第7章热电式传感器

合集下载

热电式传感器的原理和应用

热电式传感器的原理和应用

热电式传感器的原理和应用一、热电式传感器的原理热电式传感器是一种使用热电效应来测量温度的传感器。

它利用了热电效应在两个不同材料接合处产生的温度差,从而生成一个电压或电流信号,用于测量温度。

1. 热电效应的基本原理热电效应是指两个不同材料的接触处由于温度差异而产生的电势差。

根据这个原理,热电式传感器通常由两种不同材料的导线或导体构成。

2. 热电偶原理热电偶是热电式传感器的一种常见类型,它由两根不同材料的导线通过焊接连接而成。

当一个导线的接触处受到热源的加热时,会产生一个电势差,这个电势差与温度成正比。

通过测量这个电势差,可以间接测量热源的温度。

3. 温度与电势差的关系热电偶的电势差与温度之间的关系可以通过热电势-温度特性曲线来描述。

每种材料的热电性质都不同,因此每根导线的热电特性也不同。

通过测量两个导线的电势差,可以确定温度的值。

二、热电式传感器的应用热电式传感器由于其简单、可靠的原理,被广泛应用于温度测量以及其他相关领域。

1. 工业自动化在工业自动化中,热电式传感器常用于测量各种流体、气体以及固体的温度。

它可以实时监测温度变化,并与控制系统相连,实现温度的自动调控。

2. 热处理过程热电式传感器在热处理过程中起到关键作用。

通过测量加热炉、熔炉等设备的温度,可以确保热处理过程的准确性和稳定性。

3. 医疗设备热电式传感器在医疗设备中也有广泛应用。

例如,体温计和血糖仪等便携式医疗设备都采用了热电式传感器来测量体温和血糖水平。

4. 环境监测热电式传感器还可以用于环境监测。

例如,测量室内和室外温度、湿度等参数,可以帮助调节室内环境,提供舒适的生活和工作环境。

结论热电式传感器是一种常见且有效的温度测量工具。

它利用热电效应的原理,通过测量热源产生的电势差来间接测量温度。

热电式传感器应用广泛,在工业自动化、热处理过程、医疗设备和环境监测等领域都有重要作用。

热电式传感器的原理和应用对提升生活和工作环境的舒适性,以及保证工业生产过程的准确性和稳定性都起到了关键作用。

热电式传感器工作原理

热电式传感器工作原理

热电式传感器是一种常用的温度测量装置,它基于热电效应来实现温度的检测和测量。

其工作原理可以归纳如下:
1.热电效应:热电效应是指当两个不同金属或半导体材料形成一个闭合回路时,在两个接
点处存在温差时会产生电势差。

这种现象称为热电效应,主要有两种类型:塞贝克效应和佩尔丹效应。

2.塞贝克效应:塞贝克效应是指当两种不同金属材料的接点处存在温差时,由于热电效应
产生的电势差。

这个电势差与温差之间的关系是线性的,即温差越大,产生的电势差越大。

3.佩尔丹效应:佩尔丹效应是指当两种不同半导体材料的接点处存在温差时,由于热电效
应产生的电势差。

与塞贝克效应类似,佩尔丹效应也具有线性关系。

4.传感器结构:热电式传感器通常由两种不同金属或半导体材料组成的热电偶或热敏电阻
构成。

其中一个接点暴露于待测温度环境,而另一个接点则与参考温度保持恒定。

当两个接点存在温差时,通过测量产生的热电势差就可以确定温度。

5.信号读取:为了读取热电势差并将其转换为温度值,通常使用热电偶仪表或热敏电阻仪
表。

这些仪器测量和解释由热电效应产生的微弱电信号,并将其转化为相应的温度值。

总结起来,热电式传感器利用热电效应来测量温度变化。

通过测量不同金属或半导体材料之间的热电势差,可以确定温度差异并将其转化为实际温度值。

这种原理使得热电式传感器在许多应用领域中被广泛使用,如工业过程控制、温度监测等。

第7章热电式传感器案例

第7章热电式传感器案例
4

B
第7章 热电式传感器
§7-1 热电偶
(二) (导体内)温差电势
导体内因两点温度不同,两点产生电势。
机理:导体内自由电子在高温 端具有较大的动能,因而向低 温端扩散,结果高温端因失去 电子而带正电荷,低温端因得 到电子而带负电荷,从而形成 一个静电场。
eA (T , T0 ) dT
- eAB (T0 ) eBC (T0 ) eCA (T0 )
10
第7章 热电式传感器
§7-1 热电偶
二、热电偶基本定律 (一)中间导体定律 右图的热电偶回路总电势为
EABC (T , T0 ) eAB (T ) eBC (T0 ) eCA (T0 ) - AdT BdT
第7章 热电式传感器
热电式传感器是一种将温度变化转换为电量变化的装置。在 各种热电式传感器中,把量转换为电势和电阻的方法最为普遍。 其中:将温度转换为电势的热电式传感器叫热电偶 将温度转换为电阻值的热电式传感器叫热电阻。 ① 温度 电势 放大电路
热电偶 热电阻 热敏电阻

温度
电阻
检测电路
1
第7章 热电式传感器
EABC (T , T0 ) eAB (T ) eBC (T0 ) eCA (T0 ) - AdT BdT
T0 T0
T
T
接触电势
温差电势
9
第7章 热电式传感器
§7-1 热电偶
二、热电偶基本定律 (一)中间导体定律
在T=T0时
eAB (T0 ) eBC (T0 ) eCA (T0 ) 0
EABC (T , T0 ) eAB (T ) - eAB (T0 ) ( B - A )dT EAB (T , T0 )

《传感器与检测专业技术》第二版部分计算题解答

《传感器与检测专业技术》第二版部分计算题解答

-《传感器与检测技术》第二版部分计算题解答————————————————————————————————作者:————————————————————————————————日期:第一章 传感器与检测技术概论作业与思考题1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V 减至2.5V ,求该仪器的灵敏度。

依题意:已知X 1=4.5mm ; X 2=5.5mm ; Y 1=3.5V ; Y 2=2.5V求:S ;解:根据式(1-3) 有:15.45.55.35.21212-=--=--=∆∆=X X Y Y X Y S V/mm 答:该仪器的灵敏度为-1V/mm 。

2.某测温系统由以下四个环节组成,各自的灵敏度如下:铂电阻温度传感器:0.35Ω/℃;电桥:0.01V/Ω;放大器:100(放大倍数);笔式记录仪:0.1cm/V求:(1)测温系统的总灵敏度;(2)纪录仪笔尖位移4cm 时。

所对应的温度变化值。

依题意:已知S 1=0.35Ω/℃; S 2=0.01V/Ω; S 3=100; S 4=0.1cm/V ; ΔT=4cm求:S ;ΔT解:检测系统的方框图如下:ΔT ΔR ΔU 1 ΔU 2 ΔL(3分)(1)S=S 1×S 2×S 3×S 4=0.35×0.01×100×0.1=0.035(cm/℃) (2)因为:TL S ∆∆=所以:29.114035.04==∆=∆S L T (℃) 答:该测温系统总的灵敏度为0.035cm/℃;记录笔尖位移4cm 时,对应温度变化114.29℃。

3.有三台测温仪表,量程均为0_600℃,引用误差分别为2.5%、2.0%和1.5%,现要测量500℃的温度,要求相对误差不超过2.5%,选哪台仪表合理?依题意,已知:R=600℃; δ1=2.5%; δ2=2.0%; δ3=1.5%; L=500℃; γM =2.5% 求:γM1 γM2 γM3解:铂电电桥放大记录(1)根据公式(1-21)%100⨯∆=Rδ 这三台仪表的最大绝对误差为:0.15%5.26001=⨯=∆m ℃0.12%0.26002=⨯=∆m ℃0.9%5.16003=⨯=∆m ℃(2)根据公式(1-19)%100L 0⨯∆=γ 该三台仪表在500℃时的最大相对误差为:%75.2%10050015%10011=⨯=⨯∆=L m m γ %4.2%10050012%10012=⨯=⨯∆=L m m γ %25.2%1005009%10013=⨯=⨯∆=L m m γ 可见,使用2.0级的仪表最合理。

热电式传感器的工作原理及其分类

热电式传感器的工作原理及其分类

热电式传感器的工作原理及其分类
热电式传感器是将温度变化转换为电量变化的装置。

它是利用某些材料或元件的性能随温度变化的特性来进行测量的。

例如将温度变化转换为电阻、热电动势、热膨胀、导磁率等的变化,再通过适当的测量电路达到检测温度的目的。

把温度变化转换为电势的热电式传感器称为热电偶;把温度变化转换为电阻值的热电式传感器称为热电阻。

热电式传感器的工作原理
热电偶是利用热电效应制成的温度传感器。

所谓热电效应,就是两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势的现象。

由热电效应产生的电动势包括接触电动势和温差电动势。

接触电动势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。

其数值取决于两种不同导体的材料特性和接触点的温度。

温差电动势是同一导体的两端因其温度不同而产生的一种电动势。

其。

传感器技术课件-热电式传感器

传感器技术课件-热电式传感器

热电式传感器的应用领域
工业自动化
用于测量温度、流量、气体浓度等参数,提高生产效率和质量。
能源管理
用于监测和控制能源消耗,优化能源利用效率。
汽车工业
用于发动机温度、刹车系统和座椅加热等应用。
热电式传感器与其他传感器的比较
热电式传感器
• 适用于高温环境 • 温度测量范围宽 • 稳定性和精度高
压力传感器
热电式传感器的结构及原理
结构
热电式传感器通常由热电材料、保护层、连接线 和环境接口组成。
原理
当热电材料的两端产生温度差时,热电效应将使 电场中的电子产生电流,从而实现温度测量。
热电式传感器的分类
1 温度差型热电式传感器
适用于测量温度差异的传感器,如热电偶和 热敏电阻。
2 温度感应型热电式传感器
适用于测量单一温度的传感器,如热电阻和 热电堆。
选择离测量对象最近的位置,避免热量流失。
2 防护和维护
确保传感器受到适当的防护,并进行定期检查和校准。
3 电源和电路设计
考虑传感器的电源供应和信号处理电路的设计,以确保准确运行。
热电式传感器的校验方法
1 对比法
2 零点校准
将传感器与已知准确度的 参考温度计进行偏差。
传感器技术课件-热电式 传感器
热电式传感器是一种能够将热量转化为电能的传感器。了解其基本原理、结 构和应用领域,以及其优点和缺点是非常重要的。
什么是热电式传感器
热电式传感器是一种将温度变化转化为电压或电流输出的传感器。它利用热电效应来测量温度,并将温度变化 转化为电信号。
热电效应的基本原理
热电效应是指当两个不同材料的接触点形成温度差时,产生的电压或电流。 这种效应是由于不同材料的电子在温度梯度下产生的差异。

热电式传感器1.

热电式传感器1.

常用热电偶型号、测温范围等见表7-1
名称 型号 分 度 号
B
测温范围° C 长期
0-1600
允许偏差 温度° C
1000-1500
短期
0-1800
偏差
+0.5%
温度
>1500
偏差
+7.5%
铂铑30-铂铑6
WRLL
铂铑-铂
WRL B
WRE U WRE A
S
0-1300
0-1600
0-600
+2.4%
(2)镍铬-镍硅热电偶 镍铬为正极,镍硅为负极。直径为Φ1.2~2.5mm,分度号 为K。 优点:可测900 ° C以下的温度,短期可测1200 ° C高温;复制性 好,热电势大,线性好,价格便宜。 缺点:稳定性较差 (3)镍铬-考铜热电偶 镍铬为正极,考铜为负极。直径为Φ1.2~2mm,分度号为 E。适用于还原性和中性介质,一般温度不超过600 ° C,最高可 达800 ° C。 其灵敏度高,价格便宜,但测温范围窄而低,易受氧化。
(2)绝缘套管 (3)保护套管
(4)接线盒
四、热电偶冷端温度补偿 1.补偿导线法 用一导线将热电偶冷端延 伸出来,如图7-9所示。
2.冷端温度计算校正法 当冷端温度高于0º C而稳定于t0时,则仪表测得值小于实际 值,故应予以修正:
例如:K型热电偶在工作时冷端温度为t0=30º C,测得热电势 EK(t,t0)=39.17mv,求被测介质的实际温度。 解:由分度表查出EK(30º C, 0º C)=1.2mv 故EK(t, 0º C)= EK(t,30º C)+ EK(30º C, 0º C) =39.17+1.2 =40.37mv

《传感器与检测技术胡向东第2版》习题解答

《传感器与检测技术胡向东第2版》习题解答

传感器与检测技术(胡向东,第2版)习题解答王涛第1章概述1、1 什么就是传感器?答:传感器就是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件与装置,通常由敏感元件与转换元件组成。

1、2 传感器的共性就是什么?答:传感器的共性就就是利用物理定律或物质的物理、化学或生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、频率、电荷、电容、电阻等)输出。

1、3 传感器一般由哪几部分组成?答:传感器的基本组成分为敏感元件与转换元件两部分,分别完成检测与转换两个基本功能。

另外还需要信号调理与转换电路,辅助电源。

1、4 传感器就是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量与工作原理的分类方式应用较为普遍。

①按传感器的输入量(即被测参数)进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。

②按传感器的工作原理进行分类根据传感器的工作原理(物理定律、物理效应、半导体理论、化学原理等),可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器与生物传感器。

1、6 改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。

第2章传感器的基本特性2、1 什么就是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性就是它在稳态信号作用下的输入、输出关系。

静态特性所描述的传感器的输入-输出关系中不含时间变量。

衡量传感器静态特性的主要指标就是线性度、灵敏度、分辨率、迟滞、重复性与漂移。

2、3 利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞与重复性误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T0
E AB (T )
kT e
ln
NA NB
EAB (T0 )
k T0 e
ln
NA NB
NA,NB——分别为导体A和B的自由电子密度。
材料一定时,E大小与T之间成正比。
A导体的温差电势:
σA —分别为导体 A 的汤姆逊系数。
表示单一导体的两端温差为1℃时所产生的温差电势。
忽略温差电势后可得:
EAB(T,T0)=f(T)-f(T0) EAB(T,T0)=f(T)-C =Φ(T)
mv
C
C
T0
T0
A
B
代入上式得到
EABC(T,
T0)=EAB(T)-EAB(T0)+EB(T,T0)-EA(T,T0)=EAB
(T,
T
T0)
因而中间导体定律得到证明。
3.标准电极定律
两种导体A,B分别与参考电极C组成热电偶,如 果他们所产生的热电动势为已知,A和B两极配对后 的热电动势可用下式求得:
3) 镍铬—考铜热电偶(E型) 分度号为EA—2
工业用热电偶丝:Ф1.2~2mm,实验室用可更细些。 正极:镍铬合金 负极:考铜合金(用56%铜,44%镍冶炼而成)。 测量温度:长期600℃,短期800℃。 特点: 价格比较便宜,工业上广泛应用。 在常用热电偶中它产生的热电势最大。 气体硫化物对热电偶有腐蚀作用。考铜易氧化变质,适于在还原性或中性介质中 使用。
2) 镍铬—镍硅(镍铝)热电偶(K型) 分度号EU—2
工业用热电偶丝: Φ1.2~2.5mm,实验室用可细些。 正极:镍铬合金(用88.4~89.7%镍、9~10%铬,0.6%硅,0.3%锰,0.4~0.7%钴冶炼 而成)。 负极:镍硅合金(用95.7~97%镍,2~3%硅,0.4~0.7%钴冶炼而成)。 测量温度:长期1000℃,短期1300℃。 特点: 价格比较便宜,在工业上广泛应用。 高温下抗氧化能力强,在还原性气体和含有SO2,H2S等气体中易被侵蚀。 复现性好,热电势大。
4) 铂铑30—铂铑6热电偶(B型) 分度号为LL—2
正极:铂铑合金(用70%铂,30%铑冶炼而成)。 负极:铂铑合金(用94%铂,6%铑冶炼而成)。 测量温度:长期可到1600℃,短期可达1800℃。 特点: 材料性能稳定,测量精度高。 还原性气体中易被侵蚀。 低温热电势极小,冷端温度在50℃以下可不加补偿。 成本高。
7. 1 工作原理
热电偶 thermocouples
热电效应 (1821,Seebeck)
将两种不同材料的导体A和B串接成一个闭合 回路,当两个接点温度不同时,在回路中就会产 生热电势,形成电流,此现象称为热电效应。
⑴A、B两导体的接触电动势: ⑵单一导体的温差电动势
接触电动势:
A
T B
k——玻耳兹曼常数; e——电子电荷量; T——接触处的温度;
EAB (T ,T0 ) EAC (T ,T0 ) ECB (T ,T0 )
A
A
C
T
T0 = T
T0 — T
T0
B
C
B
由于铂的物理化学性质稳定、人们多采用铂作为参考电极。
方便了选配工作
7. 3 热电偶的常用材料
热电偶材料应满足:
物理性能稳定,热电特性不随时间改变; 化学性能稳定,以保证在不同介质中测量时不被腐蚀; 热电势高,导电率高,且电阻温度系数小; 便于制造; 复现性好,便于成批生产。
1. 热电偶常用材料
1) 铂—铂铑热电偶(S型) 分度号LB—3
工业用热电偶丝:Φ0.5mm,实验室用可更细些。 正极:铂铑合金丝,用90%铂和10%铑(重量比)冶炼而成。 负极:铂丝。 测量温度:长期:1300℃、短期:1600℃。 特点: 材料性能稳定,测量准确度较高;可做成标准热电偶或基准热电偶。用途:实 验室或校验其它热电偶。 测量温度较高,一般用来测量1000℃以上高温。 在高温还原性气体中(如气体中含Co、H2等)易被侵蚀,需要用保护套管。 材料属贵金属,成本较高。 热电势较弱。
100
0.643 0.645
200
1.432 1.440
工作端 温度

热电势 mV
LB-3
S
300
2.315 2.323
400
3.250 3.260
500
4.220 4.234
600
5.222 5.237
700
6.265 6.274
800
7.322 7.345
900
8.421 8.448
(参考端温度为0℃)
工作端 温度

热电势 mV
LB-3
S
1000 9.556 9.585
1100 10.723 10.754
1200 1300 1400 1500 1600
11.915 13.116 14.313 15.504 16.688
11.947 13.155 14.368 15.576 16.711
7. 2 热电偶的基本定律
2.中间导体定律 在热电偶回路中接入第
三种材料的导线,只要第三 种材料导线的两端温度相同, 第三种导线的介入不会影响 热电偶的热电动势,称作中 间导体定律。
第三种材料的接入
意义:由于中间导体定律的存在,可以在回路中引入各种仪表和连接导线,不 会影响热电动势。
证明
热电偶回路接入中间导体C后的热电势为:
EABC(T,T0)= EAB(T)+EBC(T0)+ECA(T0)+ EA(T0,T)+EB(T,T0)+EC(T0,T0)
而EBC(T0)+ECA(T0)=KeT0
ln
NB NC
=
KT 0
ln
NB
e NA
= - EAB(T0)
+
KT 0 e
ln
NC NA
EC(T0,T0)=0, EA(T0,T)= - EA(T,T0)
1. 均质导体定律 2.中间导体定律 3.标准电极定律
1. 均质导体定律 由一种均质导体组成闭合回路,不会产生热电动势。
根据匀质导体定律可知: (1)热电偶必须由两种不同的匀质材料制成,热电势的大小只与热 电极及两个结点的温度有关,而与热电极的截面及温度分布无关。 (2)此定律可用来检验热电极材料是否为匀质材料。如果由同种匀 质材料组成闭合回路,则不管回路路线是否存在温差,回路无电势 输出。如果该回路由同种非匀质热电极材料组成,且存在温度差, 则有热电势输出,材料越不均匀,输出的热电势越大,据此可检查 热电极材料的均匀性。
目前热电偶统一规定在T0=0℃的条件下,给出测量端温度与热电势的数值对照 表,即分度表。
铂铑10-铂热电偶分度表 (部分)
分度号:LB-3,S
工作端 温度

热电势 mV
LB-3
S
0
0.000 0.000
20
0.113 113
40
0.235 0.235
60
0.364 0.365
80
0.500 0.502
相关文档
最新文档