可控震源地震勘探发展历程和基本原理概述共40页文档

合集下载

可控震源技术

可控震源技术

噪声编辑与变权叠加 一,前言 ●可控震源施工特点:无法戒严,噪声干扰十分严 重. ●去噪方法:基本方法-多次垂直叠加,此外还有两 种特殊方法-噪声编辑和变权叠加. 二,噪声编辑 ●功能:处理作用时间短,能量强的脉冲状干扰.
●方法思路:把各地震道分割成多个时间窗口(最多64 个),每个窗口设置一个门槛值,将接收到的数据样点 值与该门槛值进行比较,低于门槛值的数据样点值保留, 高于门槛值的数据样点值作为噪声进行处理,处理方式 有两种: a) 充零:整个窗口或窗口的一部分数据样点值充零 -充零区的前后数据要作过渡处理,避免幅度突变. -门槛值并非一成不变,初始门槛值设定好以后,后续 窗口的门槛值根据前一窗口最大样点值进行自动修改. b)削顶:超过门槛值的数据样点值用门槛值代替,门 槛值的初始设定和随后的自动更新与充零方式相同.
●技术要求: -真参考扫描信号和无线电参考扫描信号波形正常; 震源输出信号低频端(<18Hz)允许有畸变; -无线电参考扫描信号和震源输出信号相位相同 (编码扫描发生器的参考扫描信号的初始相位设置比 电控箱体的参考扫描信号的初始相位超前90). ●局限性 -肉眼辨识的精度很有限; -不能反映施工所有振点的一致性状态.
可控震源系统结构 一,前言 ● 可控震源系统包括:机械,电子两大部分. ● 可控震源电子部分包括:编码扫描发生器, 电控箱体,相关器.
编码扫描发生器( 二 ,编码扫描发生器(DPG) ) 主要功能: ● 产生用于相关的参考扫描信号; ● 遥控DSD参数装载; ● 控制震源振动并与仪器数据采集同步; ● 接收DSD振动过程质量状态数据.
二,连续函数的表示法
●从数学上讲,任一周期函数或非周期连续函数都 有时间域和频率域两种表示法. ●时域表示法:振动幅度随时间 t 变化的函数关系. ●频域表示法:振动幅度随频率 f 变化的函数关系.

地震勘探发展史

地震勘探发展史

地震勘探发展史利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法叫作地震勘探。

地震勘探是钻探前勘测石油与天然气资源的重要手段。

地震勘探起始于19世纪中叶1845年,R.马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度。

1913年前后R.费森登发明反射法地震勘探。

1921年,J.C.卡彻将反射法地震勘探投入实际应用。

1930年,通过反射法地震勘探工作,在该地区发现了3个油田。

从此,反射法进入了工业应用的阶段。

20世纪早期德国L.明特罗普发现折射法地震勘探。

20世纪30年代,苏联Г。

А。

甘布尔采夫等吸收了反射法的记录技术,对折射法作了相应的改进。

20世纪50~60年代,反射法的光点照相记录方式被模拟磁带记录方式所代替,从而可选用不同因素进行多次回放,提高了记录质量。

20世纪70年代,模拟磁带记录又为数字磁带记录所取代,形成了以高速数字计算机为基础的数字记录、多次覆盖技术、地震数据处理技术相互结合的完整技术系统,大大提高了记录精度和解决地质问题的能力。

从20世纪70年代初期开始,采用地震勘探方法研究岩性和岩石孔隙所含流体成分。

我国的地震勘探发展1955年,我国煤炭工业上开始采用地震勘探技术,并在华东组建了全国第一支地震勘探队伍。

1971年,由煤炭科学研究总院西安分院、渭南煤矿专用设备厂研制成功MD-1型半导体磁带记录地震仪,这是我国第一套自行设计制造的煤田地震勘探仪器,并在国内煤田地震队中推广应用。

1979年我国打破了西方国家的技术封锁,成功研制出MDS-1型数字地震仪,对数字地震勘探起到了很大的推动作用。

1984~1985年,随着对外改革开放政策的实施,我国煤田地震勘探队伍开始从国外引进21套以DFS-V和SN338为主的数字地震仪,同时引进了以IBM-4381为主机的地震数据处理系统。

1978年,中国煤田地质总局在伊敏河矿区开展煤田三维地震勘探技术前提性研究。

地震勘探原理pdf

地震勘探原理pdf

地震勘探原理pdf摘要:一、地震勘探原理简介1.地震勘探的定义2.地震勘探的基本原理二、地震勘探技术的发展历程1.传统地震勘探技术2.现代地震勘探技术三、地震勘探的应用领域1.石油天然气勘探2.固体矿产资源勘探3.地壳结构研究4.地震灾害评估四、地震勘探技术的未来发展趋势1.高分辨率地震勘探技术2.环保型地震勘探技术3.智能化地震勘探技术正文:地震勘探是一种利用地震波在地下传播的特性,研究地下结构和物质组成的地球物理勘探方法。

它在我国石油天然气勘探、固体矿产资源勘探、地壳结构研究以及地震灾害评估等领域具有广泛的应用。

地震勘探的基本原理是利用人工激发的地震波在地下传播,当遇到不同介质界面时,地震波会发生反射、折射和散射等现象。

通过观测和分析这些现象,可以推断出地下岩层的形态、结构和性质。

传统地震勘探技术主要采用地震仪和地震图来记录和分析地震波,而现代地震勘探技术则在此基础上,引入了数字技术、信息技术和计算机技术等,大大提高了勘探的效率和精度。

在石油天然气勘探领域,地震勘探技术为寻找油气藏提供了重要依据。

通过地震勘探,可以清晰地揭示地下岩层的形态、构造和分布,从而帮助石油工程师确定钻井的位置、方向和深度。

在固体矿产资源勘探领域,地震勘探技术也有助于查明矿藏的分布和规模。

此外,地震勘探技术还在地壳结构研究、地震灾害评估等方面发挥着重要作用。

未来,地震勘探技术将继续向高分辨率、环保和智能化方向发展。

高分辨率地震勘探技术可以获得地下岩层的更精细结构,为资源勘探和地壳研究提供更为准确的信息。

环保型地震勘探技术将减少对环境的影响,降低勘探成本。

智能化地震勘探技术将通过大数据、人工智能等技术,实现地震勘探的自动化和智能化,提高勘探效率和精度。

可控震源原理及说明

可控震源原理及说明

可控震源工作原理张宏乐一.概论1.引言利用可控震源人工激发地震波,是进行地震勘探的一种重要方法。

这种勘探方法最早出现的时间可以上溯到上个世纪50年代,当时在美国的一些石油公司最初开始出现以连续振动为特征的非爆炸地面震源的可控震源雏形,由此开创了可控震源技术应用于地震勘探之先河。

随着国外可控震源技术的日趋成熟,到了上个世纪70年代中期,我国开始引进国外可控震源设备和技术以应用于国内地震勘探。

与此同时,在吸收消化国外先进技术的基础上,开始着手依靠国内技术力量和设备,自行开发研制KZ系列国产可控震源。

由于可控震源所产生的信号频谱和基本特性可以人为控制,可以在设计震源扫描信号时避开某些干扰频率,还能对地层对地震信号的吸收作用进行补偿,这是其它人工地面震源和炸药震源难于做到的,所以利用可控震源进行地震勘探可以得到反射能量足够,信噪比和信号分辨率能够满足地质勘探需要的资料,因此在过去的几十年中可控震源技术在国内外都得到了较快发展,无论从震源的机械液压系统和电控系统技术发展水平,还是震源野外施工方法和震源资料处理技术都已逐渐提高和日臻完善。

近些年来,为了提高地震资料的信噪比和分辨能力,国内和国外生产厂家竞相利用现代科学技术的一些最新研究成果应用于可控震源的研究,设计和开发,已生产出最大静态推力近30吨的﹑可以适应更加广泛地震勘探目的﹑可在多种地面道路行驶的宽频大吨位可控震源,出现了可以灵活控制震源传入大地地面力幅度和地面力控制方式﹑以数字自适应控制技术为基础的﹑可自动进行可控震源系统识别、安装,并能对震源实施实时的质量控制技术的电控系统,从而扩大了可控震源应用领域,促使可控震源技术得以广泛应用于国内外地震勘探施工,成为了一种重要的地震勘探设备。

2.可控震源与炸药震源信号特征的区别图1 可控震源信号与炸药震源信号特点比较炸药震源和一些用于地震勘探的地面震源,如落重震源、电火花震源和陆地气枪震源等非爆炸地面震源所产生的地震信号一样,都是作用时间很短,信号振幅能量高度集中的脉冲信号,它们都属于脉冲震源。

地震勘探可控震源原理

地震勘探可控震源原理

1 可控震源1.1 可控震源使用的信号地震勘探中的激发源能量既可以用振幅高度集中的信号(如:脉冲信号,在此通常指炸药),也可以用低振幅、长信号(如:可控震源)产生。

其实,可控震源重要是依赖长时间的振动激发,得到相对弱的地震信号。

可控震源另外一个重要特征就是激发源是有限带宽的信号。

另外,可控震源激发技术只产生需要频带内的信号,而脉冲震源,如:炸药,生产的一部分频率在数据采集过程中是不予记录的。

图1 时间域与频率域内的脉冲信号与有限带宽信号炸药爆炸的过程可以用 脉冲来表示,即:一个振幅高度集中的信号在非常短的瞬间生成(图1-a),它的频谱中包含了所有的频率成分(图1-b)。

对于有限带宽信号而言,它只表示在有限带宽内(图1-c)。

在所展示的一个平坦的振幅谱(在图1-d)中只有10~60Hz的频率成分。

在可控震源中使用的信号大多形如图1-d。

1.2 如何生成一个有限带宽的震源信号如前所示,大多数信号具有有限带宽的特征,通过傅立叶变换可以得到如图1-c所示的时域上的信号。

但是一般如图1-c所示的振幅,在时域上的信号不能应用于可控震源,可控震源在激发时要求采用均衡振幅、长时间的信号。

为了能够使如图1-c所示的信号用于震源的激发,必须将该信号转化为均衡振幅、长时间的有限带宽信号。

采用频率延迟算子,就可以将短脉冲信号转化为长扫描信号。

实际上,在应用过程中,采用将短延迟用于低频、将中等水平的延迟用于中间频率、将长延迟用于高频的处理方法,就会得到一个均匀振幅、视频率从低频逐渐扫到高频结束。

这个信号看起来有些类似于正弦波,在可控震源中就称之为扫描信号。

图2 由短脉冲生成长扫描信号在图3中显示了扫描信号的合成过程。

各种不同频率成分、具有相同相位的正弦信号迭加后成为图3-a 中的信号,经过不同的延迟算子迭加后,成为图3-b中的扫描信号。

将高振幅的短脉冲信号展开成低均匀振幅的长扫描信号后总能量保持不变,因此可控震源只是一个低振幅的激发源,而不是低能量的激发源。

地震勘探知识介绍

地震勘探知识介绍

矿工 煤将 勘 产程 田其 探 的地 勘应 , 年 勘质 查用 并 , 探勘 、于 将 中 。查 石 其 国 , 油逐开 以 然渐始 及 气 进 某 资 行 些 源 地 金 勘 震 属 探
1951

现代的地震勘探正由以构造勘探为主的 阶段向着岩性勘探的方向发展
医学CT
计算机
数学
神经网络
生物进化
地质学

检波器:从已调信号中 检出调制信号的过程称 为解调或检波。用以完 成这个任务的电路称为 检波器。最简单的检波 器仅需要一个二极管就 可以完成,这种二极管 就被称做检波二极管。 检波器分为包络检波器 和同步检波器

地震勘探方法主要分为反射法和折射法两 大类,还有地震测井等。研究地壳内部结 构和划分区域构造单元﹔寻找和勘探各种 可能的含油气构造﹐通过钻探寻找构造﹐ 圈闭油气藏﹔还可以了解沉积岩层的岩性 和岩相变化﹐与地质和钻探相结合﹐寻找 岩性圈闭或岩性与构造复合圈闭油气藏﹔ 在条件有利的地区﹐还可能直接找矿。
左图为采集的共炮点道集的Z分量记录,震源深度为1310m,接受深度为 1672.5~975m,共280道(10级检波器提升28次),采样率为0.25ms,前放增 益为48d B,记录长度为1000ms。
从图中可以 看出P波的频 率从10Hz扩 展到360Hz 以上,优频 带为 160~240Hz, S波的频率从 10Hz扩展到 200Hz,优 频带为 60~120Hz。
横波(剪切波) 质点与传播方向 存在的位置或状 态 速度 破坏性 垂直 固态

纵波(推进波) 平行 固·液·气态
2
面波 兼有 地表或界面 略小于横波 最大
中 等
较小
sin sin sin p V1 V1 V2

可控震源地震勘探发展历程和基本原理概述

可控震源地震勘探发展历程和基本原理概述
可控震源地震勘探发展 历程和基本原理概述
2020年4月26日星期日
提纲
一、可控震源地震勘探技术发展历程 二、可控震源工作基本原理 三、可控震源勘探技术现状及展望
一、可控震源地震勘探技术发展历程
在地震勘探中,通过人工方法来产生地震波就叫做地震波的 激发。地震勘探采用的激发方式有炸药震源、可控震源、气枪震 源及其它震源。
7
一、可控震源地震勘探技术发展历程
一、可控震源地震勘探技术发展历程
可控震源的优点:节能、环保,参数可调 可控震源的缺点:地表激发,有限频宽
一、可控震源地震勘探技术发展历程
不同可控震源高效采集的日均生产效率
日均炮数
常规技术
提纲
一、可控震源地震勘探技术发展历程 二、可控震源工作基本原理 三、可控震源勘探技术现状及展望
二、可控震源工作基本原理
3 记录生成
由短脉冲生成长扫描信号
二、可控震源工作基本原理
S(t)=A(t)Sin2π[F1+(F2-F1) t/2T]t
0≤t≤ TD
[1+Cosπ(t/T1+1)]/2 ,
0≤t<T1
A(t)= 1 ,
T1≤t<TD-T2
[1+Cosπ(1+(TD-t)/T2]/2 , TD-T2≤t≤TD
4
一、可控震源地震勘探技术发展历程
➢ 1921年,美国人J.C.卡彻首次将炸药震源用于地震采集。 ➢ 1951年,中国首次规模化应用炸药震源激发进行地震勘探。 ➢ 1953年,重锤等其他激发方式出现,在此之前,炸药激发是
地震勘探中唯一采用的激发方式。 ➢ 1960年,Conoco推出可控震源激发技术,并授权进行工业化
二、可控震源工作基本原理

地震勘探原理pdf

地震勘探原理pdf

地震勘探原理地震勘探是一种利用地表的地震波在地下的传播规律,推断地下岩层的性质和形态的地球物理勘探方法。

地震勘探的主要特点是:利用专门仪器并按特定方式观测岩层间的波阻抗差异,进而研究地下地质问题;通过人工方法激发地震波,研究地震波在地层中传播的规律与特点,以查明地下的地质构造,为寻找油气田或其他勘探目标提供依据。

具体来说,地震勘探通过人工方式在地面产生震动,形成一个人工震源向地下发射地震波,这些地震波在地下不同的岩石界面上形成反射最终回到地面来。

然后,利用地震波接收仪器将人工震源产生的地震波记录下来,这些地震波携带了地下构造的信息。

通过对地震波的波形和传播时间进行研究,可以了解地下构造形态,进而推断出地下的地质特征。

地震勘探对环境有一定的影响。

首先,地震勘探过程中可能会产生噪音和振动,对周围环境产生一定的影响。

其次,地震勘探过程中可能会产生一些固体废弃物,如测量使用的木桩、小旗等标志,建筑材料、设备维修废弃的零部件以及炉渣,废记录纸和包装材料,剩余的食品等。

这些废弃物如果处理不当,可能会对环境造成污染。

此外,地震勘探过程中还可能会产生水污染和大气污染。

例如,工区施工人员生活污水、洗车污水的排放,爆炸对地表水、地下水的污染,汽车、发电机尾气污染,爆炸气体污染等。

因此,在进行地震勘探时,需要采取相应的环境保护措施,减少对环境的影响。

为了减少地震勘探对环境的影响,可以采取以下环境保护措施:1.保护自然环境:地震勘探需要在自然环境中进行,因此需要尽力保护这些环境,以免人为活动对其造成污染、破坏。

例如,在田野上进行地震勘探时,侵入土地的车辆和步行者可能会对土地、植被和野生动物的移动造成破坏。

因此,必须尽可能减少这些干扰,采取适当的管控和安排。

2.采取设备安装规划和土地利用管理:地震观测设备需要极为精准和稳定的基础设施。

为了确保稳定和安全的设施,可以实行针对性的设备安装规划和土地利用管理。

3.减少噪音和振动:地震勘探过程中可能会产生噪音和振动,对周围环境产生一定的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档