第二章 有机质谱3-裂解反应+非氢重排
有机质谱中的裂解反应

异裂
① 均裂—自由基引发裂解—α裂解
自由基引发的ɑ断裂反应:动力来自自由基强烈的电子配对倾向。该 反应由自由基中心提供一个电子与邻接的原子形成一个新键,而邻 接原子的另一个化学键则发生断裂。下面列举几种含n、π电子化合 物发生ɑ断裂反应的情况:
醚: R1 醇: 胺: R1
+ O
R2
α R1
CH3(CH2)nCH3 C6H5CH2(CH2)n CH3
m/z 43或57 是基峰 m/z 91是基峰
3.含杂原子化合物的裂解(羰基化合物除外)
+
R CH2 NHR'
R + H2C
+ NHR'
+
R CH2 OH(R' )
R + H2C
+ OH(R' )
+
R CH2 SH(R' )
第二章 有机质谱
2.3 有机质谱中的裂解反应
一、有机质谱裂解反应机理 二、有机化合物的一般裂解规律
一、有机质谱裂解反应机理
裂解方式:1. 简单裂解 2. 重排开裂
1. 简单裂解 电荷-自由基定位理论:分子离子中电荷或自由基定位在分子的
某个特定位置上(首先先确定这个特定位置),然后以一个电子或 电子对的转移来“引发”裂解。单电子转移发生的裂解称为均裂, 双电子转移发生的裂解称为异裂。
不含氮的化合物, m/z 为偶数的离子是奇电子离子
在质谱图中, 奇电子离子并不多见, 但重要
2. 烃类化合物的裂解规律
Hale Waihona Puke 烃类化合物的裂解优先失去大的基团生成稳定的正碳离子
+ CH2 > H2C CH
有机化合物波谱解析三 裂解机理2018(1)

C
C2H5 (2)
.OH +
m/z 相对丰度
(1) C4H9 C C2H5 115 15% +OH
(2) C4H9 C CH3 101 + OH
35%
(3) H3C C C2H5 73 + OH
100%
4-辛酮
43 29
57 71
58
85
86 100
128(M )
20 30 40 50 60 70 80 90 100 110 120 130 m/z
m/z
CH2 +
OH
+
3.1%
31
.CH2
NH2
.+
CH2 CH2 OH NH2
.CH2
+ OH
CH2
NH
+
57% 30
但是如果取代烷基增多可增强正电荷的稳定性,会有改变,如:
CH3
.+
H3C C
CH2
OH NH2
.CH2
+
CH3 C CH3
CH2 NH
+
NH2 + OH
m/z
59
30
强
弱
(ⅱ) 含不饱和杂原子(Y)化合物的-断裂反应
+
腈
H2C C NH 41
硝基化合 物
+O
.
H2C N
61
OH
②含杂原子化合物的氢重排
含卤素、氧、硫的化合物失去HX、H2O及乙烯,通过 四、五、六元环过渡态来实现氢重排。
卤代物
H3C CH CH2
H B+r.
C2H5
质谱技术裂解机理的初步认识

质谱技术中裂解机理的初步认识摘要质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒了可进一步断裂。
每一离子的质量与所带电荷的比称为质荷比(m/z ,曾用m/e)。
不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱,本文从质谱的裂解机理,质谱的裂解方式和质朴中的离子类型三方面进行了介绍,对质谱有了更深的理解。
一、质谱裂解机理离子的裂解并不是随意裂解,它必须按“偶电子规则”进行裂解,当含有奇数个电子的离子裂解时,可以产生游离基与一个偶数个电子的离子,或含偶数个电子的中性分子与一个奇数个电子的离子;当含有偶数个电子的离子裂解时,只能产生偶数个电子的离子和中性分子,而不会产生游离基OE EF+R (断1个键)OE OE+Nee (断2个键)EE EE+ Nee (断2个键)EE OE+R (断1个键)(极少产生)注意:奇电子离子有两个活泼的反应中心,即电荷中心和游离基中心;偶电荷离子只有电荷中心。
分子离子的裂解和产物离子的进一步裂解都是由这些中心引发的。
二、质谱裂解的方式(一)简单裂解1.游离基中心引发的断裂反应(α断裂)分子失去电子,形成游离基离子,它的电子有强烈的成对倾向,电子转移与邻近原子形成一个新键,同时邻近原子的α键断裂。
因此,这种断裂通常称为“α”断裂反应,以下分别举例说明各种化合物α断裂过程。
R2R+CR2YR杂原子(Y)的孤对电子电离能较低,很容易去失,形成游离基离子,进而发生α断裂,如αR2O R'R+CH2O R'2. σ键的断裂化合物中某个单键失去电子,则在此处易进一步发生断裂反应,例如烷烃。
R +RCR 3CR 3CR 3σ 能够稳定正电荷的离子丰度较高,如CH 3CH 2CH 3-e CH 3 32CH 33C 33C CH 2CH 3σ+3、电荷中心引发的反应(诱导断裂,i )① 奇电子离子(OE) a. 饱合中心 R Y R'R +i YR上述反应由正电荷对一对电子的吸引所推动,反应发生的难易与该元素的诱导效应有关,一般为卤素>O 、S >> N 、C ;许多碘代烷烃,溴代仲和叔烷烃及氯代叔烷烃,较易产生这个反应。
有机质谱中的裂解反应

α
α
CH2 = O
R2 + R1
醇:
+ OH
+ + OH
α
胺:
R1 H N + R2
R1
H N = CH2 + R2 +
α
H CH2 = N +
R2 + R1
② 异裂—正电荷引发裂解—i 裂解
正电荷引发的i断裂反应:是由正电荷引发的碎裂过程,它涉及两个 电子的转移,动力来自于电荷的诱导。
R1
酮:
R2
C
O
+
i
R1
+
+ R2
C
O
氯代物:
+ Cl
i
+ (CH3)2CH + CH2 = C l
酯:
+ O O i + +
O C O
i断裂与α 断裂小结
1、杂原子为单键时,i断裂和α 断裂所引起的断键位置是不同的。杂 原子为重键时,i断裂并不导致重建的断裂。 2、产物的电荷稳定通常比游离基稳定更重要,因此不同的物质断键
R
C O
a
R
C
a
R'
R . + 'R C
O+
2. 烃类化合物的裂解规律 烃类化合物的裂解优先失去大的基团生成稳定的正碳离子
+ CH2 > H2C CH + + + + + CH2 > CR3 >CHR2>CH2R >CH3
m/z = 91, tropylium
H2C CH
+ CH2
有机质谱中的裂解反应

4. 羰基化合物的裂解
自由基引发的均裂及正电荷诱导的异裂。 自由基引发的均裂及正电荷诱导的异裂。
5. 逆 Diels-Alder 反应( retro- Diels-Alder ) 反应(
6. 氢的重排反应
1) Mclafferty 重排 )
2)自由基引发或正电荷诱导,经过四、五、六元环过渡氢的重排 )自由基引发或正电荷诱导,经过四、
正癸烷
100 % O F BASE PEAK 90 80
m/z=43 C3 C4 m/z=57
n-Hexadecane
70 60 50 40 m/z=29 C2 30 20 10 m/z=85 C6 99 169 183 197 C7 113 127 141 155 C8 C C C1 1 C1 2 C1 3 C1 4 10 9 C5 m/z=71
异裂
半异裂: 半异裂: X
Y
X+ . Y
X+
+
.Y
简单开裂从裂解机制可分为以下主要三种: 简单开裂从裂解机制可分为以下主要三种: (1) α-裂解 ) 裂解 由自由基引发的、由自由基重新组成新键而在α 由自由基引发的、由自由基重新组成新键而在α位导致碎裂的过程称为α 裂解 位导致碎裂的过程称为α-裂解。 碎裂的过程称为 裂解。
各类有机化合物的质谱
1. 烷烃
直链烷烃: )显示弱的分子离子峰。 直链烷烃:1)显示弱的分子离子峰。 2)由一系列峰簇组成,峰簇之间差14个单位。 )由一系列峰簇组成,峰簇之间差 个单位 个单位。 (29、43、57、71、85、99…) 、 、 、 、 、 ) 3)各峰簇的顶端形成一平滑曲线,最高点在C3或C4。 )各峰簇的顶端形成一平滑曲线,最高点在 4)比 M+. 峰质量数低的下一个峰簇顶点是 M-29。 ) - 。 而有甲基分枝的烷烃将有 M-15,这是直链烷烃 - , 与带有甲基分枝的烷烃相区别的重要标志。 与带有甲基分枝的烷烃相区别的重要标志。
质谱

有机波谱绪论有机化合物的结构鉴定是经典有机化学的重要内容之一。
主要利用化合物的化学性质,来推断分子的结构。
用经典方法已成功测定了上万种有机化合物结构。
近50年来(上世纪中期),质谱、核磁共振、红外和紫外光谱方法得到快速发展,从根本上改变了化学研究的方法,成为结构鉴定的主要手段。
与经典方法相比,波谱法具有如下优点:快速、灵敏、准确、重复性好。
经典方法结构测定的程序:(1)元素分析(定性、定量)(2)分子量测定(3)官能团定性鉴定(4)通过化学反应提出“部分结构”(5)由“部分结构”拼凑出完整结构(6)用标准样品对照,或进行化学合成,证实结构的正确现代有机波谱方法:(1)质谱——能获得元素比例,分子量(决定分子式)和结构片段信息(2)红外——官能团鉴定(定性分析)(3)紫外——提供共轭体系的信息(结构片段)(4)核磁——能获得结构片段信息,并证实上述结论单独使用都有一定局限性,配合起来就成为结构鉴定的有力工具。
第一章质谱(Mass Spectrometry, MS)1.1质谱的基本知识(基本概念)发展历史:Thomson JJ英国科学家,获1906年诺贝尔物理学奖,首次发现20Ne,22Ne(氖)以及COCl→Cl+,O+,C+,CO+ ,1942年出现第一台商用质谱仪,502年代开始用于有机化合物分析。
质谱法(mass spectrometry, MS):在高真空系统中测定样品的分子离子及碎片离子质量,以确定样品相对分子质量及结构的方法。
质谱学:研究样品在质谱测定中的电离方式、裂解规律以及质谱图特征的科学。
测量对象:同位素、无机物、有机化合物、生物大分子、聚合物应用范围:化学、生物化学、生物医学、药物学、生命科学以及环保、公安、国防等领域。
特点:在鉴定有机物的四大重要工具核磁共振、质谱、红外、紫外光谱中,灵敏度最高,也是唯一可以确定分子式的方法。
1.1.1质谱仪质谱仪的组成:进样系统、离子源、质量分析器、检测器、计算机控制系统、真空系统1、电子轰击(electron impact, EI)源:方式:用电子直接轰击样品而使样品分子电离。
第二章 有机质谱2

质谱图: ① 分子离子峰提供分子量, ② 碎片峰提供结构信息
复习质谱峰类型 分子在离子源中可产生各种电离,即同一分子可产生多种离子峰:分
子离子峰、同位素离子峰、碎片离子峰、重排离子峰、亚稳离子峰等。
设有机化合物由A,B,C和D组成,当蒸汽分子进入离子源,受到电
子轰击可能发生下列过程而形成各种类型的离子: 分子离子
2、重排(脱掉中性分子)
麦氏(Mclafferty)重排反应
具有以下结构通式的化合物,可进行γ-H重排到不饱和 基团上,并伴随发生β键断裂的麦氏重排反应:
H QZ CY
X
-e
H QZ
CY X
QH Z CY
X
Z
+ QH
C
Y
X
醛、酮、羧酸、酯都可发生麦氏重排,产生特征质谱峰。
OH R
γ
RC
α
β
OH R RC
HN(C2H5)2 73
① H
H3C
- CH2=CH2
②
H2
a
C
. N(C2H5)2
H2C
- CH3
N(C2H5)2
101
86
. ③ i - N(C2H5)2
④ i - CH2=NC2H5
+ C2H5 29
+ C2H5 29
第二章 有机质谱
➢质谱概述 ➢质谱仪及其原理 ➢有机化合物的质谱反应及机理 ➢各类化合物的质谱特征 ➢有机化合物质谱解析 ➢生物质谱技术及联用技术
R' CR Y
R + CR Y
c、含π键的化合物
R1 CH2 CH
CH2
- e R1 CH2 CH
质谱解析基础

分子离子峰的判别
碎片离子和假分子离子
• 分子离子在离子源中获得过剩的能量转变为分子内能而发 生进一步断裂生成的离子称为碎片离子。质谱图中低于分 子离子m/z 的离子都是碎片离子,碎片离子提供提供品的 分子结构信息,对于结构鉴定具有重要的意义。 • 在离子源中,分子离子处于多种可能裂解反应的竞争之中, 结果形成一系列丰度不等的碎片离子。值得注意的是,分 子离子发生的占优势的一级裂解,不一定是质谱图上丰度 最高的碎片峰,因为它还可能进一步发生二级、三 级、……裂解。各种不同结构的有机化合物断裂的方式不 同,产生碎片离子的种类和丰度也不相同。在一定能量的 电轰击下,每一种化合物都有自己特定的质谱,为质谱用 于有机结构鉴定提供信息,是核对标准质谱图并使用计算 机贮存和解析的基础。
三、EI有机化合物裂解的一般规律
• 一张化合物的质谱包含着有关化合物的很丰富的信息。在很多情况下, 仅依靠质谱就可以确定化合物的分子量、分子式和分子结构。而且, 质谱分析的样品用量极微,因此,质谱法是进行有机物鉴定的有力工 具。当然,对于复杂的有机化合物的定性,还要借助于红外光谱,紫 外光谱,核磁共振等分析方法 • 质谱的解释是一种非常困难的事情。自从有了计算机联机检索之后, 特别是数据库越来越大的今天,尽管靠人工解释EI质谱已经越来越少, 但是,作为对化合物分子断裂规律的了解,作为计算机检索结果的检 验和补充手段,质谱图的人工解释还有它的作用,特别是对于谱库中 不存在的化合物质谱的解释 • 在MS-MS分析中,对子离子谱的解释,目前还没有现成的数据库, 主要靠人工解释。因此,学习一些质谱解释方面的知识,在目前仍然 是有必要的。
三、EI有机化合物裂解的一般规律
(一)、影响有机化合物在质谱仪中裂解的主要因素 • 1.裂解产物(包括碎片离子、中性分子、自由基)的稳 定性以及产生这一稳定碎片离子所需要能量的高低。碎片 离子的稳定性越大,其相对强度越高。 • 2.电荷自由基定域理论(Charge Localization) 假定电离后,在分子离子上的电荷或自由基被认为是 定域在分子离子中的某一特定位置上,由它通过转移一个 电子或两个电子而使裂解反应发生。 • 3.键断裂的难易程度,键越弱越容易断裂。 • 4.产生五、六元环过渡态的难易程度。一般形成五元或 六元环的过渡态,随后消除一个中性分子的裂解反应较易 发生。 • 5.丢失最大烃基规则(Loss of Largest Alkyl Group)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
+
H2C
+ NHR' + OH(R' ) + SH(R' )
R
CH2
R
+
H2C
R
CH2 + O + S
R
+
H2C
R R
R+ + R+ +
OR' SR'
or or
R' R'
+ +
1. 偶电子规律
OE+ ·→ OE+ ·, OE+ ·→ EE+ EE+ → EE+ , EE+ → OE+ · ?
如何识别质谱图中的的OE+·?
不含氮的化合物, m/z 为偶数的离子是奇电子离子 在质谱图中, 奇电子离子并不多见, 但重要.
2. 烃类化合物的裂解规律:
烃类化合物的裂解优先生成稳定的正碳离子
+
re
CO2 + C6H5NH C2H5
+
m/z = 121
+ re RCH2O CH2O CH2R'
CH2O + RCH2O
CH2R'
+
re与氢的重排类似,反应过程中迁移的是一种基团,而不是氢自由基 消去反应中消去的是小分子或自由基碎片。
2. 苯基迁移
O SCH3
O S
+
re
+. H3C C
O
+.
OCH3
(2)自由基引发或正电荷诱导,经过 四、五、六元环过渡态氢的重排
H H2C + SC2H5 CH2 H C2H5 H + OR + Cl C2H5 m/z = 70 H2C CH2 + HCl i C2H5 + HS
+
C2H5
m/z = 62
+
C2H5
C2H5
二、有机质谱裂解反应机理
1. 自由基位置引发的裂解反应
R CH2 + YR' R + H2C + YR' Y = N, O, S
R CH2 CH
+ CH2
R
+
H2C
CH
CH2
+ CH2
+
R C R'
CH2
+ O
R
R
+
+ O
+
R
R'
C
+
2. 自由基位置引发的重排反应
+ H X W C Z Y + XH C Z W
+
Y
+ H YR'' CHR' (CH2)n R
R CH
H C
CHR'
(CH2)n n = 0, 1, 2 Y = N, O, S
+
+ HYR''
3. 电荷位置引发的裂解反应
R + Y R' i + R
+
YR'
+ O i
+ O
R' C R
R'
+
R
C
+ R
+
CO
三、有机化合物的一般裂解规律
+ CH2 > H2C CH + + + + + CH2 > CR3 >CHR2>CH2R >CH3
m/z = 91, tropylium H2C CH
+ CH2
m/z = 41
CH3(CH2)nCH3 C6H5CH2(CH2)n CH3
m/z 43或57 是基峰 m/z 91是基峰
3. 含杂原子化合物的裂解(羰基化合物除外):
消去重排
环化取代重排
(cyclization displacement rearrangement)
Cl C8H17 + Cl C8H17 +
m/z 91(100)
rd
rd是由自由基位置引发而发生的环化反应, 反应过程中发生原化学键断裂(自由基被取代下来)同时生成新键。 环化取代重排在含饱和杂原子的长链烷基化合物中可见。
+
re
R
C N NH 2
CH 3CN
R
NH 2
完
+ HOR
i HOR
C2H5
+ m/z = 84
C2H5
H + OR
C2H5
+
+ HOR
i C2H5 m/z = 56
+
(3)长链酯基的双氢重排
+ O R C O H
H CH (CH2)n CHR' R' CH
CH (CH2)n n = 1, 2, 3
+ OH
+
R OH
(4)偶电子离子氢的重排
H2C
+ S
H
H2C
+ SH
m/z = 47
(5)芳环的邻位效应
A X H Y Z
+
A X
+
+
HYZ H2O, H2S, NH3 HOR, HSR, NH2R
CH2 H OH CH2
+
CH2 CH2
+
+
H2O
O H OH CH2
+
O CH2
+
+
H2O
7. 质谱中的非氢重排
环化取代重排
+
+
O S CH3
+
re
O
+
+
or
SCH3
O
+
SO2 +
m/z = 154
O COO
re
CO2 +
+
O
+
m/z = 170
O
+
re CO
+
re CO
O
O
m/z = 180(76) m/z = 152(48)
3. 烷氧基迁移
+
O R C CH
OCH3 C R'
+
R
+ Cl
+ Br
+ Br
m/z 105
m/z 135
m/z 149
H2 +N
H S+
H S+
m/z 89
m/z 103
m/z 86
消去重排(elimination rearrangement) 1. 烷基迁移
CH C COO CH3
+
re
CO2 + CH
C CH3
+
m/z = 60
C6H5NH COO C2H5
一、研究有机质谱裂解反应的实验方法
● 亚稳离子法
● 同位素标记法
● 亚稳离子法
m1 –Δm → m2
Δm = 15 (CH3), 18 (H2O), 28 (CH2CH2 , CO) ……
● 同位素标记法
2H标记,其质荷比大于未标记的分子离子或碎片离子。
例如:
醇失水, MS证明是1,4-失水为主 氯代烃脱HCl, 是1,3-失HCl为主
RDA
+
m/z = 66 R + RDA R +
+
+
m/z =104 + 14n
6. 氢的重排反应:
(1)McLafferty重排(γ氢重排,经过六元环过渡态)
R 羰基化合物 R' H + O + OH
-H
R
+
R'
R' = H, R, OR, OH, NH 2
R 烯烃化合物
H
+
-H
+ +
OR SR
4. 羰基化合物的裂解:
+.
O R C H R
.
+
O
+ HC
O
+
R
C
+
O
OR'
R
.
+ R'OC
O
+
R
C+ HOC
O
+
+
R
C
R'
R
.
+ R'C
O
5. 逆Diels-Alder反应 (RDA):
+ + O +
+
RDA
+
or
+
+
+
+
O m/z = 108
O
OCH3 C R'
.
C CH
re
+
CH C R'
O C OCH3