大地测量
大地测量学

大地测量学大地测量学是地球学科的重要分支,是测绘科学的基础学科,在测绘专业的课程设置中占有重要的地位和作用。
其主要测定地球大小;研究地球形状;测定地面点的几何位置,将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。
这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。
就其本质来说,他是一门地球信息学,即为人类的活动提供地球空间信息的学科。
大地测量学的的内容包括几何大地测量学、物理大地测量学、空间大地测量学。
几何大地测量学主要是研究确定地球形状、大小和确定地面点三维空间的理论及技术、因此有关精密的角度、距离测量、水准测量,地球椭圆球体的参数及模型,椭圆面上测量成果的计算、平差、投影变换以及大地控制网建立的原理和技术方法等,是几何大地测量学的基本内容。
物理大地测量学研究用武力方法(重力测量)确定地球的形状及外部重力场。
它的主要内容是重力测量及其归化、地球及外部重力场模型、大地测量边值问题、重力为理论、球谐函数、利用重力测量研究地球形状及椭圆球体参数等。
空间大地测量学是研究以卫星及其它空间探测器实施大地测量的理论和技术。
主要内容包括卫星多普勒技术,海洋卫星雷达测高,激光卫星测距以及卫星定位系统(GPS)和GLONASS,我国的“北斗”卫星定位导航系统,卫星定位定轨理论以及应用卫星及空间探测器在全国性大地测量控制网,全球性的地球动态参数求定和重力场模型的精华、地壳形变、板块运功的、海空导航、导弹制导等方面的研究。
因此较确切地讲。
空间大地测量学的开创。
使大地测量学迈入了以可变地球为研究对象,实施全球动态就对测量的现代大地测量新时期。
学科发展史——萌芽阶段在17世纪以前,大地测量只是处于萌芽状态。
公元前 3世纪,亚历山大的埃拉托斯特尼首先应用几何学中圆周上一段弧AB的长度S、对应的中心角r同圆半径R的关系,估计了地球的半径长度,由于圆弧的两端A和B大致位于同一子午圈上,以后在此基础上发展为子午弧度测量。
测绘综合能力

测绘综合能力----第一章大地测量第一节大地测量概论大地测量的概论(P3)大地测量是为研究地球的形状及表面特性进行的实际测量工作。
其主要任务是建立国家或大范围的精密控制测量网,内容有三角测量、导线测量、水准测量、天文测量、重力测量、惯性测量、卫星大地测量以及各种大地测量数据处理等。
①它为大规模地形图测制及各种工程测量提供高精度的平面控制和高程控制;②为空间科学技术和军事用途等提供精确的点位坐标、距离、方位及地球重力场资料;③为研究地球形状和大小、地壳形变及地震预报等科学问题提供资料。
大地坐标系与参考框架(P4)大地测量系统包括坐标系统、高程系统、深度基准和重力参考系统。
与大地测量系统相对应,大地参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。
地心坐标系(P4)国际地面参考框架(ITRF)是国际地面参考系统(ITRS)的具体实现。
它以甚长基线干涉测量(VLBI)、卫星激光测距(SLR)、激光测月(LLR)、G(P)S和卫星多普勒定轨定位(DORIS)等空间大地测量技术构成全球观测网点,经数据处理,得到ITRF点(地面观测点)站坐标和速度场等。
2000国家大地控制网是定义在ITF'S 2000地心坐标系统中的区域性地心坐标框架。
区域性地心坐标框架一般由三级构成。
第一级为连续运行站构成的动态地心坐标框架,它是区域性地心坐标框架的主控制;第二级是与连续运行站定期联测的大地控制点构成的准动态地心坐标框架;第三级是加密大地控制点.(ITRF)已成为国际公认的应用最广泛、精度最高的地心坐标框架。
高程系统(p5)1985国家高程基准是我国现采用的高程基准,青岛水准原点高程为72. 260 4 m。
水准原点网由主点-----原点、参考点、附点共6个点组成我国高程系统采用正常高系统,正常高的起算面是似大地水准面。
由地面点沿垂线向下至似大地水准面之间的距离,就是该点的正常高,即该点的高程。
《大地测量学》课件

激光雷达地形测量
利用激光雷达技术获取高 精度地形数据,常用于数 字高程模型(DEM)的建 立。
激光雷达遥感
通过激光雷达技术获取地 表信息,用于地质、环境 监测等领域。
其他大地测量技术与方法
重力测量
利用重力加速度的差异来测定地球重力场参数,常用于地球 物理研究。
惯性导航
利用惯性传感器来测定运动物体的姿态、位置和速度,常用 于海洋和航空导航。
大地测量学的应用领域
• 总结词:大地测量学的应用领域非常广泛,包括地理信息系统、资源调 查、城市规划、灾害监测等。
• 详细描述:大地测量学在地理信息系统中的应用主要是提供高精度、高分辨率的地理信息数据,用于地图制作、土地规 划、环境监测等领域。在资源调查方面,大地测量学可以通过对地球的重力场和磁场进行测量,探测地下矿产资源,并 对海洋资源进行调查和监测。此外,大地测量学在城市规划中也有广泛应用,例如通过卫星遥感技术对城市环境进行监 测和评估,以及利用GPS技术对城市交通进行管理和优化。最后,大地测量学在灾害监测方面也发挥了重要作用,例如 通过大地测量技术对地震、火山、滑坡等自然灾害进行监测和预警。
大地测量在地理信息系统中的应用领域
基础地理信息获取
大地测量提供高精度的地 理坐标和地形数据,是GIS 获取基础地理信息的重要 手段。
地图制作与更新
大地测量数据可用于制作 高精度地图,并定期更新 以确保地图的准确性和现 势性。
空间分析与应用
大地测量数据与其他空间 数据结合,可进行空间分 析、规划、决策等应用。
大地测量在地理信
05
息系统中的应用
地理信息系统概述
地理信息系统定义
地理信息系统(GIS)是一种用于采集、存储、处理、分析和显示 地理数据的计算机系统。
大地测量学基础

2020年10月28日星期三12时57分11秒
(一)天球坐标系
1.天球的基本概念: 天球、天极、天球赤道、天球子午圈、 时圈、黄道、黄赤交角、春分点、黄极、 岁差与章动 2.天球坐标系的建立 1)天球空间直角坐标系 2)天球球面坐标系
第二章 大地测量基础知识
§2-1 大地测量的基准面和基准线 一、水准面与大地水准面
1、水准面 我们把重力位相等的面称为重力等位面,也就 是我们通常所说的水准面。水准面有无数个。 1)水准面具有复杂的形状。 2)水准面相互既不能相交也不能相切。
2020年10月28日星期三12时57分11秒
3)每个水准面都对应着唯一的位能W=C=常 数,在这个面上移动单位质量不做功,亦即所做 的功等于0,即dW=-gsds,可见水准面是均衡面。
2020年10月28日星期三12时57分11秒
天球基本概念(1)
天球:我们 把以地球M 为中心,以 无穷远的距 离为半径所 形成的球称 作天球。
天极:地球自
转的中心轴线 简称地轴,将 其延伸就是天 轴,天轴与天 球的交点称为 天极,Pn在北 称作北天极, PS,在南称作
南天极。
天球赤道:
通过地球质心 M与地轴垂直 的平面称为天 球赤道面,天 球赤道面与天 球相交的大圆 就称为天球赤 道。
N2d min
2020年10月28日星期三12时57分11秒
4、但对于天文大地测量及大地点坐标的推算, 对于国家测图及区域绘图来说,往往采用其大小 及定位定向最接近于本国或本地区的地球椭球。 这种最接近,表现在两个面最接近即同点的法线 和垂线最接近。所有地面测量都依法线投影在这 个椭球面上,我们把这样的椭球叫参考椭球。
第五章 大地测量的基本技术与方法(1)

② 技术设计的内容和方法 [1] 搜集和分析资料 (1)测区内各种比例尺的地形图。 (2)已有的控制测量成果(包括全部有关技术文件、图表、手簿 等等)。 (3)有关测区的气象、地质等情况,以供建标、埋石、安排作业 时间等方面的参考。 (4)现场踏勘了解已有控制标志的保存完好情况。 (5)调查测区的行政区划、交通便利情况和物资供应情况。若在 少数民族地区,则应了解民族风俗、习惯。 对搜集到的上述资料进行分析,以确定网的布设形式,起始 数据如何获得,网的未来扩展等。 其次还应考虑网的坐标系投影带和投影面的选择。 此外还应考虑网的图形结构,旧有标志可否利用等问题。
上海港GPS扩展网网图
2 甚长基线干涉测量(VLBI) 甚长基线干涉测量系统是在甚长基线的两端(相距几千公里), 用射电望远镜,接收银河系或银河系以外的类星体发出的无线电辐 射信号,通过信号对比,根据干涉原理,直接确定基线长度和方向 的一种空间技术。长度的相对精度可优于10-6,对测定射电源的空 间位置,可达0.001”,由于其定位的精度高,可在研究地球的极移 、地球自转速率的短周期变化、地球固体潮、大地板块运动的相对 速率和方向中得到广泛的应用。
(3)从安全生产方面考虑 点位离公路、铁路和其他建筑物以及高压电线等应有一定的 距离。 图上设计的方法及主要步骤 图上设计宜在中比例尺地形图(根据测区大小,选用1:25 000~1 :100 000地形图)上进行,其方法和步骤如下: a 展绘已知点; b 按上述对点位的基本要求,从已知点开始扩展; c 判断和检查点间的通视; d 估算控制网中各推算元素的精度; e 据测区的情况调查和图上设计结果,写出文字说明,并拟定作业 计划。
2. 大地控制网应有足够的精度。 国家三角网的精度,应能满足大比例尺测图的要求。在测图中 ,要求首级图根点相对于起算三角点的点位误差,在图上应不 超过±0.1mm,相对于地面点的点位误差则不超过 ±0.1Nmm(N 为测图比例尺分母)。 为使国家三角点的误差对图点的影响可以忽略不计,应使相邻国 家三角点的点位误差小于(1/3) ×0.1Nmm。
大地测量学常用的坐标系

大地测量学常用的坐标系引言大地测量学是研究地球形状、大小、重力场及其变化的科学,广泛应用于工程测量、地图制图、导航定位等领域。
在进行测量和定位时,需要采用合适的坐标系来描述地球表面的点和其相对位置关系。
本文将介绍大地测量学中常用的坐标系。
地心坐标系(Geocentric Coordinate System)地心坐标系是以地球质心为原点建立的坐标系,常用来描述地球内部重力场的分布以及地球形状的变化。
地心坐标系的三个坐标轴分别指向地球的北极、本初子午线和赤道平面,称为北极轴、子午轴和赤道轴。
地心坐标系的优点是在研究全球性的问题时非常有用,可以精确描述地球形状和大小的变化。
大地坐标系(Geodetic Coordinate System)大地坐标系是基于地球表面形状和地球椭球体模型建立的坐标系。
在大地坐标系中,使用经度(longitude)和纬度(latitude)来确定地球表面上点的位置。
经度是指从本初子午线开始,沿赤道向东或向西测量的角度,纬度是指从赤道开始,沿黄道向北或向南测量的角度。
大地坐标系常用于地图制图和导航定位等应用中。
投影坐标系(Projected Coordinate System)投影坐标系是为了适应地球表面的非平面特性而引入的。
在投影坐标系中,地球表面上的经纬度坐标被投影到一个平面上,从而实现对地图的制作和使用。
不同的投影方式会导致不同的形变问题,如面积变形、角度变形和长度变形等。
常见的投影坐标系有墨卡托投影、麦卡托投影、兰伯特投影等。
本地坐标系(Local Coordinate System)本地坐标系是根据地球表面的局部特征建立的坐标系,主要用于工程测量和定位。
在本地坐标系中,原点和坐标轴的选择由具体的测量任务和地理特征决定。
本地坐标系可以使用笛卡尔坐标系或极坐标系来表示。
与其他坐标系相比,本地坐标系的优势在于简化了测量计算和数据处理的过程。
结论在大地测量学中,常用的坐标系包括地心坐标系、大地坐标系、投影坐标系和本地坐标系。
大地测量学

大地测量学1.解释大地测量学,现代大地测量学由哪几部分组成?谈谈其基本任务和作用?大地测量学----是测绘学科的分支,是测绘学科的各学科的基础科学,是研究地球的形状、大小及地球重力场的理论、技术和方法的学科。
大地测量学的主要任务:测量和描述地球并监测其变化,为人类活动提供关于地球的空间信息。
具体表现在(1)、建立与维护国家及全球的地面三维大地控制网。
(2)、测量并描述地球动力现象。
(3)、测定地球重力及随时空的变化。
大地测量学由以下三个分支构成:几何大地测量学,物理大地测量学及空间大地测量学。
几何大地测量学的基本任务是确定地球的形状和大小及确定地面点的几何位置。
作用:可以用来精密的测量角度,距离,水准测量,地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型物理大地测量学的基本任务是用物理方法确定地球形状及其外部重力场。
主要内容包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法等。
空间大地测量学主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。
2、大地测量学的发展经理了哪些阶段,简述各阶段的主要贡献和特点。
分为一下几个阶段:地球圆球阶段,地球椭球阶段,大地水准面阶段,现代大地测量新时期地球圆球阶段,首次用子午圈弧长测量法来估算地球半径。
这是人类应用弧度测量概念对地球大小的第一次估算。
地球椭球阶段,在这阶段,几何大地测量在验证了牛顿的万有引力定律和证实地球为椭球学说之后,开始走向成熟发展的道路,取得的成绩主要体现在一下几个方面:1)长度单位的建立 2)最小二乘法的提出 3)椭球大地测量学的形成 4)弧度测量大规模展开 5)推算了不同的地球椭球参数这个阶段为物理大地测量学奠定了基础理论。
大地水准面阶段,几何大地测量学的发展:1)天文大地网的布设有了重大发展,2)因瓦基线尺出现物理大地测量学的发展 1)大地测量边值问题理论的提出 2)提出了新的椭球参数现代大地测量新时期以地磁波测距、人造地球卫星定位系统及其长基线干涉测量等为代表的新的测量技术的出现,使大地测量定位、确定地球参数及重力场,构筑数字地球等基本测绘任务都以崭新的理论和方法来进行。
大地测量学

© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 7
§1.1 大地测量学的定义和作用
2)要有一个精确的全球重力场模型,用来描述对飞行器 的约束。 重力场模型中位展开系数是卫星轨道动力方程中的 决定性参数。 在国防中的这种保障作用体现在: 从古代战争到现代战争,以及未来战争,都需要军事测 绘做保障,1)超前储备保障; 2)动态实时保障。 例如,战争区域中的电子地图,数字地图,军事目标的 三维坐标是现代战争中不可缺少的测绘文件,而这 些军事测绘资料都离不开大地测量手段取得。 4、在当代地球科学研究中的地位越来越重要。
© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 8
§1.1 大地测量学的定义和作用
和重力测 块边界 用卫星测高技术SLR和重力测量数据测定海底板块边界 高技术 和重力 量数据测定海底板块边 分布情况,监测海水面变 分布情况,监测海水面变化,以高分辨率测定海底地形。 海水面 以高分辨率测定海底地形。 利用VLBI及SLR能以 及 能以1mm/秒的分辨率精确地测定板块 秒的分辨率精确地测 利用 能以 秒的分辨率精确地 定板块 相对运动,监测地壳运动,为解释板块运动、断裂、地震 监测地壳运动 地壳运 断裂、 活动提供科学依据。 提供科学依据。 总之,大地测量学是测绘科学的各个分支学科(包括工 大地测量学是测绘科学的各个分支学科( 测绘科学的各个分支学科 程测量、海洋测绘、矿山测量、航测、地图制图及GPS等) 海洋测绘、 测绘 等 的基础学科。 的基础学科。因为大地测量学的基础理论、手段和方法 大地测量学的基础 为这些测绘学科提供了先决条件。 为这些测绘学科提供了先决条件。 学科提供研究全球或相当大范围内的地球, 各个测 不相互平行, 各个测站铅垂线不相互平行,同时 及地球重力场及形状, 顾及地球重力场及形状,因为地球 重力场对研究地球形状, 场对研究地球形状 重力场对研究地球形状,对高精度 量及数据处理有着不可忽视 测量及数据处理有着不可忽视的作 用和影响。 用和影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大测量概论
1.大地测量坐标系统和大地测 量常数
大地测量坐标系统是一种固定在地球上, 随地球一起转动的非惯性坐标系统。根据 其原点位置不同,分为地心坐标系统和参 心坐标系统。从表现形式上分,大地测量 坐标系统又分为空间直角坐标系统、大地 坐标系统两种形式。其中大地高H是指空 间点沿椭球面法线方向至椭球面的距离。
大地测量概论
大地测量常数是指与地球一起旋转且和地球 表面最佳吻合的旋转椭球(即地球椭球)几何 参数和物理参数。它分为基本常数和导出常 数。基本常数唯一定义了大地测量系统。大 地测量常数按属性分为几何常数和物理常数。 基本常数:椭球长半轴;地球引力常数;地 球自转角速度;正常化二阶带球系数。 导出常数:地球位展开式球谐函数系数;第 一偏心率;第二偏心率;椭球短半轴;椭球 扁率;极曲率半径;赤道周长等。
大地测量概论
地心坐标框架:国际地面参考框架(ITRF)是国际地 面参考系统(ITRS)的具体实现。它以甚长基线干涉 测量、卫星激光测距、激光测月、GPS和卫星多普 勒定轨定位等空间大地测量技术构成全球观测网点, 经数据处理,得到lTRF点(地面观测点)站坐标和速 度场等。
2000 国家大地控制网是定义在ITRS 2000 地 心坐标系统中的区域性地心坐标框架。一般由三级 构成。第一级为连续运行站构成的动态地心坐标框 架,它是区域性地心坐标框架的主控制;第二级是 与连续运行站定期联测的大地控制点构成的准动态 地心坐标框架;第三级是加密大地控制点。
高程框架分为四个等级,分别称为国家一、二、三、 四等水准控制网。框架点的正常高采用逐级控制,其现 势性通过一、二等水准控制网的定期复测来维持。高程 框架的另一种形式是通过(似)大地水准面精化来实现的。
大地测量概论
4.重力系统和重力测量框架
重力是重力加速度的简称。重力测量就是 测定空间一点的重力加速度。重力基准就 是标定一个国家或地区的绝对重力值的标 准。重力参考系统则是指采用的椭球常数 及其相应的正常重力场。重力测量框架则 是由分布在各地的若干绝对重力点和相对 重力点构成的重力控制网,以及用作相对 重力尺度标准的若干条长短基线。
大地测量概论
2.现代大地测量的特点
(1)长距离、大范围。不受天气及“视线”长度的制 约,能提供全球性大地测量数据。 (2)高精度。 (3)实时、快速。外业观测相内业数据处理几乎可 以在同一时间段内完成。 (4)“四维”。能提供时间序列的大地测量数据。 (5)地心。以地球质心为坐标原点的三维测量数据。 (6)学科融合。它与地球科学多个分支相互交叉, 已成为推动地球科学的前沿科学之一。
大地测量概论
一、大地测量的任务和作用
1.大地测量的任务
大地测量是为研究地球的形状及表面特性进行的实 际测量工作。
大地测量的任务是建立国家或大范围的精密控制测 量网,内容有三角测量、导线测量、水准测量、天 文测量、重力测量、惯性测量、卫星大地测量以及 各种大地测量数据处理等。为大规模地形图测制及 各种工程测量提供高精度的平面控制和高程控制;为 空间科学技术和军事用途等提供精确的点位坐标、 距离、方位及地球重力场资料;为研究地球形状和大 小、地壳形变及地震预报等科学问题提供资料。
大地测量概论
3.高程系统和高程框架 高程基准:高程基准定义了陆地上高程测量 的起算点。在地面预先设置好一固定点(组), 联测其至平均海水面的海拔高程。这个固定 点就称为水准原点,其高程就是区域性水准 测量起算高程。 1956年黄海高程系统,求出我国青岛水准原 点高程为72·289m。 1985国家高程基准,是我国现采用的高程基 准,青岛水准原点高程为72·2604m。
大地测量概论
高程系统:我国高程系统采用正常高系统,正常高的起 算面是似大地水准面。该点的正常高(高程)是由地面 点沿垂线向下至似大地水准面之间的距离。 高程框架:高程框架是高程系统的实现。我国水准高程 框架由国家二期一等水准网,以及国家二期一等水准复 测的高精度水准控制网实现,以青岛水准原点为起算基 准,以正常高系统为水准高差传递方式。
大地测量概论
5.深度基准
深度基准面常采用当地的潮汐调和常 数来计算,由于各地潮汐性质不同, 计算方法不同,一些国家和地区的深 度基准面也不相同。有的采用理论深 度基准面,有的采用平均低潮面、最 低低潮面、大潮平均低潮面等。
大地测量概论
三、时间系统与时间系统框架
时间系统规定了时间测量的参考标准,包括 时刻的参考标准和时间间隔的尺度标准。时间系 统也称为时间基准或时间标准。频率基准规定了 “秒长”的尺度,任何一种时间基准都必须建立 在某个频率基准的基础上。因此,时间基准也称 为时间频率基准。时间系统框架是在某一区域或 全球范围内,通过守时、授时和时间频率测量技 术,实现和维持统一的时间系统。
大地测量概论
2.大地测量坐标框架
参心坐标框架:传统的大地测量坐标框架是由 天文大地网实现和维持的,一般定义在参心 坐标系统中,是一种区域性、二维静态的地 球坐标框架。
我国在20 世纪50一80 年代完成的全国天 文大地网,分别定义在1954 北京坐标系统和 1980西安坐标系中。我国天文大地控制点(大 地点)覆盖我国大陆和海南岛,采用整体平差 方法构建了我国参心坐标框架。
大地测量概论
3. 大地测量的作用
大地测量是组织、管理、融合和分析地球 海量时空信息的一个数理基础,也是描述、 构建和认知地球,进而解决地球科学问题 的一个时空平台。 为我国科学研究、国民经济建设、国防建 设、国家权益维护;空间技术与航天工程、 社会发展提供服务。
大地测量概论
二、大地测量系统与参考框架
大地测量系统规定了大地测量的起算基准、尺度标准及 其实现方式(包括理论、模型和方法)。
大地测量参考框架是通过大地测量手段,由固定在地面 上的点所构成的大地网(点)或其他实体(静止或运动的物 体)按相应于大地测量系统的规定模式构建的,是对大 地测量系统的具体实现。大地测量系统是总体概念,大 地测量参考框架是大地测量系统的具体应用形式。