第5章 - 空间大地测量技术SLR-LLR

合集下载

大地测量

大地测量

重力基准就是标定一个国家和地区的绝对重力值的标准。
重力参考系统则是指采用的椭球常数及其相应的正常重力场。
重力测量框架则是由分布在各地的若干绝对重力点和相对重力点构成的重 力控制网,以及用作相对重力尺度标准的若干条长短基线。
基准
年代
椭球常数
基本构成
波茨坦重力基准 20世纪50—70 克拉索夫斯基
年代
1985国家重力基 本网
三、大地测量系统与参考框架
基本定义:
大地测量系统规定了大地测量的起算基准、尺度标准及其实现方式(包 括理论、模型和方法)。大地测量系统包括坐标系统、高程系统、深度基准 和重力参考系统。
大地测量参考框架是通过大地测量手段,由固定在地面上的点所构成的 大地网(点)或其它实体(静止或运动的物体)按相应于大地测量系统的规 定模式构建的,是对大地测量系统的具体实现。与大地测量系统相对应,大 地参考框架有坐标(参考)框架、高程(参考)框架和重力(参考)框架。
5)GPS(GPS Time,GPST):由GPS星载原子钟和地面监控站原子钟组 成的一种原子时基准,与国际原子时保持有19s的常数差,并在GPS标准历 元1980年1月6日零时与UTC保持一致。
2020年4月5日3时49分
FOUNDATION OF GEODESY
2 大地测量学在防灾、减灾、救灾及环境监测、评价 与保护中发挥着独具风貌的特殊作用
3)力学时(Dynamic Time,DT):在天文学中,天体的星历是根据天体动力 学理论的运动方程而编算的,其中所采用的独立变量是时间参数T,这个数 学变量T,定义为力学时。
4)协调时( Universal Time Coordinate,UTC ):是时间服务工作钟把原子 时的秒长和世界时的时刻结合起来的一种时间。并不是一种独立的时间。

空间定位几种常用的空间定位技术

空间定位几种常用的空间定位技术

△t3为信号 传播时间改正 ,从激光脉冲离开测距仪至到达卫星间的时间 , △t3=S/c
3)大气延迟改正
4)卫星上的反射棱镜偏心改正
5)潮汐改正
h
12
五、SLR的用途现状及前景
1、激光测卫站
1)中国已经建立的武汉、上海、长春、北京和昆明等5个激光测卫站。 2)流动激光测卫站:乌鲁木齐,拉萨
长春
TROS, Urumqi, China
h
5
§4.3、激光测卫和激光测月
一、激光测卫(SLR) 2、原理(续) D=C.⊿t/2+ ⊿D ⊿D为测距改正数
激光测距 仪
带反射棱镜的激光 卫星
h
6
§4.3、激光测卫和激光测月
二、激光测距卫星
1、激光测距专用卫星 Lageos卫星 Starlette卫星
Starlette
h
7
§4.3、激光测卫和激光测月
背景的噪声,从而大大提高信噪比。 ⑶激光的发散角极小,在很远的距离上光能量仍能集中在一个很
小的范围内,有的激光测距系统发散角只有2″,在月球表面上 光斑直径也只有4km。
h
4
§4.3、激光测卫和激光测月
一、激光测卫测距原理
2、原理
用安装在地面测站的激光测距仪向安 装了后向反射棱镜的激光卫星发射激光脉 冲信号,该信号被棱镜反射后返回测站, 精确测定信号的往返传播时间,进而求出 仪器到卫星质心间的距离的方法和技术称 为卫星激光测距或激光测卫( SLR:Satellite Laser Ranging) 。目前的 测距精度可达1cm左右
三、人卫激光测距仪 1 激光仪分类 1)按激光类型来分 脉冲式 相位式激光测距仪:是用无线电波段的频

大地测量习题

大地测量习题

第一章绪论 1.大地测量学的定义是什么? 答:大地测量学是关于测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息。

2.大地测量学的地位和作用有哪些?答:大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用;在防灾,减灾,救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用;是发展空间技术和国防建设的重要保障;在当代地球科学研究中的地位显得越来越重要。

3.大地测量学的基本体系和内容是什么?外表向椭球面或平面的投影数学变换及有关的大地测量计算; 6.研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。

4.大地测量学的发展经历了哪几个阶段?答:大地测量学的发展经历了四个阶段:地球圆球阶段、地球椭球阶段、大地水准面阶段和现代大地测量新时期。

5. 地球椭球阶段取得的主要标志性成果有哪些?答:有:长度单位的建立;最小二乘法的提出;椭球大地测量学的形成,解决了椭球数学性质,椭球面上测量计算,以及将椭球面投影到平面的正形投影方法;弧度测量大规模展开;推算了不同的地球椭球参数。

6.物理大地测量标志性成就有哪些?答:有:克莱罗定理的提出;重力位函数的提出;地壳均衡学说的提出;重力测量有了进展,设计和生产了用于绝对重力测量的可倒摆以及用于相对重力测量的便携式摆仪。

极大地推动了重力测量的发展。

7.大地测量的展望主要表达在哪几个方面?答:主要表达在:〔1〕全球卫星定位系统(GPS),激光测卫(SLR)以及甚长基线干预测量(VLBI), 惯性测量统(INS)是主导本学科发展的主要的空间大地测量技术;〔2〕用卫星测量、激光测卫及甚长基线干预测量等空间大地测量技术建立大规模、高精度、多用途的空间大地测量控制网,是确定地球基本参数及其重力场,建立大地基准参考框架,监测地壳形变,保证空间技术及战略武器发展的地面基准等科技任务的基本技术方案;〔3〕精化地球重力场模型是大地测量学的重要发展目标。

空间大地测量

空间大地测量
1 观测量 t时刻从已知点A,B,C和待定点D上 同时用激光测距或无线电测距方法 测定了测站到卫星S1、S2、S3的距 离。
© 2000 McGraw-Hill Introduction to Object-Oriented Programming with Java--Wu Chapter 0 - 16
§ 1.3、空间大地测量学的定义、任务及几 种主要技术
2、定位过程: 1)根据三个已知点的坐标, 采用距离交会方法求出观测 时刻间卫星在空间的位置 (Xs1,Ys1,Zs1), (Xs2,Ys2,Zs2),
(Xs3,Ys3,Zs3)。
2)然后根据观测时刻的卫 星S1、S2、S3位置继续用距 离交会出待定点D的位置。
© 2000 McGraw-Hill Introduction to Object-Oriented Programming with Java--Wu Chapter 0 - 13
§1.2空间大地测量的产生
4 其他技术 1)多路多址技术、编码技术、扩频技术、加密技术、 解码技术等通讯技术,信号和滤波理论,系统和控制 理论为卫星通讯、卫星信号处理奠定基础。 2)大气科学的发展对为卫星轨道计算机信号传播延 迟改正提供了基础。 3)天文学、大地测量学、导航学等对空间定位技术 的产生积累了实际经验。
占全球总面积70%的海岸为布设大地控制网,占全球总面积 30%的陆地无法进行大地联测,只能区域测量,建立区域参考椭 球与区域大地水准面吻合。无法建立全球参考椭球。
© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 19
A 3D atlas of the universe

大地测量完美版

大地测量完美版

1.大地测量学的任务大地测量学的主要任务有以下三个方面:(1)在广大面积上建立一系列地面点构成的大地控制网,以精密确定地面点的位置及随时间的变化规律,为测制地图、经济建设、国防建设和地球动力学等科研工作提供控制基础,也为人造卫星、导弹和各类航天器控制与通信提供精确的轨道坐标和地面控制站坐标;(2)研究和测定地球形状、大小及其随时间的变化规律,为大地控制网、地球科学和空间科学提供基准面和基础数据;(3)研究和测定地球重力场及其变化规律,为大地控制网的归算、人造卫星精密定轨、远程武器的精确打击和地球物理反演、地震预报等提供必要的资料。

2.大地控制网的作用建立大地控制网是大地测量的重要任务。

大地控制网的作用可概括为以下四个方面:1)、控制地形测图地球的形状近似一个椭球,在小范围内测绘地形图可不考虑地球的曲率,而在全国范围内测绘和编制各种比例尺地形图时,必须把地球看成一个曲面。

但椭球面是一个不可展开的曲面,解决方法是在测图前先进行大地测量。

在全国范围内布设大地控制网,精确测定网中各大地点的平面坐标和高程,按一定的数学方法将这些点投影到平面上,构成一个完整的、精确的测图控制系统。

根据这些点进行测图,就能使地球表面上的地貌、地形测绘到平面上,而且还可保证各地区同时开展测制的地图拼接而不产生明显的变形和裂口,有效地控制测图时产生的误差累积,把误差限制在控制点之间,确保地图的精度。

2)、为经济建设和国防建设提供控制基础在经济上,开发矿山资源、建设工业基地、建设铁路、建设高速公路、兴修水利工程、建设开发区和国土综合治理等各项经济建设,不仅需要各种比例尺地形图为“蓝图”进行规划设计,还需要直接利用大地测量成果。

在军事上,常规火炮和远程导弹的发射和精确打击,要保证命中几十公里、几百公里,甚至上万公里以外的打击目标,首先必须知道发射点和打击点的精确坐标、距离和方位;其次要标定火炮在某一坐标系下方位标的方位和天文坐标系,这是大地测量所要完成的一项重要任务。

大地测量学基础

大地测量学基础

大地测量学基础:《大地测量学基础》是2010年5月1日武汉大学出版社出版的图书,作者是孔祥元。

图书简介:该书是“十一五”国家级规划教材,也是国家精品课程教材。

本教材严格按照教育部批准的“十一五”国家级规划教材立项要求和全国高等学校测绘学科教学指导委员会以及武汉大学的具体要求进行编写,是全国高等学校测绘工程专业本科教学用教材,也可供从事测绘工程专业及相关专业的科技人员、管理人员及研究生等参考。

图书目录:序第二版前言前言第1章绪论1.1 大地测量学的定义和作用1.1.1 大地测量学的定义1.1.2 大地测量学的地位和作用1.2 大地测量学的基本体系和内容1.2.1 大地测量学的基本体系1.2.2 大地测量学的基本内容1.2.3 大地测量学同其他学科的关系1.3 大地测量学的发展简史及展望1.3.1 大地测量学的发展简史1.3.2 大地测量的展望第2章坐标系统与时间系统2.1 地球的运转2.1.1 地球绕太阳公转2.1.2 地球的自转2.2 时间系统2.2.1 恒星时(ST)2.2.2 世界时(UT)2.2.3 历书时(ET)与力学时(DT)2.2.4 原子时(AT)2.2.5 协调世界时(UTC)2.2.6 卫星定位系统时间2.3 坐标系统2.3.1 基本概念2.3.2 惯性坐标系(ClS)与协议天球坐标系2.3.3 地固坐标系2.3.4 坐标系换算第3章地球重力场及地球形状的基本理论3.1 地球及其运动的基本概念3.1.1 地球概说3.1.2 地球运动概说3.1.3 地球基本参数:3.2 地球重力场的基本原理3.2.1 引力与离心力3.2.2 引力位和离心力位3.2.3 重力位3.2.4 地球的正常重力位和正常重力3.2.5 正常椭球和水准椭球,总的地球椭球和参考椭球3.3 高程系统3.3.1 一般说明3.3.2 正高系统3.3.3 正常高系统3.3.4 力高和地区力高高程系统3.3.5 国家高程基准3.4 关于测定垂线偏差和大地水准面差距的基本概念3.4.1 关于测定垂线偏差的基本概念3.4.2 关于测定大地水准面差距的基本概念3.5 关于确定地球形状的基本概念3.5.1 天文大地测量方法3.5.2 重力测量方法3.5.3 空间大地测量方法第4章地球椭球及其数学投影变换的基本理论4.1 地球椭球的基本几何参数及其相互关系4.1.1 地球椭球的基本几何参数4.1.2 地球椭球参数间的相互关系4.2 椭球面上的常用坐标系及其相互关系4.2.1 各种坐标系的建立4.2.2 各坐标系间的关系4.2.3 站心地平坐标系4.3 椭球面上的几种曲率半径4.3.1 子午圈曲率半径4.3.2 卯酉圈曲率半径4.3.3 主曲率半径的计算4.3.4 任意法截弧的曲率半径4.3.5 平均曲率半径4.3.6 M,N,R的关系4.4 椭球面上的弧长计算4.4.1 子午线弧长计算公式4.4.2 由子午线弧长求大地纬度4.4.3 平行圈弧长公式4.4.4 子午线弧长和平行圈弧长变化的比较4.4.5 椭球面梯形图幅面积的计算4.5 大地线4.5.1 相对法截线4.5.2 大地线的定义和性质4.5.3 大地线的微分方程和克莱劳方程4.6 将地面观测值归算至椭球面4.6.1 将地面观测的水平方向归算至椭球面4.6.2 将地面观测的长度归算至椭球面4.7 大地测量主题解算概述4.7.1 大地主题解算的一般说明4.7.2 勒让德级数式4.7.3 高斯平均引数正算公式4.7.4 高斯平均引数反算公式4.7.5 白塞尔大地主题解算方法4.8 地图数学投影变换的基本概念4.8.1 地图数学投影变换的意义和投影方程4.8.2 地图投影的变形4.8.3 地图投影的分类4.8.4 高斯投影简要说明4.9 高斯平面直角坐标系4.9.1 高斯投影概述4.9.2 正形投影的一般条件4.9.3 高斯投影坐标正反算公式4.9.4 高斯投影坐标计算的实用公式及算例4.9.5 平面子午线收敛角公式4.9.6 方向改化公式4.9.7 距离改化公式4.9.8 高斯投影的邻带坐标换算4.10通用横轴墨卡托投影和高斯投影族的概念4.10.1 通用横轴墨卡托投影概念4.10.2 高斯投影族的概念4.11兰勃脱投影概述4.11.1 兰勃脱投影基本概念4.11.2 兰勃脱投影坐标正、反算公式4.11.3 兰勃脱投影长度比、投影带划分及应用第5章大地测量基本技术与方法5.1 国家平面大地控制网建立的基本原理5.1.1 建立国家平面大地控制网的方法5.1.2 建立国家平面大地控制网的基本原则5.1.3 国家平面大地控制网的布设方案5.1.4 大地控制网优化设计简介5.2 国家高程控制网建立的基本原理5.2.1 国家高程控制网的布设原则5.2.2 国家水准网的布设方案及精度要求5.2.3 水准路线的设计、选点和埋石5.2.4 水准路线上的重力测量5.2.5 我国国家水准网的布设概况5.3 工程测量控制网建立的基本原理5.3.1 工程泓量控制网的分类5.3.2 工程平面控制网的布设原则5.3.3 工程平面控制网的布设方案5.3.4 工程高程控制网的布设5.4 大地测量仪器5.4.1 精密测角仪器——经纬仪5.4.2 电磁波测距仪5.4.3 全站仪5.4.4 GPS接收机5.4.5 TPS和GPS的集成——徕卡系统1200-超站仪(system1200-SmartStation5.4.6 精密水准测量的仪器——水准仪5.5 电磁波在大气中的传播5.5.1 一般概念5.5.2 电磁波在大气中的衰减5.5.3 电磁波的传播速度5.5.4 电磁波的波道弯曲5.6 精密角度测量方法5.6.1 精密测角的误差来源及影响5.6.2 精密测角的一般原则5.6.3 方向观测法5.6.4 分组方向观测法5.6.5 归心改正5.7 精密的电磁波测距方法5.7.1 电磁波测距基本原理5.7.2 N值解算的一般原理5.7.3 距离观测值的改正……第6章深空在地测量简介主要参考文献。

大地测量学思考题及答案(200606)

大地测量学思考题及答案(200606)

大地测量学思考题集1.解释大地测量学,现代大地测量学由哪几部分组成?谈谈其基本任务和作用?大地测量学----是测绘学科的分支,是测绘学科的各学科的基础科学,是研究地球的形状、大小及地球重力场的理论、技术和方法的学科。

大地测量学的主要任务:测量和描述地球并监测其变化,为人类活动提供关于地球的空间信息。

具体表现在(1)、建立与维护国家及全球的地面三维大地控制网。

(2)、测量并描述地球动力现象。

(3)、测定地球重力及随时空的变化。

大地测量学由以下三个分支构成:几何大地测量学,物理大地测量学及空间大地测量学。

几何大地测量学的基本任务是确定地球的形状和大小及确定地面点的几何位置。

作用:可以用来精密的测量角度,距离,水准测量,地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型物理大地测量学的基本任务是用物理方法确定地球形状及其外部重力场。

主要内容包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法等。

空间大地测量学主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。

2、大地测量学的发展经理了哪些阶段,简述各阶段的主要贡献和特点。

分为一下几个阶段:地球圆球阶段,地球椭球阶段,大地水准面阶段,现代大地测量新时期地球圆球阶段,首次用子午圈弧长测量法来估算地球半径。

这是人类应用弧度测量概念对地球大小的第一次估算。

地球椭球阶段,在这阶段,几何大地测量在验证了牛顿的万有引力定律和证实地球为椭球学说之后,开始走向成熟发展的道路,取得的成绩主要体现在一下几个方面:1)长度单位的建立 2)最小二乘法的提出 3)椭球大地测量学的形成 4)弧度测量大规模展开 5)推算了不同的地球椭球参数这个阶段为物理大地测量学奠定了基础理论。

大地水准面阶段,几何大地测量学的发展:1)天文大地网的布设有了重大发展,2)因瓦基线尺出现物理大地测量学的发展 1)大地测量边值问题理论的提出 2)提出了新的椭球参数现代大地测量新时期以地磁波测距、人造地球卫星定位系统及其长基线干涉测量等为代表的新的测量技术的出现,使大地测量定位、确定地球参数及重力场,构筑数字地球等基本测绘任务都以崭新的理论和方法来进行。

大地测量系统与参考框架

大地测量系统与参考框架
五.重力参考系统和重力参考框架
1.重力基准和重力参考系统 重力是重力加速度的简称。重力测量就是测定空间一点的重力加速度。重力基准就是标定一个国家或地区的(绝对)重力值的标准。在20世纪50~70年代,我国采用波茨坦重力基准,而我国重力参考系统采用克拉索夫斯基椭球常数。20世纪80年代,我国重力基准用经过国际比对的高精度相对重力仪自行测定,而重力参考系统则采用IUGG75椭球常数及其相应的正常重力场。 2.重力框架 重力测量框架由分布在全国的若干绝对重力点和相对重力点构成的重力控制网、以及用作相对重力尺度标准的若干条长短基线构成。
二.大地测量常数和大地测量坐标系统
大地测量系统包括两个方面的概念:一是大地测量系统所采用的大地测量常数的确定;二是大地测量应满足的条件。 1.大地测量常数 大地测量常数是指与地球一起旋转且和地球表面最佳吻合的旋转椭球(即地球椭球)几何和物理参数。 分为基本常数和导出常数。 基本常数唯一定义了大地测量系统。导出常数是由基本常数导出,便于大地测量应用。
几何常数
物理常数
a
6378137m
GM
3986005*108m3*s-2
J2
108263*10-8
ω
7292115*10-11rad*s-2
B
6356752.3141m
U0
62636860.850m2*s-2
1/f
298.257222101
J4
-0.222
二.大地测量常数和大地测量坐标系统
2.大地测量坐标系统和应满足的条件 (1)大地坐标系统的类别 大地测量坐标系统是一种固定在地球上,随地球一起转动的非惯性坐标系统,也称地固坐标系统。 根据其原点位置不同,分为地心坐标系统和参心坐标系统。前者的原点与地球质心重合,后者的原点与参考椭球中心重合(参考椭球是指与某一地区或国家地球表面最佳吻合的地球椭球)。 从表现形式上分,常用的大地测量坐标系统有空间直角坐标系统、大地坐标系统二种形式。 (2)地(参)心坐标系应满足的条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光卫星测距应用
人卫激光测距用于地球质心测定
– 地球参考系的原点可从两方面来定义,一是几何 方面,如大地参考系,另一方面则是更加通用的 从动力学方法来定义,即地球的质量中心。 – 地球质心位臵为确定地球表面、大气以及空间位 臵的相对运动提供了参考原点。 – 它的位臵需要通过地球固体表面的参考框架来反 映。理论参考框架原点在地球质心上,实际原点 通过地面测站网对卫星轨道长时间观测的平差结 果、也受到观测误差的影响,故参考框架原点和 地球质心有所不同。
激光卫星测距原理
测距原理
t d c two - way ranging 2
SLR观测方程
1 d ct d o d s d b d r 2
Remaining systematic & random observation errors Refraction correction Signal delay in the ground system
D=1/2 ct=1/2 c·φ/ω
=c/(4πf) (Nπ+Δφ)=c/4f (N+ΔN)
激光仪分类
2)根据其构造及精度分
– 第一代: 脉冲宽度在10~40ns, 测距精度约为1—6m。多数采用 带调Q开关的红宝石激光器。 – 第二代:脉冲宽度2~5ns,测距 精度为30~100cm,多数采用了脉 冲分析法 ; – 第三代:脉冲宽度为0.1~0.2ns, 测距精度为1~3cm,多数采用 锁模Nd:YAG激光器 。能在计算 机控制下实现对卫星的自动跟踪 和单光子检测技术。
内容要点
激光测卫
激光测月
2015/ 11/27
中南大学测绘与国土信息工程系
27
激光测月
激光测月的提出
– 1964 年 10 月,美国 NASA 发射了 第一颗带有后向反射器的卫星 :“ Beacon-B” ,并很快实现了 对其的卫星激光测距 SLR。 – 不久, C.Alley,P.Bender,R.Dicke 等 人提出了开创性的想法:将激 光后向反射器放臵于月球表面 , 以 开 展 激 光 测 月 LLR ( Lunar Laser Ranging)工作。 – 1969年7月 21日阿波罗11号登月 成功,宇航员N. Armstorng将激 光后向反射器阵 (A11) 放臵于月 面上预定的位臵。
行改正。
观测时间改正
• 在激光测卫中一般都采用激光脉冲信号到达卫星的时 刻作为观测时间。设仪器从工作钟取样所得到的时间 为 t N ,观测时刻可表示为:
t t N t1 t2 t3
• 式中 t1 为工作钟的钟差,即工作钟与标准时间之间 t 2 为工作钟取 的差异,此值可以通过时间比对求得; 样时刻和激光脉冲信号的发射时刻之间的差异,也称 t3 为信号传播时间改正,从激光脉冲 触发延迟改正; 离开测距仪至到达卫星间的时间 t3 S / c
相对论改正
• 按照爱因斯坦广义相对论原理,光线在引力场中 传播时,传播速度会变慢,路径也会产生弯曲, 这就是电磁波在引力场中的延迟效应,同时考虑 太阳和地球的引力场时,其改正公式如下:
2GM日 r3 r2 S 2GM 地 RrS S ln( ) ln( ) 2 2 c r3 r2 S c RrS
激光测距卫星ASS
Compass
激光测距卫星
激光仪分类
1)按激光类型来分 – 脉冲式:激光波段的电压强度 – 相位式激光测距仪 • 用无线电波段的频率,对激光 束进行幅度调制并测定调制光 往返测线一次所产生的相位延 迟; • 再根据调制光的波长,换算此 相位延迟所代表的距离。即用 间接方法测定出光经往返测线 所需的时间。 t=φ/ω,
The International Laser Ranging Service
• /
ILRS Organization
激光卫星测距应用
卫 星
r

地 心
R 测 站
激光测距定轨
激光卫星测距应用
地球自转参数测定
– 地球自转参数是指地球自转轴在地 球本体和惯性空间的运动矢量,由 于受太阳、月亮、大行星引力力矩 以及地球内部动力学变化引起的位 移影响,导致地球自转参数变化; – 通常测定下列参数 • 极移 • 日长变化(世界时) • 岁差和章动序列来 – 通过多种技术观测 • VLBI、SLR、GPS和DORIS
激光测月观测方程
– 则观测距离在太阳系质心 坐标系可表示为(1); – 距离方程线性化后可得观 测方程(2);
– 注意上式中ρ0′为单程距离 ,实际测量为双程距离, 且激光往返地月时间在2.5 秒左右,可以认为这期间 偏导数的变化可忽略;
– (2)式改写为 (3);
Rp rq () 1 R p R Re; rq r rm
大气延迟改正
• 此项改正是由于激光脉冲信号在传播过程中需往返两次穿过大气层而
产生的。大气延迟一般可分为电离层延迟和对流层延迟两项。由于激
光测距仪使用的是频率极大的光信号,而电离层延迟又是与信号频率 的平方成反比,故电离层延迟可以视为零而无需考虑。故对于激光测
距仪而言,大气延迟改正是对流层延迟改正。
卫星上的反射棱镜偏心改正 潮汐改正

卫星上的反射棱镜偏心改正

激光测卫测定的是从测距仪至反射棱镜间的距离,而定 轨时需要确定的是卫星质心的位置。反射棱镜与卫星质
心不重合,因而在观测值上需对这种偏差加以改正。此
项改正在卫星发射前可精确测定,向用户公布。

潮汐改正

固体潮及海洋负荷会引起测站坐标的变化从而影响距离 观测值。潮汐改正的公式较为复杂,此处不再一一列出 。读者需要时可参阅相关的参考文献。
激光卫星测距应用
人卫激光测距用于地心引力常数GM测定
– 自第一颗人造地球卫星上天,卫星观测资料就用于地球 重力场的确定,包括地心引力常数GM测定。 – 人卫激光测距技术出现后,GM值确定主要采用这一技术 ,特别是地球动力学卫星LAGEOS激光测距资料的应用; – 现在广泛应用的GM值为398600.4415km3/s2,就是通过5 年的LAGEOS-1资料处理在 1992年解算得到的,但在解算 过程中卫星质心误差没有仔细考虑,同时大气折射模型 误差也会带来影响。 – 2005年利用12年 LAGEOS-1和 LAGEOS-2激光测距资料确定 的 GM 值为 398600.44163 km3/s2 ,解算精度也比 1992 年 结果提高了一倍。
o c
pi (2) Pi
o c 2 pi (3) Pi
激光测月距离的改正
空间大地测量技术 SLR/LLR
2015/ 11/27
中南大学测绘与国土信息工程系
1
内容要点
激光测卫
激光测月
2015/ 11/27
中南大学测绘与国土信息工程系
2
激光测卫
激光形成
• 激光的最初中文名叫做“镭射”,是它的英文名称LASER 的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写 词。意思是“通过受激发射使光放大”。激光的英文全名 已完全表达了制造激光的主要过程。1964年按照我国著 名科学家钱学森建议将“光受激发射”改称“激光”。 更多的信息见/view/2695.htm • 测距的激光:在光学协振腔轴内沿腔轴方向传播的光被 安置在两端的反射镜反射而往返传播,在此过程中不断 引起其它原子的受激跃迁,产生同频率的光子,使光迅 速放大。而与腔轴不平行的光则在往返几次后溢出腔外 ,从而形成方向性极好的激光。
激光卫星测距应用
人卫激光测距用于地球低阶重力场测定
– 在重力卫星资料应用以前,地球重力场测定主要靠
卫星地面跟踪资料和地面重力测量资料联合确定。
– 地球重力场的中长波部分主要由卫星跟踪资料确定 ,卫星跟踪资料也主要来源于人卫激光测距资料。
– 重力卫星出现后,由于其卫星数目、轨道及资料累
积的局限,其低阶部分结果仍然分离不好,需要人 卫激光测距资料结果来补充,特别是2阶项。
测距仪仪器常数改正
• 这项误差是由于激光测距仪脉冲信号在测距仪内部 传播时的时间延迟以及计数器的位置与测距仪的几
何中心不一致而引起的。
• 仪器常数可以可以通过在观测前后对地面靶的校正
观测来测定。地面靶至仪器中心间的距离事先已采
用其它方法精确测定。将测距仪的测距结果与精确
的已知值比较后即可求得仪器常数,并对观测值进
激光测月的实现
– 1969年8月1日,美国Lick天文台用 其3m望远镜成功地观测到来自 Apollo 11反射器的激光测距回波讯 号; – 8月 22日,美国 McDonald天文台 的 2.7m望远镜亦收到回波讯号; – 随后对Apollo 11反射器进行成功测 距试验的还有:美空军在Arizona 的Cambridge Research Laboratory; 法国的Pic du Mdi天文台;以及日 本的东京天文台。 – 从此开创了人类对地月间距离进 行精确测量的历史
Eccentricity correction at the satellite
Eccentricity correction on the ground Elapsed time of the laser pulse
Velocity of light
Computed range from station to satellite
激光测月(LLR)的特点
– 技术原理与激光测卫基本相同,只不过将卫星上的激光后向 反射镜放臵在月球上特定的观测点,原于月球的特点,激光 测月与激光测卫也有所区别。
• 月球是地球天然卫星,比起人造地球卫星,月球在体积和质量 方面要大得多,距离地球也要远得多。
相关文档
最新文档