计算方法实验报告册
计算方法实验报告

计算方法实验报告计算方法实验报告概述:计算方法是一门研究如何用计算机解决数学问题的学科。
在本次实验中,我们将学习和应用几种常见的计算方法,包括数值逼近、插值、数值积分和常微分方程求解。
通过实验,我们将深入了解这些方法的原理、应用场景以及其在计算机科学和工程领域的重要性。
数值逼近:数值逼近是一种通过使用近似值来计算复杂函数的方法。
在实验中,我们通过使用泰勒级数展开和牛顿迭代法等数值逼近技术,来计算函数的近似值。
这些方法在科学计算和工程领域中广泛应用,例如在信号处理、图像处理和优化问题中。
插值:插值是一种通过已知数据点来估算未知数据点的方法。
在实验中,我们将学习和应用拉格朗日插值和牛顿插值等方法,以及使用这些方法来构造函数的近似曲线。
插值技术在数据分析、图像处理和计算机图形学等领域中具有重要的应用价值。
数值积分:数值积分是一种通过将函数曲线划分为小矩形或梯形来估算函数的积分值的方法。
在实验中,我们将学习和应用矩形法和梯形法等数值积分技术,以及使用这些方法来计算函数的近似积分值。
数值积分在物理学、金融学和统计学等领域中被广泛使用。
常微分方程求解:常微分方程求解是一种通过数值方法来求解微分方程的方法。
在实验中,我们将学习和应用欧拉法和龙格-库塔法等常微分方程求解技术,以及使用这些方法来求解一些常见的微分方程。
常微分方程求解在物理学、生物学和工程学等领域中具有广泛的应用。
实验结果:通过实验,我们成功地应用了数值逼近、插值、数值积分和常微分方程求解等计算方法。
我们得到了准确的结果,并且在不同的应用场景中验证了这些方法的有效性和可靠性。
这些实验结果将对我们进一步理解和应用计算方法提供重要的指导和支持。
结论:计算方法是计算机科学和工程领域中的重要学科,它提供了解决复杂数学问题的有效工具和方法。
通过本次实验,我们深入了解了数值逼近、插值、数值积分和常微分方程求解等计算方法的原理和应用。
这些方法在科学研究、工程设计和数据分析等领域中具有广泛的应用价值。
数值分析计算方法实验报告

end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1
数值计算方法实验报告

数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
东南大学计算方法实验报告

计算方法与实习实验报告学院:电气工程学院指导老师:***班级:160093******学号:********实习题一实验1 拉格朗日插值法一、方法原理n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x)n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0)n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。
可求得l k三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:#include<iostream>#include<math.h>using namespace std;#define N 100double fun(double *x,double *y, int n,double p);void main(){int i,n;cout<<"输入节点的个数n:";cin>>n;double x[N], y[N],p;cout<<"please input xiangliang x= "<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"please input xiangliang y= "<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"please input LagelangrichazhiJieDian p= "<<endl;cin>>p;cout<<"The Answer= "<<fun(x,y,n,p)<<endl;system("pause") ;}double fun(double x[],double y[], int n,double p){double z=0,s=1.0;int k=0,i=0;double L[N];while(k<n){ if(k==0){ for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++) s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];return z;}五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
计算方法实验报告

计算方法实验报告班级:学号:姓名:时间:成绩:题目:分别用单点弦截法和双点弦截法求方程310x x --=的在1.5附近的根,并分析比较两种方法。
要求误差不超过410-一、 单点弦截法算法: =-(-) k=0,1,…1) 输入两个相近的初值和,误差限ε,最大允许迭代次数为N2) 设置n=13) 计算=-()4) <ε,则输出x=,停机,否则转(5)5) 若n < N,n+1n,转(3)且(3)式中的为所输入的初始值程序:Private Sub Command1_Click()Dim n As Integersing1 = Text1.Text ‘设置方程的系数sing2 = Text2.Textsing3 = Text3.Textsing4 = Text4.Textsing5 = Text5.Textsing6 = Text6.Textx0 = sing5: x1 = sing6 ‘设置迭代初值Do While Abs(x1 - x0) > 0.0001 ‘迭代过程n = n + 1 ‘迭代次数x2 = x1 - F(x1) * (x1 - Val(Text5.Text)) / (F(x1) - F(Val(Text5.Text))) ‘迭代表达式List1.AddItem "n=" & n & Space(4) & x2x0 = x1x1 = x2LoopText7.Text = x2End Sub二、双点弦截法算法:=-(-)1)输入选定的两个相近的初始值和,误差限ε,最大迭代次数N2)设置n=13)计算=-()4)若<ε,则输出x=,停机,否则转(5)5)若n < N,n+1n,转(3)程序:Private Sub Command2_Click()Dim n As Integerx0 = sing5: x1 = sing6Do While Abs(x1 - x0) > 0.0001n = n + 1x2 = x1 - F(x1) * (x1 - x0) / (F(x1) - F(x0))List2.AddItem "n=" & n & Space(4) & x2x0 = x1x1 = x2LoopText8.Text = x2End Sub其中的全局变量定义以及自定义函数过程程序:全局变量定义:Option ExpliciPublic sing1 As Single, sing2 As Single, sing3 As Single, sing4 As Single, sing5 As Single, sing6 As SinglePublic x0 As Single, x1 As Single, x2 As Single自定义函数过程:Private Function F(x As Single) As SingleF = sing1 * x ^ 3 + sing2 * x ^ 2 + sing3 * x + sing4 End Function运行结果:结果与分析:由程序运行结果可知在精度为10^-4时,单点弦截法的迭代结果为x=1.324723,而双点弦截法的迭代结果为x=1.324718结果分析:用单点弦截法迭代需要5次,而双点弦截法所需的迭代次数为4次。
计算方法实验报告习题2(浙大版)

计算方法实验报告实验名称: 实验2 列主元素消去法解方程组 1 引言工程实际问题中,线型方程的系数矩阵一般为低阶稠密矩阵和大型稀疏矩阵。
用高斯消去法解Ax =b 时,可能出现)(k kk a 很小,用作除数会导致中间结果矩阵元素数量级严重增长和舍入误差的扩散,使结果不可靠;采用选主元素的三角分解法可以避免此类问题。
高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A =LU ,并求解Ly =b 的过程。
回带过程就是求解上三角方程组Ux =y 。
所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法。
采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度。
2 实验目的和要求通过列主元素消去法求解线性方程组,实现P A =LU 。
要求计算解x ,L ,U ,整形数组IP (i ),(i =1,2,…,)(记录主行信息)。
3 算法原理与流程图(1)原理将A 分解为两个三角矩阵的乘积A =LU 。
对方程组的增广矩阵[]b A A ,=经过k-1步分解后,可变成如下形式:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡→-------------n nnnjnkk n n n i in ij ik k i i i k kn kj kk k k k k k n k j k k k k k k k n j k k n j k k b a a a l l l b a a a l l l b a a a l l l y u u u u l l y u u u u u l y u u u u u u A1,211,211,211,1,1,11,12,11,122221,2222111,1,11,11211第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kk m u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mkm s a l u i k k n -==-=+∑,于是有kk u =ks 。
计算方法实验报告(附代码)

实验一 牛顿下山法实验说明:求非线性方程组的解是科学计算常遇到的问题,有很多实际背景.各种算法层出不穷,其中迭代是主流算法。
只有建立有效的迭代格式,迭代数列才可以收敛于所求的根。
因此设计算法之前,对于一般迭代进行收敛性的判断是至关重要的。
牛顿法也叫切线法,是迭代算法中典型方法,只要初值选取适当,在单根附近,牛顿法收敛速度很快,初值对于牛顿迭代 至关重要。
当初值选取不当可以采用牛顿下山算法进行纠正。
牛顿下山公式:)()(1k k k k x f x f x x '-=+λ下山因子 ,,,,322121211=λ下山条件|)(||)(|1k k x f x f <+实验代码:#include<iostream> #include<iomanip> #include<cmath>using namespace std;double newton_downhill(double x0,double x1); //牛顿下山法函数,返回下山成功后的修正初值double Y; //定义下山因子Y double k; //k为下山因子Y允许的最小值double dfun(double x){return 3*x*x-1;} //dfun()计算f(x)的导数值double fun1(double x){return x*x*x-x-1;} //fun1()计算f(x)的函数值double fun2(double x) {return x-fun1(x)/dfun(x);} //fun2()计算迭代值int N; //N记录迭代次数double e; //e表示要求的精度int main(){double x0,x1;cout<<"请输入初值x0:";cin>>x0;cout<<"请输入要求的精度:";cin>>e;N=1;if(dfun(x0)==0){cout<<"f'(x0)=0,无法进行牛顿迭代!"<<endl;}x1=fun2(x0);cout<<"x0"<<setw(18)<<"x1"<<setw(18)<<"e"<<setw(25)<<"f(x1)-f(x0)"<<endl;cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<" "<<fabs(fun1(x1))-fabs(fun1(x0))<<endl;if(fabs(fun1(x1))>=fabs(fun1(x0))){ //初值不满足要求时,转入牛顿下山法x1=newton_downhill(x0,x1);} //牛顿下山法结束后,转入牛顿迭代法进行计算while(fabs(x1-x0)>=e){ //当精度不满足要求时N=N+1;x0=x1;if(dfun(x0)==0){cout<<"迭代途中f'(x0)=0,无法进行牛顿迭代!"<<endl;} x1=fun2(x0);cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<endl;}cout<<"迭代值为:"<<setiosflags(ios::fixed)<<setprecision(6)<<x1<<'\n';cout<<"迭代次数为:"<<N<<endl;return 0;}double newton_downhill(double x0,double x1){Y=1;cout<<"转入牛顿下山法,请输入下山因子允许的最小值:";cin>>k;while(fabs(fun1(x1))>=fabs(fun1(x0))){if(Y>k){Y=Y/2;}else {cout<<"下山失败!";exit(0);}x1=x0-Y*fun1(x0)/dfun(x0);}//下山成功则cout<<"下山成功!Y="<<Y<<",转入牛顿迭代法计算!"<<endl;return x1;}实验结果:图4.1G-S 迭代算法流程图实验二 高斯-塞德尔迭代法实验说明:线性方程组大致分迭代法和直接法。
计算方法实验报告

实验一:误差传播与算法稳定性实验目的:体会稳定性在选择算法中的地位。
实验内容:考虑一个简单的由积分定义的序列10I ,0,1,10nn x dx n a x==+⎰其中a 为参数,分别对0.05a =及15a =按下列两种方法计算。
方案1:用递推公式11,1,2,,10n n I aI n n-=-+= 递推初值可由积分直接得01lna I a+= 方案2:用递推公式111(),,1,,1n n I I n N N a n-=-+=-根据估计式当1n a n ≥+时,11(1)(1)(1)n I a n a n <<+++或当01n a n ≤<+时,11(1)(1)n I a n n<≤++ 取递推初值 当1n a n ≥+时, 11121()2(1)(1)(1)2(1)(1)N N a I I a N a N a a N +≈+=+++++ 当01n a n ≤<+时,111()2(1)(1)N N I I a N N≈+++ 实验要求:列出结果,并对其稳定性进行分析比较,说明原因。
实验二:非线性方程数值解法实验目的:探讨不同方法的计算效果和各自特点 实验内容:应用算法(1)牛顿法;(2)割线法 实验要求:(1)用上述各种方法,分别计算下面的两个例子。
在达到精度相同的前提下,比较其迭代次数。
(I )31080x x +-=,取00x =;(II) 2281(0.1)sin 1.060x x x -+++=,取00x =;(2) 取其它的初值0x ,结果如何?反复选取不同的初值,比较其结果; (3) 总结归纳你的实验结果,试说明各种方法的特点。
实验三:选主元高斯消去法----主元的选取与算法的稳定性问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一——插值方法实验学时:4实验类型:设计 实验要求:必修一 实验目的通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。
并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。
二 实验内容通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。
取点越密集,所得折线就越逼近理论上的插值曲线。
本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放于动态数组[]Y n 中。
以Visual C++.Net 2005为例。
本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。
CInterpolation 类为 class CInterpolation { public :CInterpolation();//构造函数CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… …………int n, N;//结点下标上限,采样点下标上限float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放i h ,i α,i β,i a ,i b ,i c ,i d 和i m};其中,有参数的构造函数为CInterpolation(float *x1, float *y1, int n1) {//动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1;N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];for (int i=0;i<=n;i++) {x[i]=x1[i]; y[i]=y1[i]; }for (int i=0;i<=N;i++) X[i]=x[0]+i; }2.1 Lagrange 插值()()nn i i i P x y l x ==∑,其中0,()nj i j j ni jx x l x x x =≠-=-∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算对应的Lagrange 插值基函数值()i l x float l(float xv,int i) //求插值基函数()i l x 的值 {float t=1;for (int j=0;j<=n;j++) if (j!=i)t=t*(xv-x[j])/(x[i]-x[j]); return t; }调用函数l(float x,int i),可求出()n P xfloat p_l(float x) //求()n P x 在一个点的插值结果 {float t=0;for (int i=0;i<=n;i++) t+=y[i]*l(x,i); return t; }调用p_l(float x)可实现整个区间的插值float *Lagrange() //求整个插值区间上所有采样点的插值结果 {float *Y=new float [N+1]; for (int k=0;k<=N;k++) Y[k]=p_l(x[0]+k*h); return Y; } 2.2Newton 插值010()(,,)()nn i i i P x f x x x x ω==∑,其中101,0()(),0i i j j i x x x i ω-==⎧⎪=⎨-≠⎪⎩∏,0100,()(,,)()ik i nk k j j j kf x f x x x x x ==≠=-∑∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算出01(,,)i f x x x 和()i x ωfloat *f() {//该函数的返回值是一个长度为n +1的动态数组,存放各阶差商 }float w(float x, int i) {//该函数计算()i x ω }在求()n P x 的函数中调用*f()得到各阶差商,然后在循环中调用w(float x)可得出插值结果 float p_n(float x) {//该函数计算()n P x 在一点的值 }调用p_n(float x)可实现整个区间的插值 float *Newton() {//该函数计算出插值区间内所有点的值 }2.3 三次样条插值三次样条插值程序可分为以下四步编写: (1) 计算结点间的步长i hi 、i α、i β;(2) 利用i hi 、i α、i β产生三对角方程组的系数矩阵和常数向量; (3) 通过求解三对角方程组,得出中间结点的导数i m ; (4) 对自变量x ,在对应区间1[,]i i x x +上,使用Hermite 插值; (5)调用上述函数,实现样条插值。
将每步写成函数:(1)void GetH(void ) {//该函数计算数组i hi}void GetAlpha(void){//该函数计算数组iα}void GetBeta(void){//该函数计算数组iβ}(2)void Geta(void){//该函数计算数组下对角线ia}void Getb(void){//该函数计算数组主对角线ib}void Getc(void){//该函数计算数组上对角线ic}void Getd(void){//该函数计算方程组右端常数项id}(3)float *Chasing(float *pa,float *pb,float *pc,float *pd,int n) {//追赶过程,计算各点斜率im}(4)float F0(float x){//该函数计算函数0()xϕ的值}float F1(float x) {//该函数计算函数1()xϕ的值}float P0(float x){//该函数计算函数0()xψ的值}float P1(float x){//该函数计算函数1()xψ的值}调用上述函数,实现三次样条插值float *Cubic_Spline(){//该函数计算所有点的插值结果}三实验组织运行要求实验前,由任课教师落实实验任务,每个学生事先编写好算法设计源程序代码。
集中上机、调试并通过计算机图形可视化演示操作实例来测试、验证所学的数值分析理论。
四实验条件为每个学生提供一台具有WINDOWS 98/XP/NT/2000操作系统的计算机;同时提供VC++/VB/JAVA/TC等集成语言开发环境来编程设计计算方法的上机实验。
五实验步骤1.根据实验内容和算法流程图预先编好程序初稿,上机调试、运行,输出正确的结果。
2.三种类型的插值函数所生成的图形要显示在同一坐标轴上,并用三种不同的颜色分别表示出来。
3.分析它们的运行结果,并比较三种插值函数各自不同的特点。
4.实验完毕后提交实验报告六实验程序NInterpolation.cpp#include "stdafx.h"#include "NInterpolation.h"NInterpolation::NInterpolation(void){}NInterpolation::NInterpolation(double *x,double *y,int n){this->n=n;this->x=new double[n+1];this->y=new double[n+1];for(int i=0;i<=n;i++){this->x[i]=x[i];this->y[i]=y[i];}N=x[n]-x[0];X=new double[N+1];Y=new double[N+1];for(int i=0;i<=N;i++)X[i]=x[0]+i;a=new double[n+1];for(int k=0;k<=n;k++){double t=0;for(int i=0;i<=k;i++){double m=1;for(int j=0;j<=k;j++){if(j==i)continue;elsem*=(x[i]-x[j]);}t+=y[i]/m;}a[k]=t;}}NInterpolation::~NInterpolation(void) {}void NInterpolation::Netwon(void){for(int i=0;i<=N;i++){Y[i]=0;for(int j=0;j<=n;j++){Y[i]+=((l(X[i],j)*a[j]));}}}double NInterpolation::l(double mx,int p){double m=1;for(int i=0;i<p;i++){m*=(mx-x[i]);}return m;}ZInterpolation.cpp#include "StdAfx.h"#include "ZInterpolation.h"ZInterpolation::ZInterpolation(void){}ZInterpolation::ZInterpolation(double *x,double *y,int n) {this->n=n;this->x=new double[n+1];this->y=new double[n+1];for(int i=0;i<=n;i++){this->x[i]=x[i];this->y[i]=y[i];}N=x[n]-x[0];X=new double[N+1];Y=new double[N+1];for(int i=0;i<=N;i++)X[i]=x[0]+i;}ZInterpolation::~ZInterpolation(void){}double ZInterpolation::l(double mx, int i){double t=1;for(int j=0;j<=n;j++)if(j==i)continue;elset*=(mx-x[j])/(x[i]-x[j]);return t;}double ZInterpolation::L(double mx){double t=0;for(int i=0;i<=n;i++)t+=y[i]*l(mx,i);return t;}void ZInterpolation::lagrange(void){for(int i=0;i<=N;i++)Y[i]=L(X[i]);}x=[1 2 3 4];y=[12 -8 34 100];xi=1:0.1:4;yi=interp1(x,y,xi,'spline');plot(x,y,'o',xi,yi);七实验结果NInterpolation ZInterpolationCubic_Spline上述是第一个实验——插值方法程序的构思和编写过程。