距离为p,那么圆台的侧面积为2πph.已知:球面O的内接圆台的高O1O'=h,球心O到母线AD的距离OE=p求证:S圆台侧=2πph.师:同学们考虑上式是比例式,在平面几何中怎样证明比例呢?生:利用相似形或平行线分线段成比例定理.师:这个题用什么方法证好呢?生:相似三角形.师:证哪两个三角形相似?生:(学生沉思,教师提示)只要证明△ADD'∽△OEE'即可,(如图2)师:(大家观测)上面回答对吗?生:(部分学生回答)对的.师:哪位同学起来回答为什么?生:(一位中等成绩的学生回答说)师:这两个三角形相似是很容易证明的.(课本中“注意”二字,这个结果对于球的内接圆柱、圆锥同样成立.应引起教师的注意,要求学生练习)师:下面证明定理:球面面积等于它的大圆面积的4倍.即:S球面=4πR2(在投影片上画出课本图2-48,并且画得大些)师:将半球面上的半大圆ANB分成2n等分,用过各分点平行于半球大圆面的平面将半球分为多少部分,是2n部分吗?生:(个别学生答,是2n部分,即注意力不集中的学生)不是.师:那么是几部分呢?生:是n部分.师:这n部分是什么图形呢?生:(一少部分回答说n个圆台)n-1个圆台,一个圆锥.师:我们作这些圆台的高,分别为h1,h2,h3,…,hn.球心到它们母线的距离是否相等.生:(部分学生认为不相等,教师准备作好引导的作用)相等的.师:设这个距离为p,由预备定理可得这些圆台圆锥的侧面积的和是多少?生:(全班学生思考,教师提示)S=2πph1+2πph2+…+2πphn=2πp(h1+h2+…+hn)师:同学们认真分析,h1+h2+h3+…+hn和应是多少.生:ON,即球的半径R.师:所以S=2πp·R.师:如果分点无限增加,侧面积怎样变化.生:(这时教师需提示)侧面积无限地接近半球面.(教师对无限地应解释,学生第一次接触这个名词)师:分点无限增加,p与R有什么关系.生:p无限地接近R.师:此时侧面积的和S变为2πR2,我们把这个和作为半球面的面积,即S球面=4πR2.例已知:圆柱的底面直径与高都等于球的直径.求证:(1)球的表面积等于圆柱的侧面积.师:圆柱的侧面积是什么?生:底面周长乘以高,即S=c·h.师:在本题中底面周长是什么?生:c=2πR.师:高是什么.生:h=2R.师:所以圆柱侧面积为S=4πR2.(这样问题(1)得证,证明过程要求学生下去练习完成)师:圆柱的全面积是侧面积加两个底面积.那全面积是多少呢?练习:1.球的大圆面积扩大到原来的4倍,那么球的表面积扩大到原来的[ ]2.三个球半径之比是1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的[ ]作业:p.92.6,7.家庭作业:1.阅读课文.(巩固知识的形成过程加深理解记忆)2.对于课文把半球的半大圆ANB分成2n等分.如果对球半径n等分行不行.课堂教学设计说明1.本节课完成了两个内容,一是球的直观图画法,二是球表面积公式及其推导.教案整体构思是要突出教师为主导,学生为主体,学生参与整个教学过程,克服学生上课走神的现象.常此以往,能调动学生学习积极性和主动性.2.重视知识的形成过程,培养学生逻辑推理能力和大胆猜想能力,因为发现问题要比解决问题更重要.数学这门学科不能仅仅作为工具去教学.不能把知识的结论抛给学生,使学生记住结论会演算两道题就行了.而是要培养学生在提高思考能力上下功夫.教学上要力戒“奉送真理,灌注真理”的做法。
立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)一、第一章:空间几何体的结构特征1. 教学目标(1) 了解柱体、锥体、球体的定义及性质。
(2) 掌握空间几何体的结构特征,如表面积、体积等。
(3) 培养学生的空间想象能力和抽象思维能力。
2. 教学内容(1) 柱体、锥体、球体的定义及性质。
(2) 空间几何体的结构特征,如表面积、体积的计算。
(3) 空间几何体的分类及应用。
3. 教学方法(1) 采用多媒体课件辅助教学,展示空间几何体的直观图形。
(2) 结合实物模型,引导学生感知空间几何体的结构特征。
(3) 利用例题和练习,巩固所学知识。
4. 教学重点与难点(1) 重点:空间几何体的结构特征,如表面积、体积的计算。
(2) 难点:空间几何体的分类及应用。
二、第二章:点、线、面的位置关系1. 教学目标(1) 了解点、线、面的位置关系,如平行、垂直等。
(2) 掌握空间点、线、面的判定方法及其性质。
(3) 培养学生的空间想象能力和逻辑推理能力。
2. 教学内容(1) 点、线、面的位置关系,如平行、垂直等。
(2) 空间点、线、面的判定方法及其性质。
(3) 空间点、线、面的应用,如线面垂直、面面垂直等。
3. 教学方法(1) 利用多媒体课件,展示空间点、线、面的位置关系。
(2) 结合实物模型,引导学生感知空间点、线、面的性质。
(3) 利用例题和练习,巩固所学知识。
4. 教学重点与难点(1) 重点:空间点、线、面的判定方法及其性质。
(2) 难点:空间点、线、面的应用,如线面垂直、面面垂直等。
三、第三章:空间向量及其应用1. 教学目标(1) 了解空间向量的定义及坐标表示。
(2) 掌握空间向量的运算规则,如加法、减法、数乘、点乘、叉乘等。
(3) 学会运用空间向量解决立体几何问题。
2. 教学内容(1) 空间向量的定义及坐标表示。
(2) 空间向量的运算规则,如加法、减法、数乘、点乘、叉乘等。
(3) 空间向量在立体几何中的应用,如线线、线面、面面间的夹角等。
高三数学二轮复习教学案——立体几何(2)

高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。
其中正确的命题是 。
4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真题演练
1、(常州市2013届高三期末)给出下列命题:
(1)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; (3)若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;
(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,所有真命题的序号为 ▲
2、(连云港市2013届高三期末)已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿 AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四 面体的体积为 ▲ .
3、(南京市、盐城市2013届高三期末)现有如下命题:①过平面外一点有且只有一条直线与该平面垂直;②过平面外一点有且只有一条直线与该平面平行;③如果两个平行平面和第三个平面相交, 那么所得的两条交线平行;④如果两个平面相互垂直, 那么经过第一个平面内一点且垂直于第二个平面的直线必在第一个平面内. 则所有真命题的序号是 ▲ .
4、(南通市2013届高三期末)已知正四棱锥的底面边长是6,高为7,这个正四棱锥的侧面积是 ▲ .
5、(徐州、淮安、宿迁市2013届高三期末)若一个长方体的长、宽、高分别为3、2、1,则它的外接球的表面积是 ▲ .
6、(苏州市2013届高三期末)如图,在长方体1111ABCD A B C D -中,3AB AD cm ==,12AA cm =,则三棱锥11A B D D -的体积为 3cm .
7、(泰州市2013届高三期末)在空间中,用a,b,c 表示三条不同的直线,γ表示平面,给出下列四个命题: (1)若,a b b c ,则a c (2)若,a b b c ⊥⊥,则a c ⊥ (3) 若a γ,b γ,则a b (4)若a γ⊥,b γ⊥,则a b 则所有真命题的序号是 ▲ .
8、(扬州市2013届高三期末)设a b 、是两条不同的直线,α、β是两个不同的平面,则下列四个命题
①若,a b a α⊥⊥,则//b α, ②若,a βαβ⊥⊥,则//a α, ③若βαβα⊥⊥
则,,//a a
④若,,a b a b αβ⊥⊥⊥,则αβ⊥,
其中正确的命题序号是 ▲ .
二、解答题
1、(常州市2013届高三期末)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,AD ⊥AB ,CD ∥AB ,
22AB AD ==,3CD =,直线PA 与底面ABCD 所成角为60°,点M 、N 分别是PA ,PB 的中点. (1)求证:MN ∥平面PCD ;
(2)求证:四边形MNCD 是直角梯形; (3)求证:DN ⊥平面PCB .
证明:
2、(连云港市2013届高三期末)如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC ,点D 为BC 中点,点E 为BD 中点,点F 在AC 1上,且AC 1=4AF .
(1)求证:平面ADF ⊥平面BCC 1B 1; (2)求证:EF //平面ABB 1A 1.
3、(南京市、盐城市2013届高三期末)在直三棱柱111C B A ABC -中, AB BC ⊥, D 为棱1CC 上任一点. (1)求证:直线11A B ∥平面ABD ;
A
B
C
C 1
A 1
B 1 F
E D (第16题图)
(2)求证:平面ABD ⊥平面11BCC B .
4、(南通市2013届高三期末)如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC 的中点.求证: (1)//EF 平面ABC ; (2)平面AEF ⊥平面A 1AD .
5、(徐州、淮安、宿迁市2013届高三期末)如图,在四棱柱1
111D C B A ABCD -中,已知平面⊥C C AA 11平面,ABCD 且3===CA BC AB , 1==CD AD .
A
B
C
D
E
F A 1 B 1
C 1
(第15题)
1A
E C
D B
A
1D
1B
1C
第16题
(1) 求证:;1AA BD ⊥
(2) 若E 为棱BC 的中点,求证://AE 平面11D DCC .
6、(苏州市2013届高三期末)如图,在三棱锥P ABC -中,BC ⊥平面PAB .已知PA AB =,点D ,E 分别为PB ,BC 的中点.
(1)求证:AD ⊥平面PBC ;
(2)若F 在线段AC 上,满足//AD 平面PEF ,求AF
FC
的值.
7、(泰州市2013届高三期末)在三棱锥S-ABC 中,SA ⊥平面ABC ,SA=AB=AC=
3
3
BC ,点D 是BC 边的中点,点E 是线段AD 上一点,且AE=4DE,点M 是线段SD 上一点, (1)求证:BC ⊥AM
(2)若AM ⊥平面SBC ,求证:EM 平面ABS
A
P
B
C
D
E
F
8、(无锡市2013届高三期末)如图,四棱锥P -A BCD 中,底面ABCD 为菱形,BD ⊥面PAC,A C=10,
PA=6,cos ∠PCA=4
5
,M 是PC 的中点. (Ⅰ)证明PC ⊥平面BMD;
(Ⅱ)若三棱锥M -BCD 的体积为14,求菱形ABCD 的边长.
9、(扬州市2013届高三期末)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD , AC BD ⊥于O 。
(Ⅰ)证明:平面PBD ⊥平面PAC ;
(Ⅱ)设E 为线段PC 上一点,若AC BE ⊥,求证://PA 平面BED。